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In this paper, a relationship between the stabilized finite element method and the bubble
function element stabilization method with orthogonal basis is shown for the unsteady

and steady Navier-Stokes equations.

A two-level three-level formulation with bubble

function, a bubble function element stabilization method, is proposed for incompressible
viscous flow. The special bubble function with two-level partition is extended as an
orthogonal basis bubble function element. The three-level bubble function is applied
to derive a stabilized operator control term. The two-level three-level formulation with
the bubble function formulation possesses better stability than the Bubnov-Galerkin

formulation with the bubble function.
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1. Introduction

It has recently been found the relationship’?® be-
tween the stabilized finite element method¥56 and
the bubble function element” in the finite element
method. In the steady advection diffusion prob-
lem, the bubble function element is equivalent to the
streamline-upwind /Petrov-Galerkin (SUPG) finite el-
ement method with the P1 element. Some researchers
have developed advanced bubble function elements
for incompressible fluid flow® 9911 The advanced
bubble function elements are established using the
bubble -function with a scaling parameter according
to the cell Peclet number to attain optimal numeri-
cal diffusion. The authors'®13) have applied this ap-
proach to incompressible viscous flow problem using
the bubble function element with a stabilized operator
control term.

A relationship between the stabilized finite ele-
ment method and the bubble function element sta-
bilization method is shown for the unsteady and
steady problems in this research. A two-level’® three-
level'®15)16) formulation with bubble functions, that
is, a bubble function element stabilization method!®
is proposed for the incompressible Navier-Stokes
equations. For the purpose of improvement in sta-
bility and accuracy of the calculation, spatial dis-
cretization is applied to the mixed interpolations
for the velocity and pressure fields by the bubble

function element and linear element, respectively.
The advanced bubble function formulation, based on
the two-level three-level finite element approxima-
tion, obtains better stability than the classical bubble
function formulation based on the Bubnov-Galerkin
approximation”) .

In the two-level three-level finite element approx-
imation, the bubble function that orthogonally in-
tersects the basis functions of bubble function ele-
ment is adopted as a two-level bubble function. The
stabilized operator control term is derived from the
three-level bubble function. To improve the effi-
ciency of the calculation, an effective Fractional Step
method with implicit time integration is applied to
the discretization'”)18). The second order accuracy
Adams-Bashforth formulas are used as the linear ap-
proximation of advection velocity. The second order
linear time integrator is employed to discretize the
quasi-linear form in time. As for the numerical ex-
amples, the standing vortex problem and lid-driven
cavity flow are investigated with respect to the numer-
ical accuracy and stability of bubble function element
stabilization method.

2. Basic Equations

The basic equations that govern incompressible
viscous flow are written as the following Navier-
Stokes equations and the continuity equation in non-
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dimensional form.

+u-Vutgrad p—V-(vVu)=f in Qx[0,T],
(1)

dive=0 in Qx][0,7T]. (2)

u, p, v and f are velocity, pressure, the inverse of the
Reynolds number and body force, respectively. € is
the computational domain of RY, where N = 2 or 3.
N is space dimension number.
denoted t € [0,T).
follows,

The time interval is
The boundary conditions are as

=1u on Fl, (3)

(~pI +vVu)-n=t on Ty (4)

where the Dirichlet and the Neumann boundary con-
ditions are specified on I'; and I's, respectively. In
Egs. (3) and (4), @ denotes the values given on the

boundary, n is the unit outward normal to I's and T
is the identity matrix.

3. Bubble Function Element Stabiliza-
tion Method

3.1 Mixed Interpolation
The MINI elements used in the spatial discretiza-
tion of Egs. (1) and (2) are shown in Figs. 1 and 2.

PAWAN

) Bubble element

) Linear element

Fig. 1 Two-dimensional interpolation function.

JATA,

) Bubble element ) Linear element

Fig. 2 Three-dimensional interpolation function.

