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Abstract - The traditional elastoplastic constitutive equation, which is inde-
pendent of the stress rate component tangential to the yield surface predicts an
unrealistically stiff mechanical response for the nonproportional loading proc-
ess in which the stress rate has a component tangential to the yield surface. In
this article, the generalized constitutive equation is then formulated by incor-
porating the inelastic strain rate due to the stress rate tangential to the subload-
ing surface into the subloading surface model exhibiting a smooth elastic-

plastic transition.
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1. Introduction

The following facts are generally observed in the
inelastic deformation behavior of real materials.

1) The magnitude of the inelastic strain rate depends
not only on the component of the stress rate nor-
mal to the yield surface, called the normal stress
rate, but also on the component of the stress rate
tangential to the yield surface, called the rangen-
tial stress rate.

2 ) The direction of the inelastic strain rate depends
not only on the stress but also on the stress rate.

3 ) Thus, the non-coaxiality, i.e. the discordance of
the principal axes of the inelastic strain rate and
the stress is induced.

However, the traditional elastoplastic constitu-
tive equation, which has a single smooth yield surface
and in which the plastic strain rate is derived from the
consistency condition with a plastic potential flow
rule, is incapable of describing these facts since the
plastic strain rate is independent of the tangential
stress rate. It then has problems in the analysis of the
deformation behavior under the nonproportional
loading process with a significant tangential stress
rate. The stress path often deviates significantly from

that of proportional loading in plastic instability phe-
nomena with the bifurcation of deformation and often
with the localization of the deformation; the tradi-
tional elastoplastic constitutive equation tends to pre-
dict an unrealistically stiff mechanical response lead-
ing to an excessively high limit load. Consequently,
an extended constitutive equation needs to be formu-
lated, in which the above-mentioned facts 1)-3) and
the following facts are also taken into account.

4 ) It was evidenced by Rudnicki and Rice" that "no
vertex can result from hydrostatic stress incre-
ments”, based on consideration of the sliding
mechanism in a fissure model. Thus, it might be
assumed that only the deviatoric part of the tan-
gential stress rate, called the deviatoric-tangential
stress rate, influences the inelastic deformation
behavior.

5) The direction of the tangential strain rate induced
by the deviatoric-tangential stress rate has com-

but also out-

ward-normal to the yield surface, as has been
found in various experimental and theoretical
studies: test data of metals® and soils”” numeri-
cal experiments for metals based on the KBW
model®® by Ito'” and the Taylor polycrystallire

ponents not only tangential
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model'" by Kuroda and Tvergaardm and nu-

merical experiments for granular media based on

the discrete element method by Bardet et al !1>1o),

Kishino and Wu'""'®),

6 ) The tangential strain rate would also cause the
hardening of yield surface by the outward-normal
component to the yield surface as well as the plas-
tic strain rate.

A brief overview of the existing constitutive
models extended to overcome the above-mentioned
limitations of the traditional constitutive equation is
given below.

Extensions of the associated flow rule incorpo-
rating the directional tensor of stress rate and that of
strain rate have been proposed by Mroz'”, Dafalias
and Popov?”, Dafalias’’, Wang et al*®, Hashigu-
chi®®, etc. and by Hill*”, Hashiguchi®”, Kuroda and
27), etc., respectively. How-
ever, in these models the plastic strain rate is induced
only by the normal stress rate since the positive
proportionality factors in their flow rules are derived
from the consistency condition of the yield surface as

Tvergaard14)’26), Kuroda

is done in the traditional plastic constitutive formula-
tion.

Approaches that more drastically modify the
traditional elastoplasticity, i.e. the intersection of
multiple yield surfaces™>* and the corner the-
ory35)'42) have also been proposed.

Approaches using the intersection of multiple
yield surfaces have difficulty in describing the mu-
tual influences between the hardenings of various
yield surfaces, i.e. latent hardening. While a practical
calculation of deformation using this method has
been performed by Sewell™- ", it was restricted to
base states of uniaxial stress. Experimental measure-
ments of hardening moduli have proven difficult, as
described by Storen and Rice™, and a computational
practical extension of this model to general stress
states is not obvious, as was indicated by Christof-
fersen and Hutchinson®®.

