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The paper presents numerical solution of the three dimensional Navier-Stokes
equations for complex flow domains consisting of fluid and porous regions with free
surface boundary. Flow in both regions is described by single set of conservation
equations, extending the momentum equation for porous regions by additional
viscous drag term according Darcy law. Free surface kinematics is “tracked” by
Volume of Fluid method. Firstly the model is verified by comparision with
numerical solution of Laplace equation for simple free surface flow through vertical
dam. Good result agreements are observed. Application on realistic problems is
presented on two cases. First case considers problem of pressure redistribution
process around a deep tunnel excavation in low-conductivity porous media and
second considers flow under and through porous, partially submerged bridge.
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1. Introduction

Many practical problems involve simultaneous bulk fluid
flow and flow through the porous media. Applications
include ground water / surface water pollution and flow
problems, geophysical systems, oil production, etc.
Penetration of fluid from reservoir into some kind of porous
media is also significant phenomena in various fields of
industry (e.g. ink jet technologies), where the accompanying
process of heat transfer can also be of interest.

In practice, problem involves coupling of equations
describing fluid region flow (Navier-Stokes equations) and
flow through porous media, usually described by some form
of Darcy-law equation. Due to different structure of these
equations, some empirical conditions on the interface
between regions are required. Beavers and Joseph", amongst
the first, proposed a “slip-flow” condition at the interface.
Based on experimental results they concluded that slip
velocity is proportional to the shear rate on the interface.

After Wooding”, who introduced convective inertia term
in the Darcy law equation, resembling in that way Navier-
Stokes equations, Beckermann et al.” solved coupled
equations (for fluid and porous region) numerically in two
dimensions. Their set of governing equations under steady
state condition introduces binary parameter, through which
transition from porous to fluid region is achieved. On the
other hand, inertia effects in the porous region were
introduced using Brinkman and Forchheimer extensions of
Darcy law equation.

At the same time, major efforts have been made on the
development of numerical methods to obtain accurate
solution of Navier-Stokes equations for flows with the free
surface boundary. Standard advection techniques for
convection problems can be applied for free surface

“capturing”, but inevitably lead to diffusion or oscillations.
Although powerful techniques were proposed to limit
diffusion or unstable behavior (e.g. see Reference [4]), they
can not guarantee the sharp, non oscillatory interface.

The first method, capable for free surface "tracking", was
the well-known Marker and Cell (MAC) method, proposed
by Welch et al.”. In this method massless Lagrangian
markers are advected by the local velocity field, where
distribution of markers determines position of free surface.

Later, several volume tracking techniques were
proposed”, where the volume fraction of fluid is tracked in
the computational cells which contain free surface. Among
others is the Volume of Fluid (VOF) method”, which is
utilized in this paper, and will be briefly described in the
following section.

The purpose of this paper is to present numerical model
for incompressible, laminar flows in porous, as well as in
fluid region, with free surface boundary. Continuity of
velocities and stresses across the interface of two regions is
assumed. The presented model can be applied to wide
variety of flow problems with porous media as a part or as
the whole flow domain. Two such applications are herein
presented .

The reminder of paper is organized as follows. In the next
section, an overview of computational method is given. In
the third section, the model is verified by comparison with
numerical solution of Laplace equation for a simple flow
problem in porous media. Model application on realistic
flow problems is presented in the following two sections: In
Section 4, the case of pressure redistribution over deep
tunnel excavation is analyzed, where analytical solution is
derived, and in Section 5 model’s application is
demonstrated on flow under permeable, partially submerged
bridge. The paper is concluded in Section 6.
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2. Outline of numerical model

Governing equations for laminar flow of incompressible
fluid in the fluid region, as well as in the rigid, homogeneous
porous media region can be formulated as:

L fi-cp]=o0, (1)
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where x; is the spatial co-ordinate, 7 time, p the fluid density,
¢ the volumetric concentration of particles, p pressure, K the
hydraulic conductivity, v the fluid viscosity and U; pore
velocity.

Flow resistance of porous media in equation (2) is
introduced by Darcy-law term, and can be extended to non-
Darcy fluid flows by introduction of nonlinear terms.
Considering continuity of flow, pore fluid velocity and
Darcy (or seepage) velocity are related as:

(-, =V, (3)
where V; is Darcy velocity.

Equations (1) and (2) are discretized by the finite volume
(FV) method on the full-staggered computational grid,
where velocity components are defined on the cell faces and
scalar variables are defined at the cell centers.

