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In a high-speed impact, both projectile and target experience an extreme distortion. A

simulation in Eulerian formulation is therefore favorized. Contact-impact with Lagragian

meshes are also presented. Focused topics here are Lagrangian and Eulerian formulation

of a continuum media, plasticity flow, material separation due to failure or penetration,

contact algorithm, 1-point integrated elements for computational time performance.
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1. Introduction

High-speed impact analyses are being widely re-
searched.  Research on numerical methods like,
smooth particle hydrodynamics, Lagrangian finite el-
ement method with element erosion, discrete elements
and split-element method has been carried out by
many other authors. However, there are less refer-
ences by using Eulerian hydrocodes. Problems like
large deformation with mesh distortion, contact, pen-
etration and 1-point integrated elements have been
treated here. The former pointed problem is easi-
est overcame by using a fixed mesh. Additionally to
the Lagrangian formulation used by conventional hy-
drocodes, an Eulerian or second order advective step
has been programmed. Later step transports the ma-
terial through the re-meshed mesh.

An Eulerian hydrocode allows material separation
caused during penetration. Programming procedures
have been implemented for fracture models like plas-
tic strain condition model and Johnson-Cook fracture
model. Different from contact problems in Lagrangian
Hydrocodes, where the penalty method is most pop-
ular, in an Eulerian Hydrocode mixture theories have
been studied. The mixture theory bases on multi-
material elements in which materials are mixed.

The J; plasticity theory, implemented in this Hy-
drocode, confirms its suitability for metal plastic-
ity. Further, for a computational time improvement
1-point integrated elements with hourglass control
method have been implemented. The selected hour-
glass control procedure shows a remarkable time per-
formance keeping good accuracy and avoiding hour-
glassing.

2. Eulerian Formulation

During the material time derivative is used in the
standard Lagrangian formulation, the spatial time
derivative is applied in the Eulerian formulation. In
other words, a Lagrange mesh moves with the ma-
terial as an Eulerian mesh keeps fixed in the space
letting pass the material through its cells. Here a
compact review of that part of continuum mechanics
is presented. If interested, a broad variety of good
resources is available, i.e. ¥ 2 % and others.

For an arbitrary solution variable ¢, the relation
between the material and the spatial time derivatives
is

D¢ _ 99

== () M)

where D¢/Dt is the material time derivative and
0¢ /0t the spatial time derivative of the solution vari-
able ¢. The difference makes the convective term
v- (Vo).

It can be shown that the Eulerian governing equa-
tions, namely the mass, momentum and energy con-
servation equations follow the general comservative
form

¢

— +V- =5 2

5 T (2)
where ® is a flux function and S is a source.

The operator split method splits eq. (2) into two
equations, namely

9 _

2t (3)
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and

86 B
S, tV-e=0 (4)

These equations are solved sequentially. The solu-
tion of eq. (3), which is advanced in time, is used.
In eq. (4) the first term of left-hand side is a dummy
value, since it’s solved by keeping the time stopped.

2.1 Lagrangian Formulation

Equation (3) is the so-called Lagrangian step. So,
the mass, momentum and energy conservation are
solved in this step

dp
5 =0 (5)
dpv
= 6
5 V.o +pb (6)
Oe
— =0:D 7
T (M

where p is the density of the material, o is the Cauchy
stress, b is the body force and D is the velocity strain.
These equations are solved in standard Lagrange hy-
drocodes, in explicit as well in implicit time integra-
tion. For impact problems the explicit time integra-
tion is more attractive because of its suitability to
parallel computing. No global stiffness matrix is nec-
essary to solved, making it easier to code.

The discretized equation in explicit form using the
central difference method is for the material acceler-
ation a®, velocity v /% and coordinates z"*!

a® = Mwl(FeIt _ Flnt) (8)
,vn+1/2 — ,Un—1/2 + Ata™ (9)
"l = 2"+ AppTtl/2 (10)

where M is the nodal masses, F©* nodal external
forces and F'™' are the nodal internal forces. At is
the current time step.