The corner theory assumes the existence of a
corner (vertex, cong) on the yield surface, inducing a
geometrical singularity in the field of the out-
ward-normal vectors to the yield surface. However,
an evolution rule for the cone due to plastic deforma-
tion has not so far been given. Perhaps it cannot be
formulated rationally, especially if the stress rate is
directed outward from the yield surface but more than
90° from the outward central axis of the cone, whilst
the cone has to contract. Thus, this model is not ap-
plicable to the general loading process including

unloading, reloading and reverse loading but applica-
ble only to monotonic loading near the proportional
loading process.

Models incorporating the tangential strain rate
into the traditional elastoplastic constitutive equation
have been proposed by Rudnicki and Rice", Papami-
chos er al*” and Hashiguchi*” or Hashiguchi and
Tsutsumi'®. These models have been widely applied
to the analysis of plastic instability phenomena by
various researchers™*®) However, the models of
Rudnicki and Rice" and Papamichos et al* are ap-
plicable only to materials having a yield surface with
a circular z-section. Further, they predict the tangen-
tial strain rate only at the moment when the stress
reaches the yield surface and thus violates not only
the smoothness but also the continuity condi-
tions2»2516061)

tional elastoplasticity® which assumes the interior of

, since they are based on the conven-

the yield surface to be an elastic domain. Therefore,
the deformation predicted by them for the stress path
along the yield surface does not fulfill the uniqueness
of solution, which leads to the serious defect in the
analysis of boundary value problems. Only the model
of Hashiguchi45)’46) based on the subloading surface
model"® falling within the unconventional plastic-
ity exhibiting
fulfills the continuity and smoothness conditions. The
tangential strain rates in all the above-mentioned
models formulated in this approach is directed merely
towards the tangent to the yield/subloading surface,
ignoring the fact 5). Further, the hardening due to
the tangential strain rate is not taken account into the

a smooth elastic-plastic transition,

evolution of yield condition in these models.

In this article, the generalized constitutive equa-
tion, referred to as the tangential-subloading surface
model, is formulated by incorporating the tangential
strain rate into the subloading surface model
model™"*® so as to fulfill all the aforementioned facts
1)-6), while the facts 5) and 6) have not been taken

into account in the previous formulation®4%.

2. Constitutive Equation

The subloading surface model™® will be ex-
tended so as to incorporate the tangential srain rate
and the hardening due to it in this section.

Denoting the current configuration of the mate-
rial particle as x and the current velocity as v, the ve-
locity gradient is described as L =0dv/dx from
which the strain rate and the continuum spin are de-
fined as D=(L+L")/2and W=(L-L")/2, re-
spectively, ( ' standing for the transpose. Let the
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strain rate D be additively decomposed into the elas-
tic strain rate D¢ and the inelastic strain rate D,
while the latter is further additively decomposed into
the plastic strain rate D? and the tangential strain
rate D!, ie.

D=D°+D’, D' =D?+D" (1

where D? and D are induced by the stress rate
components normal and tangential, respectively, to
the subloading surface. Let D¢ be related linearly to
the stress rate as

D¢ =E'6; 2)
¢ is the Cauchy stress, (°) denoting the proper
corotational rate with the objectivity, and the
fourth-order tensor E is the elastic modulus. Here,
limiting to an infinitesimal deformation but avoiding
the influence of rigid-body rotation on the constitu-
tive relation, the following Zaremba-Jaumann rate is
adopted for the corotational rate.

A-A-WA +AW. 3)

where A is an arbitrary second-order tensor, (*)
denoting the material-time derivative.