Pressure and velocity field at new time steps are
calculated by iterative procedure using the Highly Simplified
Marker and Cell (HSMAC) method”. Iterative procedure
consists of two steps. Firstly the predicted value of velocity
is calculated using second-order Adams-Bashforth scheme:
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where (U,"”y is the velocity at current time step (n+1), at

(r+1)-th iteration and &7 is time step. F" in equation (4) is
expressed as follows:
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and accordingly, F*' denotes the same expression for time
step (n-1).

After obtaining predicted velocity field, the divergence
for each cell is computed. Then, using (6) and (7) the
pressure field is corrected in order to satisfy equation (1):
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where o is relaxation coefficient, dx; is size of computational

cell in the ‘i” direction. As the values at the first iteration,
pressures and velocities from the previous time step are used.
Iterations are repeated until value |D| satisfy the given
criteria at every computational cell.

The convective inertia term in equation (4) is described
using the QUICK scheme *.

Free surface kinematics (in a case of unconfined flow) is
simulated by extension of Volume of Fluid (VOF) method,
here adapted for flow in porous media as follows.

After obtaining the divergence-free velocity field at the
new time step, convective equation

all-c)F 8 ~
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is solved, where (1-¢)F represents portion of cell occupied
by the fluid (cell saturation). Donor-acceptor technique is
used to advect “fluid volume” as combination of first order
upwind and downwind fluxes”.

At the interfaces of fluid and porous region, fluxes are
calculated using the lower value (1-c) of the donor and
acceptor cell, meaning that no more fluid can cross the
interface than donor can physically provide, or acceptor to
receive. The same is applied in cases of inhomogeneous
porous media, with interfaces of different types of material.

In the original paper”, equation (8) is solved in two-
dimensional space. However, there was no mention whether
it is solved simultaneously in both directions, or by direction
split method. In this sudy, the direction split method is
applied with alternate change of direction order at each time
step.

3. Model verification

In order to verify the presented (FV) model with (VOF)
method for free surface tracking, results of numerical
solution based on equations (1) and (2) are compared with
results of finite element (FEM) numerical solution of
governing equation for 2D Darcy flow (Laplace equation)
for homogeneous, isotropic porous media in vertical plane.

The models are applied on the problem of seepage
through vertical dam, after sudden decrease of downstream
water level as shown in Figure 1.
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Fig. 1: Seepage through vertical dam, boundary conditions

Outline of the finite element model

This initial boundary value problem, for the rigid porous
media considered here, can be described by the following set
of equations'®:

g(ﬂ}o, onR ©
Ox; ox;
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Here, 4 is total head, £ elevation of the free surface from
the bottom boundary, H, prescribed head, R the flow domain,
B, prescribed head boundary, B, prescribed flux boundary
(zero flux is used), F the free surface boundary and S the
seepage face.

Position of the free surface at new time step is calculated
by iteration. Each iteration consists of two steps'®. At the
first step equation (9) is solved for prescribed head
conditions at the free surface and seepage face from the
previous iteration. At the end of this step, nodal fluxes on the
seepage face are calculated and used at the second step
together with fluxes on the free surface boundary from (14).
In second step (9) is solved again, but now with prescribed
fluxes on the free surface and seepage face. At the end of
second step, the mesh is deformed in order to satisfy
condition (13).

Iterations are repeated until difference between calculated
pressure head on the free surface and position of free surface
satisfy the given criteria.

Flow domain is discretized by linear quadrilateral
elements. Figure 2 shows converged finite element mesh for
one denivelation case. Finer mesh discretization resulted to
change of computed free surface levels by less than 1%.
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Fig. 2: Seepage through vertical dam, finite element mesh
(Ho =0.2m)
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Fig. 3: Calculated free surface levels for three different

denivelation cases: Ho=0.1, 0.2 and 0.4m (FV-
finite volume model, FEM-finite element model)

Results and discussion

After obtaining steady conditions, results for three
denivelation cases are compared on Figure 3.

Good agreement between the results suggests that (VOF)
method can adequately track free surface movement in
porous media. Convective inertia term, in case of flow with
small gradients is negligible, but as gradient increase this
term becomes more significant and the calculated surface
levels slightly differ from (FEM) solution. In such cases, this
gives better reconstruction of free surface boundary.

As it was described above, finite element approach
requires special treatment of the seepage face. Here,
particular problem represents intersection point of free
surface and seepage face boundary, because calculation of
nodal flux at this point includes both boundaries and error
has effect on the whole domain. Several approximations are
suggested to treat this problem. One of them is to place this
point in the line with the two nearest nodes on F'”, which is
used here.