2.2 Eulerian Advective Step

Equation (4) is often called the advective, convec-
tive or Eulerian step. This represents the material
transport through the cells of the fixed Euler mesh.
In the operator splitting method Egs. (3) and (4)
are solved sequentially. In order to extend existing
traditional Lagrange FEM codes to an Eulerian for-
mulation in a convenient way, practical-to-implement
finite difference subroutines have been focused here.
In this hydrocode, a monotonic, second order, cell-
centered algorithm has been programmed for cell-
centered solution variables, while a modification has
been done for the momentum advection, which is
vertex-centered. In this case, the vertex-centered

momentum will be averaged to a cell-centered mo-
mentum, which is advected with the same algorithm
for cell-centered variables. A final step is required,
namely to extrapolate the cell-centered results to a
vertex-centered ones '4) 15) 16),

After the Lagrangian step, the deformed mesh is re-
meshed to the original place easily by setting nodal co-
ordinates back. Here, it important to remember that
the deformed mesh is not allow to have longer defor-
mations than the element size. The Courant time step
control method must take care of this.

Here the second order Van Leer’s MUSCL (mono-
tone upwind schemes for conservation laws) method is
implemented. MUSCL method is a one-dimensional
transport algorithm. In logically meshes the one-
dimensional advection is carried out along the mesh
lines.

k-2
| { | | ]
I I T T I

j=2 -1 3J

A solution variable f; of a element k is advected
to f,j using following algorithm

At
fE=fo+ E((bj —®j41) (11)

where ® values are fluxes. Indexes j and k represent
vertex-centered and element-centered values, respec-
tively. The flux is calculated as

®; = 0.5v;(0; +&F) +0.5v;l(¢; —¢7)  (12)

where v, is the velocity at nodal velocity at node j. ¢
values are calculated by

¢7 = fr + SkAz

¢; = fr—1+ Sk—1Az (13)

where the suffix + and - represent the variable values
from the right and left side, respectively. The slope S
is then

Sk = 3(sgn(sL) + sgn(sg))min(|sLl, [sc|, |sr|)

sp = fk;f;ﬂ
SR — fk+Al;fk,
s¢ = Ll (14)

where a regular equidistant mesh is assumed. A ex-
tension for non-equidistant meshes is already done by
many other authors.
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3. Time Step Control

The time step used in this hydrocode refers that
from LS-DYNA %

At =C Ls

u
Ce + Umaz

(15)
where C,, is the Courant coefficient, L; is a calculated

length, ¢, is the element wavespeed and v, is the
maximal velocity existing in system.

The Courant coefficients used here are 0.2 for
quadrilaterals and 0.3 for hexahedras. However, for
hypervelocity impact problems a reduction of the
Courant coefficient in factors between 10 and 100 is
necessary.

The calculated length L is then

E—AJ— for quadrilaterals

maxr

L, = (16)
eriﬁ(; for hexahedras

where A, is the element area and d, 4, is the maximal
distance between nodes. For hexahedras, V, is the
element volume and A,,,, is the biggest area of the
hexahedras’s sides.

The element, wavespeed is

E

T

(17)

where E, v and p are the young modulus, the Poisson
ratio and density, respectively.

4. Radial Return Method for J; Flow
Plasticity Theory

Metal plasticity is most simulated by using J5 flow
plasticity theory, which bases on a von Mises yield
surface. The reason is that plastic flow in metals is
not effected by pressure what has been experimentally
confirmed.

For integrating rate constitutive equations, return
mapping algorithms have been developed 1. Since J;
flow theory bases on von Misses yield surface, the gen-
eral mapping algorithm reduces to the radial return
algorithm.

