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This article examines the localized and diffuse bifurcations of deformation in an incompressible
circular cylinder subjected to axisymmetric loading consisting of the tangential-subloading sur-
face model. The analysis considers the conditions for shear band formation, diffuse buckling
formation, and the long and short wavelength limits of diffuse buckling modes in relation to
material properties and stress. The effects of the normal-yield ratio describing the degree of ap-
proach to the normal-yield state and the tangential-plastic strain rate due to the tangential-stress
rate effect on the diffuse bifurcations are discussed in details. It is revealed that the normal-yield
ratio and the tangential strain rate influence the onset of diffuse bifurcation.
Keywords: elastoplasticity, stability and bifurcation, subloading surface model

1. Introduction

Various theoretical analyses for the material bifurca-
tions and instabilities representing explanations for fail-
ure of materials have been presented in recent years, cf.
e.g. Bardet", Chau® ¥, Chau and Choi®, Chau and Rud-
nicki®, Cheng et al.?, Durban and Papanastasiou”, Hill
and Hutchinson'”, Hutchinson and Miles'”, Miles'”,
Miles and Nuwayhidls), Needleman'”, Vardoulakis®® 2%,
Yatomi and Shibi®® and Young?”. The deformation the-
ory adopted by most of them is limited to the stress path
near the proportional loading, violating the continuity
condition for a stress path tangential to the yield surface
since it encloses a purely elastic domain, exhibiting the
abrupt transition from the elastic to the plastic state. Re-
cently, Hashiguchi and Tsutsumi® have extended Rud-
nicki and Rice’s constitutive model*” so as to be applica-
ble to the description of deformation behavior under
arbitrary loading process for materials with arbitrary yield
surface by introducing the tangential-strain rate. It was
verified that the tangential-subloading surface model can
predict appropriately the onset condition of bifurcations
for soils” > and metals'® 1.

This article extends and modifies the pervious anti-
symmetric bifurcation analyses of deformation in the cy-
lindrical specimen® ?® to include tangential-subloading
surface model®. The localized and diffuse bifurcation
modes of a circular cylinder subjected to a compressive
load are analyzed. The effects of the normal-yield ratio
and the tangential-plastic strain rate on the formation of
diffuse bifurcations are discussed in details.

2. Constitutive Relations

Consider a circular cylindrical specimen subjected to
axial stress o, at the frictionless ends, which yields the
antisymmetric deformations (see Fig. 1). Deformation is
postulated to be homogeneous up to the onset of bifurca-
tion. Let the radius and the height be denoted by ® and
H , respectively. The constitutive equation of the tangen-
tial-subloading surface model® for this case is expressed
in the cylindrical coordinate system (»,8,z) as follows:
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Fig. 1. The cylindrical specimen before
and after deformation
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where
D, +Dy+D__=0. 2)

o is the Cauchy stress tensor, (©) denotes the Jaumann
or co-rotational rate, and D is the rate of deformation
tensor (the symmetric part of the velocity gradient). The
instantaneous shear moduli g, and g, are given by

M,

=G—L2 _(<3), 3

1, Mp+2G( ) (3)
M,

=G—1 (<G), 4

H Mt+2G( ) 4

G is elastic shear modulus. The plastic modulus A/, and
tangential modulus M, according to tangential-
subloading surface model for the simple elastoplastic ma-
terial having von Mises yield condition with linear iso-
tropic hardening'® are defined as

M, =23)e;R+~N2B3UF, U =-uynR, )
F(H)=F,(H)+c,H, (6)
M, =TR™®. @)

¢, up, T and b are material constants, and F; is the
initial value of the isotropic hardening function F with
the argument of the isotropic hardening variable H . The
degree of approach to the normal-yield state can be de-
scribed by the normal-yield ratio R (0 < R <1) which is
the size of the subloading surface to that of the normal-
yield surface. For detailed discussion of tangential-
subloading surface model, we refer to references 8-10.

3. Governing Equations
The continuing equilibrium equation in the absence of
body forces is

divIT =0, (8)

L]
(*) stands for the material-time derivative. II is the
nominal (first Piola-Kirchhoff) stress rate, it can be ex-
pressed in term of the Cauchy stress rate as follows:

1=6 + (D)6 - oD+ W, )

Hereinafter, the Zaremba-Jaumann rate is used for the
corotational rate of the stress @ , i.e.