The mixed interpolations for velocity and pressure
are expressed as follows”)

N+l
Uplo, = Z Qoua + Ppus, (5)

a=1

N+1

ph!ﬂe = Z \Ilapav (6)
a=1
Oy —Vye—dp, a=1---N+1. (7)

N +1
Q. is the domain of the element e. ¥, are the follow-
ing shape functions of the linear elements:
Two-dimensional:

Ui =1=r—s, ¥Yy=7r, ¥3=s5, (8)
Three-dimensional:
\I/lzl—T—S—t, 11/2:7', \11328, ‘I’4=t. (9)

Eq. (5) is separated into the linear and bubble func-
tion interpolations as follows.

upla, = wpla, + U;Z|Qe, (10)
N+1

ﬁhiﬂe = Z ¥olla, (11)
a=1

u;llﬂg = ¢Bule (12)

AR
—up o ——— o 13
Up =UuUp N+1a:1u (13)

3.2 The ¢(th-Power Bubble Function

The £th-power bubble functions are defined using
isoparametric coordinates {r, s} and {r,s,t} as shown
in Fig. 3. The three triangles w;-ws and the four
tetrahedra wi-wy4 are divided at the barycenter. The
£th-power bubble functions of C° continuous can be
considered for each subtriangle and each tetrahedron
as shown in the following equations.

S N

1

0 1 t
(a) Two dimensions

(b) Three dimensions

Fig. 3 The £th-power bubble function.

Two-dimensional:

3 (1-r—35)¢ inw
o5 =1 3¢r¢ inwy , (0.0 <€ <o0),
3¢ st in ws
(14)
Three-dimensional:
44 (1—r—s—1t)° inw
¢ 46 r& in wsy
¢y = 46 56 in ws , (0.0 < & < 00).
48 ¢4 in wy
(15)
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The bubble functions have the following property.

1

=1---N+1.
T N+1 +

(16)
(-, -)a. denotes the Ls-inner product restricted to
Q.

(Vo, 050, = ———(1,8%)a.

3.3 Two-Level Three-Level Finite Element
Approximation

The two-level three-level finite element approxima-
tion %) is considered to be a variation of the problem
of finite element space with the bubble function ele-
ment. In the two-level three-level finite element ap-
proximation, the two-level partition with a two-level
bubble function is employed for the finite element so-

lution and the three-level partition with a three-level’

bubble function is employed for the weighting func-
tion. The piecewise linear finite element space Vi,

@n and the bubble function space V;L, Vh are de-
fined by:

Vi = {on € (H)); oala, € (PL(Q)V}, (17)

Vi = {vy € (HHQ)Y; vila, = $pv, v € RYY,

(18)

V= {#, € (HYQ)Y; dyla, = ppvy, vy € RV,

(19)

On = {gn € HX(Q): gnla, € PL(QL), / and2 = 0},
0

(20)

where ¢p and ¢p are the two-level bubble and three-
level bubble functions with compact support. The
approximation is obtained by calculating the finite el-
ement solution (up,pp) € Vi x Qp, which is deter-
mined by the finite element space of Vi, =V, @ V'h
for the velocity field and @}, for the pressure field,

(in + L(up)up +grad py, — f,91) =0 Vi, € Vi,
(21)
(div up,qn) =0 Ygu € Qp, (22)

where

Lup) :=up-V-V- V),

Ne N,
(u,v):zZ(qu :Z/ uw v dfd.
e=1 e=1" e

N, is the number of elements. The finite element
solution up that belongs to V), and the weighting
function ¥ that belongs to

Vi=Vir®{v,+0,; vpla. +04l0, = (ép+vB)vp),
can be expressed as follows.
up :ﬁh+u,h , Dy, :ﬁh-}—’v’h+f);l :vh—H};l, (23)

where
Ne
—_— — = ’ ’ ’
Up, Op € Vi, uy = E ¢pupg € Vy,
e=1

Ne e ,
v, =Y ¢pvg €V, B, = wpvp €V, (24)
e=1 e=1
In the approximation, the two-level bubble and three-
level bubble functions are defined elementwise. Finite
element equations (21) and (22) that are applied to
the bubble function element stabilization method can
be written as follows,

(tp + L(up)up + grad p, — f,vn)

Ne

+3 V| Véplh upvp =0

e=1

Yo, € Vi, (25)

div up,qn) =0 Vgu € @, (26)

where

V’HV¢B||s2)eU’B = (up+L(up)ur+grad pr—F, ¥B)a.,
- (27)

Hullh, = (u,u)q,.

v (o0 < V' < o) and v || Vsl up are the sta-
bilized operator control parameter and the stabilized
operator control term!® for the bubble function ele-
ment.