R (U%riall )dev

dev

>
‘ far1 =10

Fig. 1 Radial return method V

Figure 1 describes the radial return method. Elas-
ticity keeps limited by the yield surface fo41 = 0. If

a stress value (o712/)% overcross the yield surface

outwards, it will be radially returned to the yield sur-

dev
face to 0.5 -

The trial stress is purely elastic

ot = g, + CAe (18)

The deviatoric part is then

) ) 1 )
(o7ig)™ = otrigt — Str(otiaHT (19
The von Misses stress is

A= (otishyier - (alrigyter (20)

IfA< R?1 then

Ont1 = Uflrﬁl (21)
Rn+1 = Rn (22)

This is the case in which the stress does not abandon
the yield surface. Plasticity occurs

by A > R2
Oni1 = o7 —2An (23)
2 .-
Ro1=R,+-HA (24)
+ 3

where ‘

_ (ki )
n= [(oirialyden]
n+1

1 o_tricil dev| _ R, (26)
—__2u(1+’{;') (o)™ )

The plastic strain tensor and the equivalente plastic
strain are calculated by

€. =€ +An (27)

2 .
=+ \/;A (28)

5. Material and Fracture Model

Johnson and Cook 7 ¥ concluded that material
fracture does not only depend on the plastic strain but
also on the plastic strain rate and temperature. High
plastic strain rates are present in hypervelocity impact
problems and therefore interesting to take in account.
Based on their own experimental data, they developed
the Johnson-Cook material and fracture model, where
effects coming from plastic strain, plastic strain rate
and temperature are separately arranged.
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5.1 Johnson-Cook Material Model
The flow stress is given by

oy = [A+Be"|[1+ Clne” |1~ T (29)

where A, B, C,n,m are material constants extracted
from experiments, € is the equivalent plastic strain,
=/ éb is the dimensionless plastic strain rate
for é¢b = 1.0s~! and

T - Troom
Tmelt - Troom

The first bracket block represents the effect due to
plastic strain, as the second bracket block represents
the plastic strain rate effect. The last bracket block
is the material temperature effect.

T* = (30)

5.2 Johnson-Cook Fracture Model
The strain at fracture is given by

e/ =Dy + D2e'P27)][1 + Dylné? |[1 + DsT*] (31)
where D, to D5 are material constants and

P
or = (32)
Oeff
is the ratio of pressure P divided by the effective stress

Oeff-

3
Oeff = 50‘ g (33)
where o is the deviatoric Cauchy stress.
D is the accumulated damage paramater and A€
is the equivalent plastic strain increment Fracture oc-

curs then when AP
€
D= Z c—f (34)

reaches 1.0.

It is reported that fracture is very dependent on
the state of hydrostatic pressure and less dependent
on the strain rate and temperature 7). To remark
is here that this conclusion based on data from tor-
sion and quasi-static tensile tests. However, results
using this hydrocode showed the strong dependency
of strain rate for hypervelocity problems.

6. Contact Algorithms

6.1 Penalty Method

The well-known penalty method for contact prob-
lems is robust and simple to implement. The concept
of this method is to apply normal interface springs
between penetrating nodes and contact surface. The
spring forces are then treated as external forces in the
system.

The contact force on a hitting node is given by

= —agn (35)

target
g body
hitting
body

Fig. 2 Penalty method

there « is the penalty parameter, g is the penetration
and n is the outwards normal vector to the contact
surface. The contact force on the target body is then
given by
fi=—N;ft,  i=1,numnodes (36)

where N are the element shape functions and
numnodes is the number of nodes of the target ele-
ment in which the hitting node is.

The calculation of contact forces are carried out for
all hitting nodes inside of a target element.

Different from penetration constrained methods,
the penalty method allows penetration. Therefore,
the spring stiffness is to be scaled up as well the time
step is scaled down to avoid unacceptable penetration
by high-velocity problems.

6.2 Mixture Theory

Mixture theories concept the treatment of more
than one material in an element. The simplest mix-
ture theory have the assumption that the strain rate
€ is same for all present materials in an element. So
the stress rate &, of material m is given by

O =C,, : € (37)

where C,, is the constitutive tensor of material m
The updated stress o' by time n + 1 is then

o™t = ol + 6., AL (38)
The element mean stress 71! is then
M
a,—n+1 — Z U':;lj_lfm (39)
m=1

where M is the number of materials present in the
element and f,, is the element filling rate of each ma-
terial m.

The simplest mixture theory, also called the mean
strain rate mixture theory, is favorized because of its
simplicity and robustness even for high pressures and
strain rates *3.
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7. One-Point Element Integration

Explicit finite element programs are widely used for
impact problems using very small time steps. In order
to reduce the computational time low order elements
with element reduced-integration are favorized.