2.1 Plastic strain rate
Let the following yield condition be assumed.

f(6,H) =F(H), )

where
G=0-0. (5)

The scalar H is the isotropic hardening variable in-
ducing the expansion/contraction of yield surface, the
second-order tensor H is the anisotropic hardening
variable inducing the rotation of yield surface in soils
for example and the second-order tensor @ is the
kinematic hardening variable, i.e. the back stress. The
function f of the tensor 6 is assumed to be homo-
geneous of degree one of ¢ satisfying fs6, H)=
sf{6, H) for any nonnegative scalar s, and thus the
yield surface keeps a similar shape for H=0. The
evolution of internal structure of materials would be
caused by the inelastic strain rate D’. Then, let it be
assumed that the rates of internal variables H, H and
a are linear functions of D, i.e.

].{:tr{fH(Gv H9 H7 u) Di}:
H=f (o, H,H aD, (6)

a=f,(c, H,H, a) D,

where f; is the second-order tensor function, and
fy and f, are the fourth-order tensor functions of
6, ,Hand a, tr() denoting the trace. [;(, H
and @ are additively decomposed into the plastic

and the tangential parts by Eq.(1), viz.,

fr=frre i1
fi= i+ i )
a=ar+a

where
17 =tr{f, (o, H, H, )D*},
A =tr{f,(c, H,H, @) D'},
H? = ¢, H, H a)D?,
u( ) ®)
H' =f (¢, H, H, o) D',

af =f (6, H, H, a)D?,

a' =f, (o, H, H, a) D".

noting the time-independence and the fact that these

rate variables are not zero only when the inelastic

strain rate is not zero.

In what follows let the conventional elastoplastic
constitutive model®® with the yield surface enclosing
a purely elastic domain be extended to the unconven-
tional elastoplastic constitutive model describing the
plastic strain rate due to the rate of stress inside the
yield surface. Here, it could be assumed that
a ) A plastic strain rate develops gradually as the

stress approaches the yield surface.

b ) A conventional elastoplastic constitutive equation

holds when the stress lies on the yield surface.

In order to formulate an unconventional elastoplastic

constitutive equation realizing these assumptions it is

required to adopt the relevant measure expressing
how near the stress approaches the yield surface.

Then, let the following surface, called the subloading

surface, be introduced.

1. It passes always the current stress point.

2. It has the similar shape and same orientation as the
normal-yield surface. Thus, the subloading surface
coincides completely with the normal-yield sur-
face when the stress reaches the normal-yield sur-
face.

3. The similarity-center s of theses surfaces moves
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with a plastic deformation,
whilst the yield surface in the conventional elasto-
plasticity is renamed the normal-yield surface.

Then, let the ratio of the size of subloading sur-
face to that of normal-yield surface, called the nor-
mal-yield ratio and denoted by the notation
R(0 < R<1), be introduced as the three dimensional
measure for the approaching degree of stress to the
normal-yield surface.

Now, it holds that

cy=-}-3-{o—(1—R)s} (6-s=R(0,-8)), (9

where 6y on the normal yield surface is the conju-
gate stress of the current stress 6 on the subloading
surface.

[t should be noted that the subloading surface
coincides completely with the normal-yield surface
when the stress reaches the normal-yield surface, i.e.
R=1. On the other hand, the subyield surface(s) in the
multi®” never coincide
with the outmost or the bounding surface but contact
to them at a point. These geometrical properties bring
about the singularity of the elastoplastic moduli lead-
ing to the discontinuous response in the multi and the
two surface models.

By substituting Eq. (9) into Eq. (4) (regarding ©
inEq. (4) as @),), the subloading surface (see Fig. 1)
is described as

and the two surface models®®

f(6,H) =RF(H), (10)
where
6=06-0 (=Rg,), (11)
6, =G, -, (12)
a=Ra+(1-R)s (a—-s=R(a-s)). (13)

d in the subloading surface is the conjugate point of
0. in the normal yield surface. In the calculation, R
has to be calculated first by substituting current val-
ues of ¢, H, a, H, s into Eq. (10), and thereafter
a is calculated using Eq. (13).