3.4 Relationship with the Stabilized Finite
Element Method
(1) The Unsteady Problem
Finite element equations (25) and (26) that employ
the # method for temporal discretization are described
as follows,

n4+1
Aug

( At +0L(m;) Aupt! + L(@))up

+dgrad Ap"+1 + grad pj — f,vn)

+ Z vV Vép|3 {0AugT + uflvg

e=1
=0 Vv, €Vy, (28)
(Wdiv Auptt +div ul,qn) =0  Vgn € Qn, (29)
where
@y = 0" Al (1 -0M)ay , Aultt = ult —up,
Au'g+1 — u£+1 . UB , Apn+1 n+1 —th

0<6<1,-1<6<0,0<0<1.

At is the time increment. @; is a constant value de-
fined elementwise by means of the linear finite element
solution @y To eliminate u}, by static condensation,
the following two equations are derived according to
Eq. (28).

<Auz+1
At

+oL(a})Auptt + L(u))up

+igrad Apptt +grad pp — f,on) =0, (30)
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n+1
Aup

{ AT 0L(wy) Auftt + L(ay)uy
+dgrad App*! + grad p — f, éB)a,
0 | Vopld (#Aug™ +uB} =0, (31)
According to Eq. (31), u}} can be expressed as
, A—n+1
Wl = —Tep[(—ah 4 OL(w]) AT
At
+L(ay,)uy + dgrad Apptt + grad pf — f,é5)a.
o)
{<AB + 0L(ay)bs, B,
A
+0U |V Auptt—2e 32
|| B“Q } ]<¢B,1>52)e ( )
where
. 4 — ¢ 71 ¢
TeB = {{L(W})¢B, dB)a. +Vv |[Vésld, } 1<BAJ’
(33)

A, ::/ daq.
Q

Substituting Eq. (32) for Egs. (30) and (29), the

problem of solving finite element equations (30) and

(29) is regarded as the problem that finds the element

solution (up ™, ppt!) € Vi x Qp.

<Au’}:+1
At

+o0L(ur)Aurtt + L(af)a} 4+ dgrad Appt?

+grad pi—f, ) +Z +0£(uh)¢3,vh)g Au

Ne —n+1
u
=D (L (u7)dn, Ba)a, Ten(—Z— + 0L(w;) Ay
e=1
_ ntl n Ae
+L(uy)a, +dgrad App™ +grad py—f, é8)a, 55—
<¢B1 1>Qe
oL o5
Z (@r,)¢B,Dr)a. TeB{<— +0L(u},)éB, ¢B)a,
100 [VgmlE, ) Auft 5 =0 Yo eV
e <¢Bvl>%2e "
(34)
N.
(Wdiv Aap ™ +div @p, qn) + Y _(0Vén, gn)a, Aug !
e=1
Ne —n+1
= (Vép.a)a.en(— 55— + 0L (a}) Aap !
e=1
n+1 n AE
+L{(u},)ay+dgrad App™ +grad pp—f, é8)a, 5
<¢B7 1){28

N,

Z Vg, qn)a. TeB{<— +0L(uy)dB, d8)q,

e=1

! Ae
+6v [ Vézlf, taug ™!

@515, "

Yan € Qn.

(35)
Egs. (34) and (35) are regarded as a multiscale
(adjoint)-type*?29) stabilized finite element aproxi-
mation.

(2) The Steady Problem
Let us consider the case of a steady problem,

! ’
AT S0, AR - @, Augtt S0, uf > up,

Apptt =0, i — pa,
and the case of ¢ = ngB with € > 1(6 — 1> 0),
=0 on T

Q. €9, (36)

thus,

(05,0 ). = (€605 . =0.  (37)

Finite element equations (34) and (35) are rewritten
as the following equations:

(L(my)an + grad pr — f,Vn)

+Z ¢, L

uh 'Uh>ﬂ TeB <[_‘,(ﬂ2)ﬁh

Ae

+grad p, — f, ¢B)a. G512 =0 VYo, €V,
’ Qe
(38)
Ne
(div @n, qn) + (68, Van)a, e (L(T;)Un
e=1
Ae
+grad pp — f,¢3)95m— =0 Vgn € Qn,
9 Q.
(39)
where

Lr(wp):=a; -V+V- V).

Egs. (38) and (39) are regarded as the problem that
finds the finite element solution (@n,pr) € Vi X Qr.
The bubble function has the following properties.

(¢B,V - (vVOr))a, =0, (40)

(¢5.L7(ur)On)a, = (b8, L(U})0r)q, -
Hence, Egs. (38) and (39) can be expressed as follows.