In finite volume model, the seepage face boundary is
naturally included by imposing zero pressure at the cells on
this boundary. Considering other boundaries in (FV) model,
constant pressure is imposed on B;, and no flow condition
on B,.

4. Study case: flow towards tunnel excavation in low
conductivity porous media

The presented finite volume model is applied on the
problem of pressure redistribution process over deep tunnel
excavation in low-conductivity porous media. Intention was
to test the performance of the model in highly unsteady
conditions.

Figure 4 schematically shows the flow domain. Boundary
conditions are constant piezometric heads on the vertical
domain boundaries, and zero pressure on the walls of
excavation. Initially, hydrostatic pressure distribution is
assumed everywhere.

T’

220m

! 200m 200m |

Study case of tunnel excavation in porous media
(K=1.0e-8 m/s, (1-¢)=0.5)

Fig. 4:

Results of simulation are compared with analytical
solution of pressure distribution along symmetry line above
the excavation (described below) and finite element solution
of Darcy-law equation in vertical plane. Here, the same
finite element model is used as described in previous section.

Analytical solution of pressure redistribution
The analytical solution is based on the assumption that

vertical velocity distribution above tunnel excavation is
linear:
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v=vo(t(—%+l] (17)

Here v is vertical velocity, v, is vertical velocity at the
tunnel boundary (y=0), y is vertical coordinate (positive
upward), H is water height above tunnel excavation and ¢ is
time.

Neglecting the third term on the right side of equation (2),
and assuming homogeneous, rigid porous media, momentum
equation in the y direction can be written as:

ﬂ+v§l}—=—g——1—a—p—(1v (18)
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Substituting (17) into (18) yields:

2
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which can be integrated from y=0 (p=0) to y=H (p=0) to
obtain:
dv
HT: =vo—HCv, - 2gH (20)

This can be written as:
v dt
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Now, solution of (20) can be easily derived as
IS
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It should be noted that from (24) v, —> o when t — co.
Substitution of (24) into (19) and after integration, one
obtains expression for the pressure distribution as:
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Regarding the numerical model, due to existence of
symmetry line, one can model only half of flow domain
showed in Figure 4. Along this line no flow boundary
condition should be imposed.

Discretized flow domain for finite volume model with
boundary conditions is showed in Figure 5.
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Fig. 5: Flow around tunnel excavation: discretization with
boundary conditions
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Fig. 6: Results of pressure distribution along the symmetry

line: FV -finite volume model, FEM-finite element
model

Figure 6 shows several results of calculation. In cases of
low conductivity porous media, steady state flow is achieved
in a very long time, but quasi-steady conditions, where
pressure distribution does not change significantly, occur
rapidly. This rapid pressure redistribution is observed from
FV model results. Analytical solution confirm the results of
FV model. Nevertheless, the assumption of linear vertical
velocity distribution (analytical solution) is not adequate,
except near the excavation, which explains the difference
between numerical and analytical solution.

Finite element solution of Laplace equation (9) with the
same boundary conditions as showed in Figure 5, produced
identically pressure distribution curve as quasi-steady
solution of FV model (Figure 6).

It can be concluded that, in obtaining quasi-steady
pressure distribution, inertia term is negligible.
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Case of tunnel with less permeable lining

Similar analysis is conducted for the case of tunnel
excavation lined by less permeable material (Figure 7).

Since the width of lining is small comparing to tunnel
depth (H), velocity through lining can be assumed equal as
velocity v,,.

Hence, velocity distribution can be expressed as:

v=vo(t), 0<y<H

v =vo(t)—H—‘(1—LJ, Hsy<H

H-H\ H

(27a)

(27b)
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Fig. 7: Schematic cross-section of tunnel excavation

lined by less permeable material

Substituting (27) into (18) gives:

dv, __ 1
dt oy

0<y<H (28a)

dv, vy H ( y 1 dp
- C 1-L =g —-—2
[dt () =\ Hj VS

H<y<H (28b)
Integrating along the symmetry line, one obtains:
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which gives solution as:
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Substitution of (30) into (28) and after integration gives

pressure distribution along symmetry line above tunnel
excavation as:
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Figure 8 shows results of computation. For numerical
solution, the same discretization and boundary conditions
are used as shown on Figure 5.