The material-time derivative of Eq. (10) is given
by

tr (af(G, H) ) tr (5f(6, H) ) tr (af(ﬁ, H) H)

=RF+RF'H, (14)
where
i
Fr=4t. (15)

Eq. (14) as it is cannot play the role of the consis-
tency condition for the derivation of plastic strain rate
since it contains rate variable 1.{ which is not ex-

Subloading surface

Normal-yield surface

Fig. 1. Normal-yield and subloading surfaces.

plicitly related to the plastic strain rate. In order to

embody Eq. (14) as the consistency condition let the

evolution rule of R, i.e. 1’2 be formulated so as to
fulfill the following conditions.

1 ) R increases infinitely for the inelastic strain rate
component outward-normal to the subloading
surface when the surface contracts to a point coin-
ciding with the center of similarity-center s, i.e.
RA(ND{)= o0 for R=0, where the second-order
tensor N  denotes the normalized out-
ward-normal to the subloading surface, i.e.

N Y@ B /¥, H)II
o6 | oo

|| [ denoting the magnitude.

2 ) R increases with the inelastic strain rate compo-
nent outward-normal to the subloading surface,
ie. R>0 for tr(ND?) >0.

3 ) The subloading surface does not expand over the
normal-yield surface, i.e. R=0 for R=1 and

R<0for R>1.

Thus, the following evolution equation of the nor-

mal-yield ratio R is assumed.

(Nl=D. as)

R =UR)tr(ND') for DV =0, a7

where U is a monotonically decreasing function of R,
fulfilling the following conditions.

o for R =0,
UR)=:0 for R = 1, (18)
<Q for R>1.

Let the function U satisfying Eq. (18) be simply given
by

U=-ulnR, (19)

where u is a material constant.
The similarity-center § must lie inside the
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normal-yield surface since the subloading surface
plays the role of loading and plastic potential surfaces
and thus is not allowed to intersect the normal-yield
surface. Then, the following inequality must be ful-
filled.

1, HY< F(H), (20)

where
2n

The time-differentiation of Eq. (20) in the ultimate
state  f(S, H)=F(H), where s lies just on the
normal-yield surface, leads to:

[8f(S H)(g G L 1 {t (5f(S H)H) F}S)]

<0 for f(s, H)= F(H),

S=s—g-

(22)

while the relation tr[{5f(S, H)/gs}S]=F due to
Euler’s theorem for homogeneous functions is used to
derive Eq. (22). The inequality (20) or (22) is called
the enclosing condition for the similarity-center. In
the ultimate state f(S, H)=F(H), the vector

—S (=(6-S)/R) makes an obtuse angle with
vector 9f(S, H)/as which is the outward-normal
to the similarity-center surface f(S, H)= F(H)
coinciding with the normal-yield surface, on the
premise that the normal-yield surface is convex. Not-
ing this fact and considering the fact that the similar-
ity-center moves only with the plastic deformation,
let the following equation be assumed to fulfill the
inequality (22):

§-G+— {t(f(s H)O) F}8= Ctr(ND’)6

(=ctr(ND')(6, —8)) (23)
from which the translation rule of similarity-center is
given as follows:

& _ N TR of (S, H) o \\4
S$= ctr(ND’)ﬁ +G+F{F H —tr(%ﬂ)}s s

(24)
where ¢ is a material constant influencing the trans-
lating rate of the similarity-center and

G=06-S§. (25)
It would be conceivable that the similarity-center s
approaches the current stress ¢ as can be seen from
the simple case of the nonhardening state (H =0,
G=H=0) leading to §=ctr(ND')(6—-S)/R, al-
though the translation rule (24) is derived so as to
fulfill the requirement (22) in the

state (S, H) =F(H).

ultimate

Substitution of Egs. (13), (17) and (24) into Eq.
(14) leads to the consistency condition for the
subloading surface:

n(LE M) (X &R Gy (TS, )

thr(af (6, H) . WD) = U tr(ND)F + RF'tr (£, D)

(26)
with

@=RE,D' ~§Ur(ND)+(1-R)[ctr(NDH S + £, D’
1§ : FES, H) ¢ o\la
+ = F tr(f D) tr{ 222 L fy D )¢S 2
F{ (f,D") (aH D] @7
Adopt the associated flow rule
D” = AN, (28)

where A is a positive proportionality factor.
Let the evolution rules of the state variables be
given by the following forms as usual.