However, the one-point quadrature element is rank
deficient, i.e. it possesses spurious singular modes of-
ten called 'hourglass modes’ which need to be sta-
bilized. For this, hourglass stabilization procedures
have been developed ). Here two hourglass control
methods are reported.

The perturbation hourglass stabilization augments
the rank of the element in two in order to restore the
correct or proper rank of the element. A normalized
hourglass parameter, which base on the eigenvalue of
elements, is developed in order to augment the rank
of the material constitutive tensor.

The physical hourglass stabilization has been devel-
oped on basis on assumed strain methods, which have
the goal to avoid volumetric locking i.e it is suitable
for nonlinear incompressible problems such as plastic-
ity in metals. Different from the perturbation stabi-
lization, the physical hourglass stabilization considers
element material properties and geometry.

7.1 Element Rank

The element rank is defined by the number of nodes
multiplicated by the number of degree of freedom each
node. The proper element rank is defined by the ele-
ment rank minus the number of rigid-body motions.
For two dimensional calculations, a quadrilateral 4-

node element has the proper rank of five as shown in
Table 7.1

Table 1 Proper rank of a quadrilateral ele-
ment

Element rank = 8

|
.

number of element nodes

!
ro

degrees of freedom each node

Rigid-body motions = 3

translations

rotations = 1

Element proper rank = b

The element integration is in strong dependency of
the strain-displacement matrix B which is in two di-
mensional case of maximum rank three i.e. all tree
rows of B are linear independent. Thus, the element
has rank deficiency.

7.2 Element spurious singular modes

As seen from the brief review in Section 7.1, there
are two so-called spurious singular modes or zero-

energy modes which are shown in form of hourglass
shapes and need to be resisted.

€y =0
€rz =0

!

A

'Y:ry:O

Fig. 3 Hourglass mode in z-direction

For the deformation case in which the nodes of an
element move in the sequence; the top nodes move
outwards and bottom one the same distance but in-
wards; we have the hourglass mode in z-direction as
shown in Fig. 3. Regarding to the integration point
there are neither change in the lengths nor rotation
what means no strain change that is no stress. The
rate-of-deformation at the quadrature point is given
by

D(0) = B(0)d (40)
where
bx 0
B(0)=}| 0 by
by bz

Let the nodal velocities d have following form

Then it is obviously that the rate-of-deformation in
Equation 40 vanishes for d"=. This produces the z-
hourglass because of the motion in z-direction. Figure
4 shows a mesh in hourglass mode of deformation.

Fig. 4 Mesh in hourglass mode of deformation
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7.3 Hourglass Control
(1) Perturbation hourglass stabilization

In perturbation hourglass control, the proper rank
of element is restored by adding two rows to the B
matrix. To ensure the linearly independence, the new
rows are orthogonal to the other three. The element
matrices are then

by O
- by
B=| b, b
~ 0
0 ~
Cni Ci2 Ciz 0 0
_ Ca Ch C3 0 0
[Cl=| Cs Cs Cs3 0 0
0 0 0 C? o0
0 0 0 0 C°
where
1
v = (k= (RT2)bs — (K" y)b,)
and
R = [+1-1+41—1]
OI D.’E
Oy - D,
6‘ == O’Iy D == ZDIy
QI (jz
@y dy
where

v is the orthogonal vector

CQ is a parameter (not true material constant)
Q: and @, are hourglass stresses

gz and g, are hourglass velocity strains

Stabilization procedure
The internal nodal forces for the stabilized element
are

fstub

(41)

Qe
ABT A
7 * { Qﬂ}

The hourglass velocity strain are calculated by

fi'nt — ABT&,

Gy = 7T0r7 Qy = 'YT'Uy (42)

The hourglass stress rates are calculated by

QI = CQQJS: Qy = CQan (43)

The hourglass parameter Cg is calculated by

1 .
ce = iascszbinz (44)

Notice that C? is a not true material constant, it is
normalized to provide good results for any geometry
and any material. Belytschko and Bindeman (1991)
selected C'9 so the maximum eigenvalue of the stabi-
lization stiffness is scaled to the maximum eigenvalue
of the under-integrated stiffness. The recommended
values for a, are about 0.1 1),

Anyway this value does not avoid hourglass for
complete. In cases where the date is rich of hour-
glass mode, it is difficult to suppress the hourglass
mode even with large values of the stabilization pa-
rameter. Point loads for example are often causing
hourglassing. In cases where hourglass mode appears
inexplicably and there is no solution for a stabiliza-
tion, it is better to switch to a fully integrated element
in those sub-domain where it appears.

