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A method of multiscale analysis based on mathematical homogenization theory has been
developed for quasi-static equilibrium problems of granular media. The micro-scale problem is
analyzed by a discrete numerical model assuming elastic and frictional contact between rigid
particles. This two-scale analysis enables us to obtain the macroscopic/phenomenological
inelastic deformation response of a representative volume element (RVE). To examine the
macroscopic deformation properties of the assumed RVE, a series of numerical experiments
involving pure rotation of the principal stress axes are carried out. The necessity of
incorporating the non-coaxiality induced by the tangent effect and the anisotropy in the yield
condition is revealed in the phenomenological constitutive description of the deformation

under principal stress axes rotation.
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1. Introduction

The stress path often deviates severely from

proportional loading in many real situations. The

following results have been found experimentally for the
non-proportional loading behavior of soils": i) Not only
the magnitude but also the direction of inelastic stretching
is dependent on the direction of the stress rate, as revealed
by stress probe tests, ii) Inelastic deformation is induced
by the rotation of the principal stress axes, even if all of
the values of the principal stresses and invariants of stress
are kept constant. However, the physical tests have
difficulty to derive absolute conclusions due to the
restrictions of the test system and the variation of
specimen.

On the other hand, numerical tests do not have these
problems, because any intermediate data can be used for
different tests and any stress or strain control can be
applied flexibly. There have been many studies referring
to numerical solutions, which can be obtained by discrete
numerical models. The distinct element method (DEM)" is
one of the most popular discrete models. The DEM can be
utilized to characterize the macroscopic elastic—plastic
mechanical behavior of a granular assembly, but is suited

mainly to dynamic motions.

For the quasi-static equilibrium states of granular
media, Kishino (1989)"" developed the granular element
method (GEM) to study the flow rule and the stability
conditions for granular media: see also Wren and Borja
(1997)” and Kuhn (1999)® who utilized numerical
methods similar to the GEM to study the macroscopic
constitutive laws for granular media. Also, the entropy
estimation of contact forces has been discussed”.

A method

mathematical homogenization theory has been developed

of multiscale analysis based on
for quasi-static equilibrium problems of granular media by
Kaneko (2001)'” and Kaneko et al. (2003)'". The
mathematical theory of homogenization for heterogeneous
media with periodic microstructures enables us to realize
the two-scale modeling, which consistently encompasses
both micro- and macroscales together with variational
Due to this

mechanical behavior is easily incorporated into the

statements. consistency, the nonlinear
numerical analysis by the finite element method (FEM).
The problem can be formulated in terms of two distinct
scales; macro- and microscales. The former scale defines a
global structure, the latter a local structure or equivalently

a representative volume element (RVE). The macroscopic
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field variables are simply calculated as the volume average
of the corresponding microscopic variables over the RVE
and satisfy quasi-static equilibrium of the overall structure.
On the hand,
friction-contact behavior is assigned to the RVE on the

other a particulate structure with
microscale. The RVE is assumed to be periodic throughout
the paper and is often denoted as the unit cell. Then, the
resulting two-scale boundary value problem allows us to
analyze the microscale behavior of unit cells by the GEM,
in which springs and friction sliders connect rigid particles,
while the macroscopic problem is solved by the
continuum-based FEM. The aforementioned experimental
fact i) is verified by numerical experiments due to the
GEM analysis for granular media™ >

In this study, the 3-dimensional two-scale modeling
based on the mathematical homogenization method is
adopted for the quasi-static numerical simulations of
granular media in order to examine their mechanical
response to pure rotation of the principal stress axes. Also,
mechanical interpretation of the roles of the non-coaxiality
for the description of the non-proportional loading
behavior of materials are reviewed'?'®. Then, based on
this interpretation, the mechanical responses to the rotation
of the principal stress axes are examined from the points
of view of the both the tangent effect and the anisotropy in
the yield condition, adopting the subloading surface model
with the tangential effect and the anisotropic yield surface

due to the rotation of the yield surface.

2. Macroscopic constitutive responses predicted by
granular element model

2.1 Granﬁlar assemblies

The body considered is a periodic assembly of
micro-structural elements (RVE), in which the size of the
RVE is small enough relative to the overall structure. In
the two-scale method, the microscopic problem is treated
numerically by means of the discrete Granular Element
Method (GEM), while the macroscopic one is by a
conventional finite element method.