=tr{(al +bn*)D?} =atrD? +b||D?*||
= MatrN +b|IN*||) =2k,

o D7 29)
f7 =heo- T _pr=pR _ 4
Nl lIN*l
2Dl
—a@-X _pr=a = ja,
[IN] INl

()* denoting the deviatoric part, and thus one has

f,=al+bn*, h=tr(f,N)= atrN+b|IN*|,

f,=h®- L _ (30)
IIN*}°
— n*
o =29 J

where a and 4 are the scalar functions and h and a are

the second-order tensor functions of stress and inter-

nal variables and N in homogenous degree one and
([n*|=1)

6f(6 H)) / af(o H) -
(31)

The substitution of Eq. (28) with Eq. (1), into Eq.
(26) leads to

of (e o
(L& H g)

{af © H)¢ aN+D)}

= U{A+tr(ND)} F + RF'tr {f; AN+D)} (32)

TN N*Il

WELGLIFY
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with

0= 1,(AN+D") + (5 -1 {2 +1(ND) &
H{LER{F i, N+ D)

—tr(gf%H—) f, AN +D")} — U{A +tr(ND"} | §

(33)
which is obtained from Eqs. (1), (28) and (27).
The proportionality factor A is derived from Eq.
(32) as follows:

oY,
2=tRO-D (34)
MP
where
D' =tr (NPD?), (35)
M? = tr (NPN) (36)
by putting
N Un_ 1 9 (o, H)
P=q®{TfH+RN & f} f,

1 - .
(& -1)8eN + §o{a -R>7fH -
_1-R% (e, H)
A fH}. (37)
The following relationship due to the Euler’s theorem

for a homogeneous function is used for deriving Eq.
(34) with Eqs. (35) and (36).
) (e )
(e, H) _0df(e, H) _
06 oo tr(Nc)
~fe W RE N ()
tr(No) tr(No)
noting pg/86 =L, where I is the second-order iden-
tity tensor having the components of Kronecker’s
delta &y fulfilling &; =1 for i=j and & =0
for i#J.

2.2 Tangential strain rate

Noting the fact 5) that the tangential strain rate
has the direction not only tangential but also out-
ward-normal to the subloading surface as described in
the introduction, let the tangential strain rate be as-
sumed as follows:

1 0 % O K| g ¥ 3
f=_2 )
D Mt(Gt +dy| 6;1n%) (39)
ok . L .
where Oy is the deviatoric-tangential stress rate
given as follows:
&= 8%+ 6! (40)

where the following notations are used.

A%=1"A = tr(n*A)n*, } 1)

AT =T'A = A*-A}

for an arbitrary second-order tensor A with the nota-
tions

Tijkl E%(@kéj/ +6;0,) (42)
=T-1180 (43)
i* = o @n*, (44)
'=T"-n*. (45)

1 is the fourth-order identity tensor and T* might
be called the fourth-order deviatoric transformation
tensor leading to T'A=A*. Further, A* and I*
might be called the fourth-order deviatoric-normal and
-tangential transformation tensors, respectively. The
material function MY, called the tangential-inelastic
modulus, is a monotonically decreasing function of R
and is given simply by

Mr=—L, (46)

SR"

where 7 is a material constant and £ is a material
function of stress and plastic internal variables in gen-
eral. Besides, d,, is a material constant.

2.3 Elastoplastic-tangential constitutive equation
The strain rate is expressed in terms of the stress
rate from Eqgs.(1), (28), (34) and (39) as

N n)| 6]
D=E o+ MP N
*
+W(G +du||6710%), 47
noting that [)* is described by the stress rate as
~ d o (48)
D= M,; G:”

by substituting Eq. (39) into Eq. (35). Eq. (47) does
not fulfill the exact differential form, i.e. the complete
integrability condition with respect to the stress rate®®
and is further rate-nonlinear resulting in the so-called
hypo-plasticity, while the elastic strain rate equation
(2) is required to fulfill the exact differential form
leading to the hyper-elasticity.