G=6+0cW-Ws. (10)

W is the spin tensor (the skew-symmetric part of the ve-
locity gradient). F or antisymmetric deformation, the
nominal stress rate IT in Eq. (9) can be expressed as

LA o] LA Q
]Yrr =0y, Hr: =0, + O-(vr,: Vo )s
L] o) ° o] ~1
Hﬁr = Ogr » H&: = Og:- +O-(v8,: —F Vo ),

Ha=8,. i1-5 -
10 = 0rgs 1Ly =0.5=0(p +r v ),
*

].7:: :8-” —ZO'V;_., (11)
where
-1
T=50.. (12)

v is the velocity, and the partial differentiation with re-
spect to », @ and z are denoted with (),, (), and
( )., respectively.

In our research, we consider a purely homogeneous
deformation process which proceeds up to the inception
of bifurcation. We choose the cylindrical polar coordinate
system (r,8, z) such that the origin is located in the cen-
ter of the cylinder and the z-axis coincides with the axis
of symmetry (Fig. 1). On the ends, the specimen experi-
ences compressive loading without shear traction. Eq. (8)
in the cylindrical polar coordinates for our case reduces to

L) e
]Yrrr+r 117r€6+17

rs,z

+r~l(1.7rr —].769) =0,
"_1[.796,9 +ﬁ6r,r + 1.702,2 +r—-1(1.7r¢9 +1.78r) =0,
(13)

To solve the equilibrium equation (13), we employ the
method of the velocity potentials proposed by Chau® that
has been extended from the displacement potentials
method' " for elastic problems. By modifying Chau’s
method, the modified velocity potentials @(r,8,z) and
¥(r,0,z) are proposed as follows:

[.7::,: +1.7 +r—1].7:8,9 +r—1].7:r =0.

rr

-1
Yy = d?r: +r YI,B’

v =1,

v. =~0,,(D), (14)
where the operator O,,( ) is defined as

O )=( )+ ), 4772 ) g (15)

By substituting Eqgs. (11) and (14) into Eq. (13), along
with constitutive relations in Eq. (1), we obtain

(U, — )0 (D) + B, — 14 YO, (P)) .
+y, + 0P =0,

O (F)+ (1, + 0)F , = 0. (16)
The relationships in Eq. (16) are the fourth and second
order partial differential equations of the mixed type that
can be elliptic, hyperbolic or parabolic depending on the
state of stress and values of internal variables. The par-
ticular linearization described here yields a governing
equation applicable to the tangential-subloading surface
model.

4. Localized Bifurcation

Consider a purely homogeneous deformation process
with progressing to the onset of shear band formation.
The unit vector normal to the shear band is denoted by
n(n.,ny,n) (Fig. 1). Two conditions, the geometrical
compatibility and the incremental equilibrium across the
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shear band, must be satisfied for the shear band forma-
tion. These conditions can be expressed as follows'":

Vv=g®n, Mn=o0. a7

where g is the jump vector of the velocity gradient. Sub-

stituting Eq. (11) into (17) with constitutive relations in
Eq. (1) yields the following algebraic equation:

( (n} + mg) + (4 + o)z (4

+ G, =ty )(nf +rg)nl + (U, +0o)n)=0. (18)

~o)n + gy

The condition for the formation of shear band is given as
a loss of ellipticity of Eq. (18). The solutions of Eq. (18)
are classified as the elliptic complex (EC), elliptic imagi-
nary (EI), parabolic (P) and hyperbolic (H) regimes, ac-
cording to the existence of zero, two, and four real roots,
respectively. Assume the shear band be formed at EC-H
boundary. Therefore, the inclination angle @ of the shear
band may be obtained as

My +ON\14

¢=tan™"’
H -0

(19)

5. Diffuse Bifurcation

We investigate the possibility of diffuse bifurcations
that precede localization for a cylindrical specimen with
radius ® and height 3/ at the onset of bifurcation (Fig.
1). The specimen is subjected to current axial compres-
sive stress 0,, on the ends without friction. The velocity
potentials &(r,0,z) and ¥ (r,0,z) , which give rise to
the diffuse bifurcation modes are given by

D(r,0, z) = ¢(r)cos({ z)sin(nd),
¥(r,8,z) =y (r)sin({ z)cos(nd), (20)

where ¢ =i/, with k=1,2,3,... .
The boundary conditions on the sides can be written as

II,=0, II, =0, Il =0, onr=g. @1)

The substitution of Egs. (1), (11) and (20) into Eq. (13)
allows the boundary conditions on the sides to be ex-
pressed as

Low+¢ 9 a0y =,
(P

0,@)-2(+L

U, -0} 9) - B, —a)o )

2u (L (1))
2ngu(F-Lyy=0, @)
where
_d)  1d
()= () (23)

If one substitutes the eigenmode of Eq. (20) into Eq.
(16), the following governing differential equation for
¢(+) and w(r) can be obtained:

(14, —0)0} (P~ {2 B, — 14)0, ()
+&(w +0)p=0,
1,0, (W)= (1 + oYy =0, (24)