Flowchart of perturbation hourglass con-
trol

1. Compute hourglass velocity strains by Eq.
(42)

2. Compute parameter C® by Eq. (44)

3. Compute hourglass stresses Q; = QiAt by
Eq. (43)

4. Update internal nodal forces by Eq. (41)

(2) Physical hourglass stabilization

Hourglass stabilization procedures have been devel-
oped on the basis of assumed strain methods 8 9.
In these procedures, the stabilization parameters are
based on the material properties and geometry of the
element. Assumed strain methods are developed for
avoiding volumetric locking. Thus, physical hourglass
stabilization is suitable for nonlinear incompressible
problems such as plasticity in metals.

Stabilization procedure
For physical hourglass stabilization procedure two as-
sumptions must be made:

e the spin is constant within the element

¢ the material response is uniform within the ele-

ment

A velocity field has been developed in order to avoid

locking 10

v = (T ) + (BTv)z + (bl v )y + (vTvi)h  (45)

where

T =[1111]

h=¢&n

The velocity strain is then

D= 0 b, + hyy

be + h oy 0 {
by +hyy by+hzy

el )

Yy
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The hourglass stress rate is

Cquh,x + ngyh,y
6" =< Cageh + Crgyhy (47)
CS(th,r + QIh,y)

The hourglass stabilization forces are then

Clqngzz + CQ(ija:y
+Cs(dyHys + gz Hyy)

fstab — ’)’At (48)
CQQzHyz + CldyHyy
+C?»(‘inm: + QIny)
where
Hywy = / hh,dSY (49)
Q

Following integrals are solved using Gauss integra-
tion

f—+11 f—+11 §*Jdédn = f:l {5277]?:}']615
= [t 2e2gde (50)
PS4 = 4
the same for
[5 ntadedn = 4 (51)

and

JHHERE ) gae = 0 (52)

1 1
I [ enddedn = [

Equation (49) can be formed in a programming
friendly way as

~1 -1
Heo = 4 (%) (%) o

1 —
() o8
Both, perturbation and physical hourglass control
methods have been implemented. However, physically
calculated stabilization forces gives more accurate re-
sults. Computational results showed the robustness of

the physical hourglass control by reducing the com-
putational time enormously.

e wln

+

Flowchart of physical hourglass control

1. Compute hourglass velocity strains by Eq.
(42)

2. Compute Hy,; values by Eq. (53)

3. Compute hourglass forces by Eq. (48) and
update internal forces

8. Computational Results

Several contact-impact tests have been carried out.
The tests are: a Taylor impact bar, a tube im-
pact, a coining tool-workpiece model and a high-speed
contact-impact test. Both Lagrangian and Eulerian
meshes have been used. Both contact algorithms,
penalty method and mixture theory are used in these
tests. The Courant number has been reduced for high-
speed problems.

8.1 Taylor Projectile-Target Test

The penalty method shows an ignorable minimal
penetration by the famous Taylor impact bar. Both,
projectile and target is modeled and calculated in La-
grange mode. The target is in this case a rigid foun-
dation. The impact speed is 300m/s. The 1.5x6.0cm
modeled is model with a 10x20 mesh. Material prop-
erties of the impact bar are listed in table 2.