Hereafter, assume that the elastic modulus tensor
E is given by Hooke’s type, i.e.

2
EI]kIZ(K_g-G) 5/(] +G( ik _/l+ [5jk )’,

1
ykl = _(3_K_ 2G)5r‘j Sut 36 (5w +6810)
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(49)
where K and G are the elastic bulk modulus and the
elastic shear modulus, respectively, which leads to
(EA)*=2GA* for an arbitrary second-order tensor
A . Then, it is obtained from Eq. (47) that

p; - 4. (50)
where
D} =1*D = D*— tr@*D*)n*, (51)
noting
N} =1* N=N*-tr(n*N*)n*
* £
N*_tr(HII:*H *) ”1;*“ —0. (52

Substituting Eq. (50) into Eq.(39), the tangential
strain rate is described by the strain rate as follows:

2G
D= Mt+2G
It is noticeable that the linear relationship (50) between
the deviatoric-tangential stress rate 63 and the devia-
toric-tangential strain rate Df in Eq. (51) holds in
spite of the rate-nonlinearity of Eq. (47).

Substituting Eq. (50) into Eq. (47) with Eq.
(48) and noting

(D} +dx|| DF{[n®). (53)

tr(NE6}) (= 2Gtr(N6!)) = 0, (54)

the proportionality factor A can be rewritten in
terms of the strain rate, rewriting A as A, as fol-
lows:

A=— 1

M7 +tr(NEN)

- d =20 —{ir (NPn) +2G tr(Nwj Dff| ] (55)

since D' is written in terms of strain rate by substi-

tuting Eq. (53) into Eq. (48), rewriting as D' as D',
as follows:

D= dn_ZG_
Mi+2G
The inverse expression, i.e. the analytical expres-
sion of the stress rate in terms of the strain rate is de-

rived from Egs. (1), (2), (28), (53) and (55) as follows:

[tr(NED)

tr (NPn*) ||1)j|| . (56)

o _ l
6=ED—(— 1 __Ji
< Mp+tr(NEN)[ r(NED)
2G *
-y 20 ur (NP +2G e (Nw) o ] ) N
(26)?
- 29 (bt +d,Dyln®). (57)

The loading criterion is given by

D7 = 0: tr(NED)
2G
- d,—=Z_{tr (NPn*)+2G tr(Nn*)}[| D> 0,
i g T (NPn) iD;
D” =0: otherwise.
(58)
For d,=0 leading to D' =D'=0 the set
of constitutive equations (47), (57) and (58) reduces
to the quite simple forms:

4o tr(NG .
D=E ‘c+——r§W )N+—~A}, 5 (59)
o tr(NED) _ QG? (60)
c=ED-———r—"—~ ——D7>
MP+tr(NEN) Mi+2G !
(61)

D? #0:tr(NED)> 0,
D? = 0: otherwise.

Eq. (60) is of the quite simple form, comparing with
the equation shown in the previous papers46).

The influence of tangential strain rate to the
hardening is reflected in the variable D' or D' and
thus the constitutive equation without the hardening
due to the tangential strain rate is given as the fol-
lowing equations by putting D' =D’ =0 in Egs.
(47), (57) and (58).

D=E"¢ “j(wNp&)N+—A%7(&;‘+dnll&7lln*), (62)
6 =ED
) <tr(NED)— - ZGE_tr(Nw) ] >EN
MP+1r(NEN)
- 29} +d,IDfln). (6
QG

D # 0:tr(NED)—d, tr(Nn¥)| D} >0,

M+2G
D? =0: otherwise.
(64)

In the present formulation the plastic strain rate
(28) with Eq. (34) is derived by substituting the as-
sociated flow rule (28) into the consistency condition
(26) which is obtained by incorporating the evolution
rule (17) of the normal-yield ratio R into the
time-derivative (14) of the subloading surface equa-
tion (10). Then, the plastic strain rate develops
gradually as the stress approaches the normal-yield
surface, exhibiting a smooth elastic-plastic transition.
In addition, the tangential-inelastic strain rate (39)
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also develops gradually as the stress approaches the
normal-yield surface. Then, Eq. (57) of the stress rate
is expressed by the continuous function of the stress
and the strain rate. Then, the tangential-subloading
surface model possesses the following mechanical
properties.