(41)

Ne
(L(@3)an + grad pr— F,04) + 3 (L@}, 7en
e=1

{ﬁ(ﬂ}:)ﬁh + grad pp — f})ge = Vo € Vh, (42)

N,
(diV Up, qh> + Z({V(Ih}; TeB
e=1

{L(a})un +grad pr — flo, =0  Vgn € Qn. (43)

These approximations are equivalent to those of the
SUPG/PSPG method®.
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3.5 The Finite Element Equations for the
Navier-Stokes Equations
Finite element equations (25) and (26) are obtained
from the weak form.

<’llh, vh) + (ﬁ2~Vuh, 'Uh> — {pp, div ’Uh> —H/(Vﬂh, V'vh>

Ne
+u(Vuy, Vou) + Y v Vésld, upvs
e==1
= (f,vn) + L, va)r, Von € Vi, (44)
(div un,qn) =0 Vqn € Qp. (45)
The following property is obtained.
’ Ne
(Vuy, VoR) = > (Vuy, Von)a,
e=x1
N,
=) {{¢5,Vop)r, — (¢5,V - (VOr))a.} ug
e=1
N.
Z(qSB, (Vo). ug = 0. (46)

By substituting Eqs. (46) into Eq. (44), finite element
equations can be rewritten as follows.

(ten, vr) + (@5, - Van, vp) — (pr, div vp) + v{@};,vf))

N
+¥ v+ V) VesllE upvs
e=1
= {(f,vn) + {E,vn)r, VYon € Vi, (47)
<diV uh,qh> =0 th € Qh. (48)

If 7eB = Ter, Eq. (33) can be arranged the following
equation:

o v I90slh, = 200 )
where
i 2 I\ 2 3
TeR = [(2‘}1}1‘) + (%) ] (50)

he is the element length®).

4. Two-Level Bubble Function for the
Orthogonal Basis Bubble Function
Element

The two-level bubble function can employ an arbi-
trary bubble function. In this research, a special bub-
ble function is proposed as a two-level bubble func-
tion. The bubble function orthogonally intersects the
basis functions of the bubble function element in ac-
cordance with expression (5). The effective bubble

function element is named the orthogonal basis bub-
ble function element. The conditions under which the
basis functions of the bubble function element cut or-
thogonally must satisfy the following two condition
equations (51) and (52).

1
(®a,d8)0. = (L dm)a. — 5 I6alh, =0
(51)
If « # 3, then
1
== \Ija7‘11 _—e—— 1’ =
(Pa, Pgla. = ( ). v 1)2< ¢B)a.
(52)
1
1 33
<\Ilaa¢B> N+1< ¢B> ( )
a=1---N+1,8=1---N+1.
Eq. (53) is assumed on the derivation of Egs. (51)
and (52). Finally, the following relation Eq. (54) is
obtained from Eqgs. {51) and (52).
N+1
2
= = . 4
(65,10, = I¢alh, = oghe (50

We use Eq. (55) as a two-level bubble function that
fulfills Eqgs. (51) and (52).

a1¢p1 + QB2 + ¢B3

2 o1 +ag+1

(55)

By substituting Eq. (55) into Egs.
Egs. (56) and (57) are obtained:

(51) and (52),

Br0f + Bo0h + B3 + Bacian + Bsog + fean =0, (56)
ay =y101+ 72, (57)
where
= ((¢p1, )0, — |6B1]14,) A
= ((¢B2, Da. — ll¢B2lld,) A"
( 4)337 e — ”¢B3“(22 )Ae_l y
By = (<¢B2, Do, + (¢81, ), — 2(¢p1, dp2)a.) A7
Bs = ((¢B3, )a, + (¢B1, 1)a, — 2(¢B1,dp3)a,) A"
Bs = ({¢B3, 1)a. + (¢B2, Do, — 2(¢Ba, dp3)a,) A
(#8110 AT — =
T T g D Ar T = 2L
_ (¢ Do ATt — 5
T e e A =

By substituting Eq. (57) into Eq. (56), Eq. (58) is
obtained:

ao?+bay+c=0, (58)
a= Bi+B2vi+Bav1 s b=2Bamva+Bava+B5+Bsv1 s

c= 527% + B3+ Beya -
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The quadratic formula (59) is acquired because Eq.
(58) is a quadratic equation on ;.