The model under consideration, depicted in Figure
1(a), has

equilibrium state under confining pressure up to 100 kPa,

1776 spheres. After achieving the initial

tri-axial shear loading is applied wunder the

stress-controlled and constant mean stress conditions, as
has been done by some experiments”™. The normal and
tangential spring constants for the granular interaction are
assumed to be 100 kPa and 70 kPa, respectively, while the
friction angle is set to be tan(15°). Figure 1(b) shows the
under monotonic triaxial

stress-strain  relationship

compression condition. To examine the mechanical
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Figure 1 (a) Granular element model and (b) Stress-strain
curve with the rotational path points R-1 and R-2.

responses of the specimen to the non-proportional loading
conditions, a series of tests are conducted from the loading
points R-1 and R-2 shown in Figure 1(b). The specimen is
subjected to principal stress axes rotation under the
condition in which all of the invariants of stress are kept
constant.

2.2 Test procedures

In the experiments using a hollow cylindrical
specimen'’”™ the four stress components, i.e. the axial
stress o, , the radial stress o, , the peripheral stress oy
and the torsional shear stress o, , can be applied
independently under the coordinate system (8,r,a) .
These four stress components are described by the
effective pressure p, the magnitude|| || of the deviatoric
stress ¢*, the Lode's angle 6, and the rotation angle
o« of the principal stress axes as

O 2 sing, , cosf@, cos 2a
——p+ |2 16* T 4 fo3 1
Ua} Py ol (S - )

oy :—P+%\E lo*|l sing 2)
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Figure 2 (a) Mohr’s circle of stress and (b) the pure principal
stress rotation path in (X ) plane.

_ |2 4 c0s8o sin2a
O ~\/; lo*| Ne (3)
where
1. 1 tre*® ~1209 —01-03
0y =——sin_ (/6 =tan = —F—r——= 4
3 ( a3 ) V3(o1-03)
Equations (1)-(4) are derived by orthogonal

transformation of the principal stresses to a coordinate
‘system rotated around the intermediate principal stress
axis (o, =0y). The b-value is related to Lode's angle

as follows:
- 1
b=22"T = _(Stang, +1) (5)
01—-03 2

In the tests adopted for later examination, however, the
stresses are controlled to fulfill or =0y =(0p+03)/2
= const., leading to b=0.5, i.e. 6, =0". Then, Mohr’s
stress circle for the pure principal stress axes rotation is
depicted as shown in Figure 2(a). The stress oy, o, ,
o, and o,y are described by the principal stresses and
o as follows:

0.4

06 -04 -0.2 0 0.2
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Figure 3 The inelastic strain in the principal stress rotation from
the stress states R-1 and R-2.
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Ouf =
The state of stress induced in the tests can also be
represented in the (X, ) stress plane (Fig. 2(b)), where

~96~0q

X » Y =04 (7

In the (X, Y) plane, the length of the stress vector is equal
to the radius of Mohr's stress circle and makes twice the
angle «,i.e.

Y
tan 2 = — 8
% (8)

Strain increments induced by the stress
increments in the (X, ¥) plane are also depicted taking
(deg —de,)/2 and deg,g for the X- and the Y-axis,

respectively.

imposed

2.3 Rotation of principal stress axes of idealized
granular assemblies

In the non-proportional loading calculation with a
pure rotation of the principal stress axes, the magnitude of
the deviatoric stress /6% is kept constant. The numerical
tests on a continuous principal stress axes rotation of 2 =
0to360° from the stress state R-1 and R-2 in Figure 1(b)
are conducted. Figure 3 shows strain path induced during
the imposed stress path under a pure principal stress axes
rotation. The numerical result from R-1 exhibits a circular
locus, and thus the strain components diminish at the end
of a pure rotation of principal stress axes.

The result from R-2 brings about a larger circle and
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an inelastic strain at the end of a stress cycle, as is often
observed in the experimental results”™. From a theoretical
point of view, a phenomenological description of the
deformation behaviour of elastoplastic materials to pure
principal stress axes rotation has been examined'”'® by
the elastoplastic constitutive mode based on subloading
surface model, with both tangent effect and anisotropy due
to the rotation of the yield surface.

3. Phenomenological description of elastoplastic
material responses

The phenomenological description of the deformation
behaviour of soils to pure principal stress axes rotation is
considered by the elastoplastic constitutive mode based on
subloading surface model, with both tangent effect and
anisotropy due to the rotation of the yield surface.