1. The continuity condition™?**9? defined as “the
stress rate changes continuously for a continuous
change of the strain rate” is fulfilled, which is ex-
pressed mathematically as follows:

lim 6(6, H;, D+6D)=6(c, H;,D),  (65)
D=0

where H; (i=1, 2, 3, eee, m) denotes collectively
scalar- or tensor-valued internal state variables
which describe the alteration of the mechanical
response due to the irreversible deformation, & )
stands for an infinitesimal variation and the re-
sponse of the stress rate to the strain rate in the
current state of stress and internal variables is des-
ignated by &(e, H;, D).

2. The smoothness condition®**9? defined as
“the stress rate induced by the identical strain rate,
changes continuously for a continuous change of
stress state”, is fulfilled, which can be expressed
mathematically as follows:

lim 6(6+56, H,D)=6(c, H;, D). (66)
J6 -0

The rate-linear constitutive equation is generally
described as

6 =M%(o, H)D, (67)

where the fourth-order tensor M% is the elasto-
plastic modulus which is a function of the stress
and internal variables and can be described gener-
ally as
ep _ 06
M =5 (68)
Therefore, Eq. (66) can be rewritten as

lim M (6+56, H)) =M% (06, H;)- (69
56 >0

Thus, the subloading surface model and its exten-

sion to the tangential relaxation, i.e. the tangen-

tial-subloading surface model have notable advan-
tages as follows:

i ) It predicts a smooth response (a smooth rela-
tionship of axial stress and axial logarithmic
strain in the uniaxial loading for instance) for
a smooth monotonic loading process. By con-
trast, a nonsmooth response is predicted by the
conventional constitutive model which as-
sumes the yield surface enclosing a purely

elastic domain and thus violates the smooth-
ness condition.

ii) The stress always lies on the subloading surface
which plays the role of loading surface. There-
fore, only the judgment for the sign of the pro-
portionality factor A is required in the loading
criterion for the subloading surface model. On
the other hand, the judgment as to whether or
not the stress lies on the yield surface, in addi-
tion to the judgment for the sign of A, is re-
quired in the conventional plasticity violating
the smoothness condition.

iii) A stress is automatically drawn back to the
normal-yield surface even if it goes out from
that surface since it is formulated that R >0 for
R<1 (subyield state) and R<0 for R>1 (over
normal-yield state) in Eq. (17) with the condi-
tion (18). Thus, a stable calculation is per-
formed even by rough loading steps compared
with the conventional models when the explicit
method is adopted in numerical calculations.

On the other hand, the tangential-inelastic strain rate
is induced suddenly at the moment when the stress
reaches the yield surface in the other tangen-
tial-plasticity models violating the smoothness condi-
tion, e.g. Rudnicki and Rice’s model" and Papami-
chos et al.’s model44), and thus the continuity condi-
tion is also violated in these models. Further, uncon-
ventional models other than the subloading surface
model, e.g. the multi surface model and the two sur-
face model, also violate the smoothness and continu-
ity conditions if the tangential-inelastic strain rate is
incorporated. Therefore, they lead to the serious de-
fect that the uniqueness of solution is violated for the
stress path along the yield surface.

3. Verification of the present model

First, let the concrete constitutive equation of
metals be formulated based on the tangen-
tial-subloading surface model formulated in the pre-
ceding section. In what follows, the mechanical re-
sponse of the present model will be shown briefly.