—b4+ Vb2 — dac
oy = (59)

aq, oo of Egs. (58) and (57) are caleulated by em-
ploying the £th-power bubble functions of Eq. (60).
dB1 = 5", dpy = 0%, bps = 925%:6/5, (60)

Two dimensions:

_ NV
a1 = _bi_;_él_a_c_ = —(.1393869 - - - ,
a

oy = —(0.6433844 - - -, (61)
Three dimensions:
b PZ 1]
0y = —b+ vb? —dac _ 0.7333511 - - - |,
2a
ap = —1.6387018 - - -. (62)

Eq. (55) satisfles Eq. (37) because of & > 1, & > 1,
and 3 > 1. Fig. 4 shows the two dimensional bub-
ble function shapes of ¢ and ¢% with the orthogonal
basis bubble function element. In the orthogonal bha-

(a) ¢5 (b) ¢

Fig. 4 The bubble function shapes of ¢p and ¢%
with (65, 1)a, = l1¢5]4, = FA..

sis bubble function element, the concrete shape of the
bubble function does not make sense because the re-
lationship in Eq. (54) is important to the orthogonal
conditions of the basis functions.

5. Three-Level Bubble Function for
Stabilized Operator Control Term

The stabilized operator control term is derived from
the three-level bubble function. Three-level bubble

function assumes that it has the relation of the fol-
lowing equation:

1

o = e
( a7¢B>Qe N+1

(Lpg)a, , a=1---N-+1.

(63)
The following conditions are introduced for the three-
level bubble function:

<17 9QB>Qg =0, (64)

(¢B,9B)a. =0 . (65)

By using Egs. (64) and (65), the right side terms of
Eq. (27) are obtained as follows.

(Up + L(up)up +grad pr — f,98)0.

= v(Vés, Vop)a.up - (66)
We use Eq. (67) as the three-level bubble function
that fulfills Eqs. (64) and (65).

vy 01081 + 029982 + ¥B3

ey s < )
vB v (51 + 52 +1 o0 Ve < o0
(67)
S ret1(Vén, V(0191 + 02082 + ¥B3))a,
IVerlla, ‘
(68)

According to Egs. (67) and (68), the following equa-
tion is derived:

(69)

By substituting Eq. (67) into Eqgs. (64) and (65),
Egs. (70) and (71) are obtaind.

v(Vér, Vop)a,ug = v [|Vosl|3, up -

_ (1,9B2)0,(¢B, ¥B3)a. — (1,¥B3)0. (0B, ¢B2)0.
(1,¢B1)0. (0B, ¥B2)0. — (1, ¥RB2)0, <¢By<PBl(>Qe),

70

5y = (1,0B3)0.(¢B,¥B1)0. — (1,9B1)0. (0B, ¢B3)0.
(1, ¢B3)a. (¢B,¥B2)a, — (1,¢B2)0. (B, wB1()ne)

71

81, 82, and v’ of Egs. (70), (71), and (68) are calcu-
lated by employing the £th-power bubble functions of

Eq. (72).

oB1 = 0% , Y2 = OB , YB3 = Pp , (72)
Two dimensions:
d1 = 74759881 -+ , d3 = —6.4855929 - - - |
v =Cu,, C=—00935697 - - , (73)

Three dimensions:
§; = 70.5090640 - - - , 6y = —37.7545320 - - - ,
vV =Cu,, C=-00338976-- . (74)

Fig. 5 shows the two-dimensional bubble function
shapes (v, = v) of ¢p and ¢pyp. Fig. 5 shows the
two dimensional bubble function shapes (v, = v) of
wp and ¢pyp. In the three-level bubble function, the
concrete shape of the bubble function does not make
sense because condition equations (64) and (65) are
the key to deriving a stabilized operator control term.
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(b) ¢ByB

Fig. 5 The bubble function shapes of p5 and ¢gyp
with (1,¢8)a, = (¢B,¥B)a. = 0.