Table 2 Impact bar: material properties

Young modulus (GPa) 218.75
Density (kg/m3) 7800
Poisson’s ratio 0.2868

Yield stress (MPa) 200
Hardening modulus 0.01

[

Fig. 5 Taylor projectile-target plot by 75 us

The Taylor impact bar is famous because of its sen-
sibility against hourglassing, volumetric locking and
contact forces. As shown in Fig. 5 none of these
problems occurs which confirms the well-working of
the hourglass control and penalty method.
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8.2 Tube Impact Test

A tube of 100cm radius and 10cm thickness impacts
down with 50m/s onto a rigid foundation which is
modeled by one element. The tube model uses plane
strain elements. Deformation plots by 0, 5, 10 and
15 milliseconds are shown in fig. 6. Both, no hour-
glassing occurs and a clean contact demonstration is
reached. The penalty method shows here also no pen-
etration. is visible. Material properties of the impact
tube are listed in table 3.

Table 3 Tube Impact: material properties

Young modulus (GPa) 200

Density (kg/m?) 7800
Poisson’s ratio 0.3

Yield stress (MPa) 100
Hardening modulus 0

Fig. 6 Tube impact

8.3 Coining Test

The advantage of an Eulerian mesh by large mesh
deformation is shown in Fig. 7 and Fig. 8. The
tool is modeled and calculated in Lagrangian mode.
The workpiece is modeled in Lagrangian mode, Fig.
7 and in Eulerian as well, Fig. 8. In both cases,
penalty forces control the contact. For the Lagrangian
model, the workpiece is model with a 50x16 mesh.
The Eulerian model dimension is 5.0x3.0cm and is
meshed by using a 50x30 mesh.

it

T

:

Fig. 7 Coining with Lagrangian mesh

Fig. 8 Coining with Eulerian mesh

8.4 High-Speed Impact Test

High-speed contact-impact simulations in Eulerian
formulation have been carried out and reported here.
Both, the projectile and the target are aluminum.
Figure 9 shows results of a square-projectile of 1em?
with an impact velocity of lcm/us. Impact plots by
using VISTA, a particle-in-cell(PIC) code, are pre-
sented in . In Fig. 10, the projectile of aluminum
hits the 2-layer target with speed of 1.5 ecm/us. The
first and second layer are of plexiglass and aluminum,
respectively. Figure 11 shows results of a circular-
projectile of lem radius with an impact velocity of
0.618cm/ ps.

The theory of high-speed impact covers a broad
number of topics like high pressure and temperature
effects, high strain rates, large material deformation
or distortion and stress shock waves. An estimation
of shock waves soon after impact, Fig. 12 (top), and
after reflection of shock from target face, 12 (bottom)
is presented % . Results showed in Fig. 13 match well
with expected shock waves propagation as well with
the rearward material ejection. The rearward ejection
of projectile and target material is well demonstrated
with the velocity vector in rearward direction. Fur-
ther,the projectile velocity flows into the target.
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Fig. 9 Projectile-target plots by 0.0, 1.0 and
2.0us

Fig. 10 Projectile-target plots by 0.05, 0.10,

0.15us %
< -L'
g —r )
Fig. 11 Cirlular projectile-target plots by 0.0,
1.0, 2.0, 3.0 and 5.0us

Johnson-Cook fracture model is well simulated, as
shown in Fig. 11. New material shapes are shown
in the plot by 5.0us. Refining the mesh and reducing
the limit of the filling rate (0.5 used here) will display
more small separated shapes.

v
PROJECTILE

\ L/

SHIELD

Fig. 13 Velocity field

An equivalent plastic strain plot by 1.0us belong-
ing to the circular projectile-target impact test is pre-
sented in Fig. 14.

Equiv. plastic strain

3.60
3.20
2.80
2.40
2.00
1.60

1.20

Fig. 14 Equivalent plastic strain by 1.0us
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9. Conclusion

Computational results have shown the success of
present contact-impact procedure. The quality of
these numerical results match well with references. A
remarkable computational time performance has been
reached by implementing 1-point quadrature elements
with physical hourglass control method, keeping good
accuracy and avoiding hourglassing. J; flow plastic-
ity theory with radial return method has shown once
more its suitability to metal plasticity. Further, re-
sults showed the robustness of the penalty method
for contact problems in Lagrangian meshes as well
the implemented mixture theory for Eulerian meshes.