3. 1 Constitutive equation of metals
The von Mises yield condition with iso-
tropic-kinematic hardening is described for the nor-

mal-yield/subloading surface as follows™:

f(%)= \/—g { 5. (70)
N=N*=n"= 0, (71)
lo*l
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F(H)= K[1+h{l-exp(-mH)}},  (72)

= F, I hyexp(-h,H), (73)

H= %tr(ND’), £y =\EN’ 74)
S e
f]’=Ftr(ND’)

| 8311= \f-dn 2GM SIDil 76)

H =H'=0- )
a=tr(ND)a (f, =a®@N), "Eklw%;ﬂ‘kz“’ (78)
a’=tr(ND”)a =ja, (79)

&f:tr(Nma— )| flla =dn 2V 2GM D} a -(80)

The variables lq, ky, h and hz are material con-
stants, and F; is the initial value of F. It holds from
Egs. (36), (48), (56) and (70)-(78) that

lo *|| {((

+c(%_1)a+(\/§a-m§’—y)§}] L 8D

—tr )ts+k1 -kQ

llc*ll

D =d, Af‘ft’ &l (82)
A 2GM?
D' =dnm‘||1)ﬂ]. (83)

For the isotropy, i.e. a=0(k =k =0), s=0
(¢=0) leading to @ =0, the plastic modulus in Eq.
(81) reduces to

MP = @(@mw UF)- (84)

3. 2 Mechanical response

The mechanical features of the constitutive
equation of metals described in the preceding subsec-
tion is examined by analyzing the response on the
m-plane. In what follows, the description of only
principal components, i.e. the principal space repre-
sentation is adopted, in which corresponding compo-
nents of the stress rate and strain rate are taken in the
same directions, since all the input and output vari-
ables have only principal components because of the
mechanical isotropy.

Consider the response of the strain rate

D(=D*) to the input of the deviatoric-stress rate
G (=6*) with the
|G| = const. on the z-plane, while 6 is given as

constant magnitude, i.e.

Q
o1

cosd
= \gnan cos{0—(2/3)m)}t>  (83)
cos{d+(2/3)7)}
from the state of stress
O, 2
o, = TRF{-1: (86)
o, -1
resulting in
M 2 T 0
Ny=Liab Inl=luyv2t, @D
Y R T VS I Y-

g 6] | 0
' =||&n{:fj0}, o ={} (88)
OO'T (&*)T oy
l6711= ll6llsing)- (89)
where

cos30 = /6t r(ﬁ)ﬂ (90)

@ standing for the angle measured in a clock-wise di-
rection from the direction of N to the direction of
the stress rate 6 on the 7-plane. The unit vector T
has the direction rotated 772 in a clock-wise direction
from N and thus is tangential to the subloading
surface. Consider the two-dimensional orthogonal
coordinate system with unit base vectors N and T
in which corresponding components of the stress rate
and strain rate are taken in the same directions, and
the components in directions N and T are de-
noted by the notations

A, =tr(NA),

Ar=tr(TA) }
for an arbitrary second-order tensor A. Then, it is
written from Eqgs. (47) and (85)-(89) that

Dy 1 oy lcos@
-t , 92
{Df} 2G“Gi|{sin9} 92)
DI{,J _ 18l <Lcos€— "t |sinl9|> (93)
Df

0
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stress rate

Normal-yield
surface

Subloading
surface

Input of stress rate

0
\
(5 + 361

Associated flow rule

Response envelope of strain rate
for R=const.

Output of strain rate

Fig. 2. Illustration of response envelope of strain rate D (= D¥) to the input ofthe stress
rate 6 (=&*) with a constant magnitude, ie. [|G||=const.

_lsll

(94)
M?

Dy
D! sin g }
The strain rate response envelope to the input of
the stress rate calculated by Eqgs. (92)-(92) is illus-
trated in Fig. 2, where S and f' are the angles
measured in a clockwise direction from the axis N to
the strain rate and inelastic strain rate, respectively,
in the (N, T) plane, i.e.

{dn[siné?}

cosf = DI _ Dy ,

D, DE + D?

Dl D o s
cosf’ = D] Dy

ID o [DF +DF
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