3.1 Non-coaxiality

The stretching D ( =(L+LT)/2 ) is additively
decomposed into the elastic stretching D€ and the

inelastic stretching D7, i.e.
D=D°+D’ 9
Further, let the inelastic stretching D! be additively

decomposed into plastic stretching DP and tangential
stretching D!, i.e.

D' =D? +p! (10)
on the premise that D” and D’ are induced by the
stress-rate component normal and tangential, respectively,
to the yield/loading surface in order to extend the
traditional elastoplasticity so as to describe the general
non-proportional loading behavior.

The plastic stretching D based on the consistency
condition and the plastic potential is generally described as
1 F 28

P=__
D Mptr 36°/ 75 (11)

where f and g are the yield and the plastic potential
function, respectively, and MP is the plastic modulus,
functions of stress and internal variables in general. The
plastic constitutive equation (11) has the following
properties:

(1) The plastic stretching D” is independent of the
stress-rate component tangential to the yield surface,
called the tangential-stress rate, and its direction is
independent of the stress rate. Needless to say, the plastic
stretching is not induced in the stress path
(tr{(8f/66)6}=0) tangential to the yield surface.

(2) An isotropic function of the stress tensor obeying the
orthogonal transformation can be described by a function
of principal stresses or invariants of stress. Then, if the

yield function fis an isotropic function of the stress tensor
leading to mechanically-isotropic yielding behavior,
plastic stretching is not induced during the principal stress
axes rotation process with constant values of the principal
stresses.

(3) The coaxiality, i.e. the coincidence of the principal
directions of plastic stretching with those of stress, holds
as far as g is an isotropic function of the stress tensor. In
fact, however, the non-coaxiality is observed in the
experiments described for (2) and (3).

On the other hand, the inelastic stretching D’ given
by Eq. (10) possesses the following properties.

(a) Not only the magnitude but also the direction of the
inelastic stretching D’ exhibits a dependence on the
stress rate.

(b) The non-coaxiality between inelastic stretching D!
and stress 6 is caused by the existence of D, even if
an isotropic plastic potential surface of stress is adopted.
(c) The inelastic stretching induced during the rotation of
the principal stress axes can be described by the
incorporation of the tangent effect, even if an isotropic
yield function of stress is used.

Here, consider the constitutive model with the
anisotropic plastic potential surface, which exhibits
non-coaxiality and in which the direction of the inelastic
stretching depends only on the state variable but is
independent of the rate variable. One should note the
following facts:

(i) This model cannot describe the dependence of the
inelastic stretching on the tangential stress-rate as long as
the tangent effect is not incorporated. That is to say, the
non-coaxial model without the tangent effect is incapable
of predicting appropriately the stress probe behavior.

(ii) Further, the model cannot describe the inelastic
stretching during the rotation of the principal stress axes as
long as an anisotropic yield surface and/or the tangent
effect is not incorporated. Inversely, inelastic stretching
during the rotation of the principal stress axes is predicted
even by the coaxial model with an isotropic plastic
potential surface, only if an anisotropic yield surface is
adopted.

3.2 Material functions

The concrete forms of material functions for soils are
described in this section. The anisotropy of soils could be
described concisely by the concept of the rotation of the
yield surface around the origin of the stress space, called
(1977,

16)

the rotational hardening by Hashiguchi
originally proposed by Sekiguchi and Ohta (1977)

Let the loading function f be given for soils as

- 568 -



B=9)

(B=0)

Figure 4 The subloading surfaces for isotropic (ff =0 ) and
anisotropic (Jp = 0 ) soils illustrated in the (X, Y) plane.

fo,H)=p(l+ x> =F (12)
where
_ 1 LI
P=—§tr0, ¥=—= n=1n-p (13)
qs—g-*, 6*=c+pl (14)

In these equations, m is a material function of
Lode’s angle or the b-value and internal variables,
representing the value of |7 in the critical state, whilst
the simplest function for m is given by Hashiguchi
(2001)'”. However, m is regarded as constant in this
article since infinitesimal variations in the Lode’s angle
are  considered. The scalar F is isotropic
hardening/softening function. The tensor [ is introduced
to describe the anisotropy through the rotation of the yield
surface around the origin of the stress space. For =0
(isotropy), the meridian section of loading surface is
half-ellipsoids whose long axes coincide with the
hydrostatic axis in the stress space. Therefore, the function
fin Eq. (12) is regarded as the extension of the modified
Cam-clay model to the anisotropy due to the rotational

hardening.