Here is shown the suitability of Eulerian hydrocodes
for high-speed contact-impact problems, where high
pressures and strain rates are well simulated by using
Johnson-Cook material model. Eulerian hydrocodes
allow automatically new free-surface creation and
solve the problem of mesh distortion. However, other
methods, specially smooth particle hydrodynamics
are shown in the literature as very promising.

REFERENCES

1) Belytschko T., Liu W. K., Moran B.: Nonlin-
ear Finite Elements for Continua and Structures,
John Wiley 2000

2) Holzapfel G.A.: Nonlinear Solid Mechanics, John
Wiley 2001

3) Bonet J., Wood R.D.: Nonlinear Continuum Me-
chanics for Finite Element Analysis, Cambridge
University Press 1997

4) Hallquist, J. O.: LS-DYNA Theoretical Man-
ual, Livermore Software Technology Corporation,
May 1998

5) Kinslow R: High-Velocity Impact Phenomena,
Academic Press, Inc. 1970

6) Libersky L.D, Petschek A.G.: High Strain La-
grangian Hydrodynamics. Journal of Computa-
tional Physics, Vol. 109, pp.67-75, 1993.

7) Petschek A.G., Libersky L.D.:

Cylindrical Smoothed Particle Hydrodynamics
Journal of Computational Physics, Vol. 109,
pp.76-83, 1993.

8) Belytschko T., Leviathan I.: Physical stabiliza-
tion of the 4-node shell element with one point
quadrature. Computer Methods in Applied Me-
chanics and Engineering, Vol. 113, pp.321-350,
1994,

9) Belytschko T., Bindeman L.P.: Assumed strain
stabilization of the 4-node quadrilateral with 1-
point quadrature for nonlinear problems. Com-
puter Methods in Applied Mechanics and Engi-
neering, Vol. 88, pp.311-340, 1991.

Belytschko T., Bachrach W.E.: Efficient im-
plementation of quadrilaterals with high coarse-
mesh accuracy. Computer Methods in Applied

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

- 276 -

Mechanics and Engineering, Vol. 54, pp.279-301,
1986.

Belytschko T., Bindeman L.P.: Assumed strain
stabilization of the eight node hexahedral ele-
ment. Computer Methods in Applied Mechanics
and Engineering, Vol. 105, pp.225-260, 1993.
Albes de Sousa R.J., Natal J., Fontes V.: A new
volumetric and shear locking-free 3D enhanced
strain element. Engineering Computations, Vol.
20, pp-896-925, 2003.

Benson D. J.: An implicit multi-material Eule-
rian formulation. International Journal for Nu-
merical Methods in Engineering, Vol. 48, pp.475-
499, 2000.

Benson D.J.: Momentum advection on a stag-
gered mesh. Journal of Computational Physics,
Vol. 100, pp.143-162, 1992.

Benson D.J.: Computational methods in La-
grangian and Eulerian Hydrocodes. Computer
Methods in Applied Mechanics and Engineering,
Vol. 99, pp.235-394, 1992.

Van Leer B.: Towards the ultimative conserva-
tive difference scheme. IV. A new approach to
numerical convection. Journal of Computational
Physics, Vol. 23, pp.276-299, 1977.

Johnson G.R., Cook W.H.: Fracture characteris-
tics of three metals subjected to various strains,
strain rates, temperatures and pressures. Engi-
neering Fracture Mechanics, Vol. 21, pp.31-48,
1985.

Johnson G.R., Cook W.H.: A constitutive model
and data for metals subjected to large strains,
high strain rates and high temperatures. Proceed-
ing of 7th International Symposium on Ballistics,
pp.541-547, 1983.

Zhi-Hua Z.: Finite element procedures for
contact-impact problems, Oxford University Press
1993

Benson D.J., Okazawa S.: Contact in multi-
material Eulerian finite element formulation.
Computer Methods in Applied Mechanics and En-
gineering, Vol. 193, pp.4277-4298, 2004.

Doig R., Okazawa S.: Contact with a coupled
Eulerian-Lagrangian hydrocode. 10th Conference
of the Japan Society for Computational Engi-
neering and Science, Tokyo May 2005, Vol. 10,
pp-183-186, 2005.

(Received April 15, 2005)