Alternatively, Eq. (24) can be written as:

(O, +*ENO, + P ENP(r) =0,
(O, -{*&w(r)=0. (25)

Eq. (25) can be rewritten as two Bessel’s differential
equations with respect to & and &,, and one modified
Bessel’s differential equation with respect to & . Since
¢(r) and y(r) should be finite at » =0, the general so-
lutions of Eq. (24) or Eq. (25) have the form

o(r)=C\J, (&) + Cod ($Er),

w(r)=C1,(5&r), (26)
where
£ = M+ 0')1/2, @7

C,, C, and Cj are constants. J,( ) and I, ( ) are the
Bessel function of the first kind and the first order, and
the modified Bessel function of the first kind of order n,
respectively. Further, & and &, are the roots of the fol-
lowing characteristic equation:

~0)E + (B, — 14)E + (1t +0)=0. (28)

The roots of Eq. (28) are classified as the elliptic complex
(EC), the elliptic imaginary (EI), the hyperbolic (H) and
the parabolic (P) regimes, dependent on the state of stress
and values of internal variables. In each of these regimes,
diffuse bifurcations are possible, and in each regime
analysis leads to the appropriate eigenvalue equation. The
solution of the eigenvalue equations is similar to that of
equations for plane strain conditions>'?, for axisymmrtric
deformations® > and for antisymmetric deformation®,
which the results with tangential-subloading surface

model are summarized below.

5.1 Elliptic complex regime
The solutions (26) in the elliptic complex regime have
the form (for n=1)

#(r) =Re[C}J,({Er)],
w(r)=CL(E&r), (29)

where Rel[ ] denotes the real part of [ ]. £ =a+if and
its conjugate £ =a—if3, (i=+~-1), are the roots of Eq.
(28), and the quantities & and S satisfy the following
equations:

M+ 0N\

a+,8( ,
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2 @2 13— 4
o - =3 (30)

Substituting Eq. (29) into boundary conditions (22)
leads to the following eigenvalue equation:

MyIm{ £,(&) £(E)]+ MyIm[ £,(8) £3(6)]
+MsIm[ £(8) /()] =0, 31)

where Im[ | denotes the imaginary part of [ ]. M, , M,
and M, are defined as:

M, =21 (&),
M, =(&* & + DI (0&) 2081 (0&;),
My =4u,(21 (05) - 051 (wé3)), (32)

@={_{R =kn®R/H is the wavelength, and the complex
functions f£,(¥), f,(¥) and f,(¥) are given by:

KX = axd (i) —2J (),
L) = (=22 @l o (k) = J, (@),
L=l =) X (@ 2+ )+ Bl —0)T 1
—44,)J (@) +2u, X Jy (k). (33)
5.2 Elliptic imaginary regime
In the elliptic imaginary regime, the roots of Eq. (28)

are & =tiar and & =+iff, and the general solutions
(26) have the form (for n=1)

@(ry=CI,(ar)+Cy I, (¢Br),
w(r) =Gl ({&r), (34)

where o and £ satisty the following equations:

I
“ +ﬂ B =07

N2 a2 22
a2_ﬂ2=((3’u” M) =4 —07) (35)

=0

The substitution of Eq. (34) into the boundary condi-
tions (22) yields the eigenvalue equation:

Ml[gl ((Z)g3 (ﬁ) — & (ﬁ)g3 (C()]
+M2[g2 (ﬁ)g3 (o) - g,()g; (ﬂ)]
+M3[g1(ﬂ)g2(a)—g, (a)gz(ﬂ)]:oa (36)

where M|, M, and M, are the same as in Eq. (32), and
the functions g, (¥), g,(¥) and g;(¥) are defined as:

g () =axly(ax)-21(ak),
2,(X) = (X + )X Iy (X)) - I, (),
&) = (1, — VX (* X ~1)—-(3p, —0)* 1
=41 () + 2u,0¥ Ly (). (37)
5.3 Parabolic regime

The general solutions, Eq. (26), in the parabolic re-
gime have the form (for n=1)

#(ry=CJ ({ar)+CI,({fr),
w(r) =Gy (E6r), (38)
where & =+a and & =i/ are the roots of Eq. (28)

for the parabolic regime. & and f are defined as

(B, - 1) -4t - )"
‘ /ur - O-l ’

o+ =
3 -
o - p =L (39)

Substituting Eq. (38) into the boundary conditions (22)
yields the following eigenvalue equation:
N [fl (g, B- & D) fs (a)]
+Ny[g, (B fi (@) - [ ()g(B)]
+Ns[g(B) (@)~ fi(2)g,(B)]=0, (40)

where N, N, and N, are defined as:

N, =2J (@),
N, :(4—a)2§32)J1(a)§3)—2a)§3J0(0)§3),
Ny = 44,2J | (0&)~ 03d o (053)). 41)

5.4 Hyperbolic regime

Solutions of Eq. (26) in the hyperbolic have the form
(for n=1)

#(r) = CJ, (Sar)+Cyd  (Br),

y(r)=CL((&r), (42)

In the hyperbolic regime, the roots of Eq. (28) are
& =ta and & =z, which o and  are defined as:

2, g2 Ml
a+p = -0’
3 — 1V — (1 — o2
a2 _ﬂZ — (( /Un /uf)ﬂt _(él_lt )) . (43)

The substitution of Eq. (42) into the boundary condi-
tions (22) vields the eigenvalue equation:

M[ K@ f(B)— H(B) ()]
+M,] £, (B) fi(e)~ (@) f,(B)]
+M;[ AP fr ()= () f,(B)]=0. (44)

6. Results and Discussions

The instantaneous shear modulus g, in Eq. (3) is in-
dependent of the tangential strain rate and gradually de-
creases from the elastic shear modulus G as the normal-
yield ratio R increases, as shown in Fig. 2. The instanta-
neous shear modulus z, in Eq. (4) is independent of the
plastic strain rate and decreases monotonically with the
increase of R, as shown in Fig. 2. A salient feature of the
present formulation is that both plastic and tangential
strain rate are induced gradually as the stress approaches
the normal-yield surface, i.e. as R — 1, fulfilling both the

- 364 -



continuity and smoothness conditions (Fig. 2). On the
other hand, in conventional plasticity models with
up—oo and T —oo, u, and g, suddenly jump from the
purely elastic response to the normal-yield response at the
moment when the stress reaches the normal-yield surface.

Figure 3 represents the bifurcation regimes as a func-
tion of the dimensionless variables o/, and 34,/1, by
the specified regions; elliptic complex (EI), elliptic
imaginary (EI), hyperbolic (H) and parabolic (P) regimes.
Figures 4 and 5 represent the lowest bifurcation stress as
a function of the wavelength of diffuse modes @ ob-
tained for antisymmetric elliptic modes of bifurcation in
several values of R and T, which the long wavelength
limit (@ — 0) coincides with the ¢/y, -axis. The lowest
possible bifurcation stress is at @=20; it rises more rap-
idly when @ is between one and two, then slowly in-
creases as values of @ increase. The normal-yield ratio
R influences the bifurcation stress, as the bifurcation is
highly induced at R>0.95, i.e. near the normal-yield
state as shown in Fig. 4. The influence of the material
constant 7 prescribing the intensity of the tangential-
stress rate effect on the bifurcation stress is quite intense
as shown in Fig. 5, which the normal-yield ratio at the
onset of antisymmetric deformation is very close to unity.

Here, we consider only the long wavelength limit
(w — 0) and the short wavelength limit (@ — ) of the
eigenvalue equation in EC and EI regimes. In the elliptic
complex regime for the long wavelength limit (@ — 0),
Eq. (31) leadsto o — 0, and for small @ yields

@% = 2%@2 +O(a™). (45)
Here, it should be noted that the first term on right-hand
side of Eq. (45) corresponds to the Euler’s buckling for-
mula®™, if k =1. The substitution of the asymptotic ex-
pansions of Jy( ), J;( ), I,( ) and I;( ) with large
arguments™ into Eq. (31), for the short wavelength limit
(@ — o) in the elliptic complex regime, yields
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Fig. 2. Instantaneous shear moduli z, and z; vs.
the normal-yield ratio R (¢;=75, b=2)
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The (o/u,,34,/4, ) trajectories for the short wave-
length limit (@ —> o) (Eq. (46)) are shown in Fig. 3 by
the dashed curve.

Considering the elliptic imaginary regime in the long
wavelength limit (@ — 0), leads to ¢ — 0 and for small
w produces Eq. (45) again. In the short wavelength limit
(@~ o), the substitution of the asymptotic expansions
of Iy( ) and I;( ) for large argumentszz) into Eq. (36),
again produces Eq. (46).
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Fig. 3. Characteristic regimes of the diffuse bifurcation
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7. Concluding Remarks

Antisymmetric bifurcations of a cylindrical specimen
subjected to the compressive load were analyzed by
adopting the tangential-subloading surface model. Ana-
lytical solutions for the inception of localized bifurcation
and antisymmetic diffuse modes were derived and classi-
fied into the elliptic complex, elliptic imaginary, hyper-
bolic and parabolic regimes. It was indicated that the
normal-yield and the tangential strain rate term influence
the formation of shear band and diffuse buckling modes.
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