3.3 Loading surface in the (X, ¥) stress plane

Anisotropy is often caused by the sedimentation of
soil particles, which is also observed in sand samples
laboratories, which is

made in supported by the

experimental fact that the bedding plane has the highest

-0.6 -0.4 -0.2 0 0.2
(€9 —€a)/2 (%)

Figure 5 The inelastic strain in the principal stress rotation
from the stress states R-1 and R-2.

compression resistance but the lowest shear resistance due

to the horizontal alignment of sub-elongated sand particles.

Then, let the anisotropy for the axisymmetric condition be
assumed as follows:

~BJ2 0 0

B=| 0  -B/2 0

0 0 B

The rotation angle 65 of the central axis of the yield

(trf=0) (15)

surface in the (p, g,) plane is given as follows:
- 3
6p = tan ‘(—\Eﬂa (16)

Substituting Eq. (15) into Eq. (12) leads to the following

expression of the loading surface in terms of (X, ¥) as
1 m? (5 -1
2

3 2.2
(X+Zpﬂa) +Y“= 5

3
) 16ﬂa 17

The outward-normal vector N=(Ny, Ny) of the loading
surface in the (X, Y) stress plane is given as follows:

NX}: 1
N,
! \[(X+ipﬂa>2+Y2 Y.

The loading surfaces for the isotropy (f=0) and

3
X+— ,
4Pﬂa

(18)

anisotropy (P #0) are shown in the (X, Y) stress plane
(see. Fig. 4). The loading surface shifts to the X-axis
direction with an increase in magnitude of the anisotropic
parameter S, . For isotropic conditions, the direction of
the outward-normal vector N on the loading surface
coincides with that of the stress in this plane. Therefore,
the principal directions of the plastic stretching coincide
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with those of the stress leading to coaxiality. On the other
hand, for anisotropic conditions, the direction of the
outward-normal vector N on the loading surface does not
coincide with the direction of the stress in the plane,
except for the case where o,y =0. The angle 2ay of
the direction of the outward-normal of the yield surface in
the (X, Y) plane measured from the X-axis in the (X, 1)
plane is given by Eq. (18) as

Y
tan2an =

19
X+2P,3a 19

It holds for « and ay from Eqs. (17) and (18) that

tan 2«

3. p (20)
1+ ——=——+/1+tan?2
NS anR2a By

tan2an =

3.4 Deformation behaviour predicted by a

phenomenological elastoplasticity model
The strain paths predicted by the phenomenological
elastoplasticity models' '¥ is shown in Fig. 5 for R-1 and
R-2 tests, keeping v X2+Y2=21.2 kPa and =50 kPa at
p=100 kPa, respectively, in which the following material
constants and initial values are used in the calculation.
E=310MPa, v=0.2, p=0.034, »=10.0034,
Fy=350 kPa, m=0.96, B,= —0.15, u=10,
a=0.01,b=c=1.0.
The prediction on R-1 test is conducted by the subloading
surface model with the non-coaxiality induced only by the
tangent effect, which exhibits a completely circular locus,
and thus diminishes at the end of a stress cycle as shown
in the calculation results in Fig 3. The prediction on R-2
test is conducted by the model with the non-coaxiality
induced by both the tangent effect and anisotropy, which
dose not exhibit perfectly circular locus, and thus dose not
diminishes at the end of a stress cycle as shown in the
calculation results in Fig 3 for R-2 test.

4. Concluding remarks

The macroscopic constitutive response of granular
media to principal stress axes rotation has been examined
in this study. The mechanical response of the granular
element model to the non-proportional loading exhibits the
following characteristics:

i) For the pure principal stress rotation, inelastic strain is
not induced for the stress state close to isotropy (R-1 test).
i) Inelastic strain is induced with increase in magnitude of
the deviatoric stress (R-2 test).

In addition, the phenomenological description of the
deformation behavior of soils is discussed from the view
point of the non-coaxiality by adopting the subloading

surface model with both the tangent effect and anisotropy
due to the rotation of the yield surface. The mechanical
response of the model for the principal stress axes rotation
exhibits the following feature. Even during the pure
principal stress axes rotation process where the principal
stress value is kept constant, a rather large strain is
induced, depicting an almost circular strain path in the
deviatoric strain plane (it does not diminish), leaving an
irreversible strain at the end of the stress cycle. It is
verified that the present model has the capability of
describing the non-proportional loading behavior of sands
under the pure principal stress axes rotation. Eventually, it
can be concluded that both the tangent effect and the
anisotropy in the yield condition have to be incorporated
into constitutive equations for the description of the
general non-proportional loading behavior of soils.
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