(a) ¢B

6. Time Discretization for Finite Ele-
ment Equations

To discretize finite element equations (47) and (48),

a quasi-linear form with 6 = 3, 6* = —3, and 9 =1
is givien by
un+1 _ un n
Mttt S(ap)up ! — Byt = F, (75)
BTupt! =, (76)
where
1 . 1
af = S Bap —ay ), w = St ),

are employed. M is the mass matrix, and S(@}) is
the matrix of the advection term and viscosity term.
B is the gradient matrix, and F is the vector of
the force term and boundary integration term. The
important point to note is that M is the diagonal
mass matrix on account of the orthogonal basis bub-
ble function element. To discretize the quasi-linear
form in time, a second order linear time integrator
is used!”18), To apply the fractional step method, a
consistent pressure-poisson equation can be obtained
by using an intermediate velocity that does not satisfy
g. (76). The unknown velocities u}*! are replaced
w1th intermediate velocities u"“Ll using the pressure
Py- Eq. (75) can thus be expressed as follows.
apt! —u
At

n+1/2
M ya, t

+ S{u;)u —Bpp =F, (7T7)
where
1
ﬁz+1/2 2( antl +uh>

Eq. (78) is obtained by subtracting Eq. (77) from Eq.
(75).

’U.Z+1 _ ,&Z-f—l

At

M

+ S(uh)( W —aptt)

~B (o —pp) =0. (78)

The consistent pressure-poisson equation (79) is de-
rived by multiplying Eq. Eq. (78) by BTM™! and
then substituting Eq. (76) into the resulting equation.

BTM'BAt (pptt - pp) = -BTaptt,  (79)

where except BT 4+, the left side terms of Eq. (78)
are omitted by assumlng (up ! — apt!) to be an in-
finitesimal value.

The algorithm of this scheme is written as follows.

1. Start from initial velocity ugl and pressure p,(l ),

2. Compute @™ by Eq. (77).

3. Compute ph“"1 by Eq. (79).

4. Compute uj** by Eq. (78).

5. i=i—+—1got02.
Element-by-element BiCGstab method with scaling
is used to solve simultaneous equations (77) and (78),
and element-by-element CG method with scaling is
used to solve simultaneous equation (79).

7. Numerical Examples

7.1 Standing Vortex Problem

To investigate the numerical accuracy of the bub-
ble function element stabilization method, the stand-
ing vortex problem is used as numerical example.
Fig. 6 shows the computational domain and initial
conditions. The numerical example employs At =
0.05. We compare the results of kinematic energy us-
ing the standard bubble function element (classical)
and the bubble function element stabilization method
(improved). The standard bubble function element
means the bubble function element without the stabi-
lized operator control term in Eq. (44). The numer-
ical results are shown in Fig. 7. The time history
of kinematic energy using the standard bubble func-
tion element has a major effect on the result due to
divergence. On the other hand, the bubble function
element stabilization method conserves kinematic en-
ergy with high numerical accuracy.

7.2 Lid-Driven Cavity Flow

To investigate the numerical stability of the bub-
ble function element stabilization method, lid-driven
cavity flow is used as a numerical example. Fig. 8
shows the computational domain, boundary condi-
tion, and finite element mesh. Two numerical exam-
ples are calculated by using At = 0.0001(Re = 1)
and At = 0.025(Re = 400), respectively. We compare
the results of pressure distribution using the standard
bubble function element (classical) and bubble func-
tion element stabilization method (improved). Nu-
merical results are shown in Figs. 9 and 10. The
spatial oscillation of pressure using the standard bub-
ble function element has a much great effect on the
result. However, the bubble function element stabi-
lization method remedies the oscillation distribution
of pressure.
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1

(a) Computational domain

(b) Initial condition

5r r < 0.2
ur =0, uwg=< 2-5r 02<r<04 . (80)
0 r>0.4

Fig. 6 Standing vortex problem.

8. Conclusions

The relationship between stabilized finite element
method and orthogonal basis bubble function element
stabilization method was described for the unsteady
and steady Navier-Stokes equations in this paper.
The bubble function element stabilization method can
be regarded as a multiscale(adjoint)-type stabilized fi-
nite element method. The two-level partition with a
two-level bubble function was used for the finite el-
ement solution and the three-level partition with a
three-level bubble function was used for the weight-
ing function. The bubble function that orthogonally
intersects the basis functions of the bubble function
element was adopted as the two-level bubble function
and the stabilized operator control term was derived
from the three-level bubble function. The fractional
step method for incompressible viscous flow based on
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Fig. 7 The finite element mesh and the numerical
results.

bubble function element stabilization method was in-
vestigated. The bubble function element stabilization
method obtained better numerical accuracy and sta-
bility than the classical bubble function method.
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