As expected, quasi steady pressure distribution is
obtained rapidly. Analytical solution slightly differs from
numerical, due to linear velocity assumption. However, as
from diagram it can be seen, it can give a solid
approximation for practical purposes.
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Fig. 8: Results of pressure distribution along the symmetry

line for the case of tunnel with less conductivity
lining (K,=10""m/s, K,=10"*m/s, H,;=0.3m) FV-
finite volume model, FEM-finite element model

It is interesting to note that pressure distribution above
tunnel excavation in this case is almost the same as long as
the ratio of conductivities of porous media and lining
material is constant. Particularly, if one neglects inertia
terms from equations (28), with the procedure shown above,
one can derive expression for piezometric head at the
interface of the lining (y=H,) as:

H
- — 35
?1 +H+H1 Ch (3%)

28, Cy
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which means that it depends only of ratio of hydraulic
conductivities, not on their absolute value.

5. Study Case 2: Flow through and under partially
submerged porous bridge

Model application will be demonstrated on the case of
flow under/through partially submerged porous bridge.
Schematic diagram of flow domain with boundary
conditions is shown in Figure 9.

At the upstream boundary, constant discharge is
prescribed. On the downstream boundary, specified free
surface level is applied with vanishing velocity gradient.
Initially uniform water level is imposed. Of interest is
discharge distribution under and through the bridge.

In all calculations, hydraulic conductivity of bridge
material is considered as high (clean, coarse pebble, or a
truss bar structure). It is observed that in cases of hydraulic
conductivity of order 10? m/s or less, for given boundary
conditions, almost all of the discharge flows under the
bridge.

Figure 10 shows characteristic dependence of discharge
under the bridge for steady conditions as function of opening
height and conductivity of porous material.

Flow distribution is highly dependent on porous
conductivity for small openings, while influence decreases
with increment of the opening height. For openings higher
than 50% of downstream water depth, flow under the bridge
is over 95% in all cases.

The calculated temporal velocity fields with free surface
elevations, for one case of boundary conditions, are shown
in Figure 11.
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Fig. 9: Flow under/through porous bridge, initial and
boundary conditions
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Fig. 10: Calculated nondimensional discharge under the
bridge (Qo=40L/s/m, Ho=2m, (1-c)=0.5)

1t is evident that velocity field through the bridge is
dependent on process of vortex development at the
downstream side.

However, further experimental research is required to
explain this phenomenon in more detail.
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Fig. 11: Simulation of flow under porous, submerged bridge: (a) 4.0s and (b) 7.0 s after start of simulation Q0=200L/s/m,

Ho=2.0m, H=0.4m, K=1.0m/s, (1-¢)=0.5)
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Fig. 12: Simulation of flow under porous submerged bridge with drain, 5s after start of simulation (Qo=200L/s/m, Ho=2.0m,

H=0.4m, K=1.0nvs, (1-c)=0.5)

Velocity field, in the case of existence of drainage in the
bridge, is showed in Figure 12. In this case flow through the
bridge is dominantly oriented to the drain.

Figure 13 shows temporal change of water level along the
channel for the drainage case, with sudden decrease of
downstream water level from 2.2 m to 1.8 m. It can be seen
that sudden changes in water levels produced no problems in
the treatment of boundaries between fluid and porous
regions.
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Fig. 13: Calculated temporal free surface elevations
(Qo=200L/s/m, Ho=1.8m, H=0.4m, H;;=2.2m,
K=1.0m/s,. Drain bottom level = 1.6m)

6. Conclusions

A numerical model has been developed for simulation of
flows in complex domains which include fluid and porous
regions with free surface boundaries. Assuming continuity of
velocities and stresses at interfaces of different regions,
single set of governing equations is used. To include viscous
drag in the porous region, momentum equation has been
extended by Darcy term. Although the model is fully 3D
functional, in present study is applied only on 2D flow
problems.

Model is successfully validated for flow in porous media
by comparison with numerical solution of Laplace equation
for the problem of seepage through vertical dam. Small
effect of convective term in momentum equation is observed.

Application is also demonstrated on the problem of
pressure redistribution process over deep tunnel excavation
in a low conductivity porous media. Analytical solution of
unsteady pressure distribution along symmetry line above
the tunnel is derived under assumption of linear vertical
velocity distribution. Analytical solution confirmed temporal
behavior of this process. However, some disagreement in
pressure heights values is observed, which can be explained
by poor assumption of velocity distribution. Comparison

with finite element model results showed excellent
agreement.

Model is also applied on the flow problem in complex
flow domain consisting of fluid and porous regions. It was
observed that for small openings, flow is highly dependent
on porous conductivity, while for openings of 50% of
downstream boundary water level, under flow exceeds 95%.
To verify the presented simulation results, further

experimental research will be conducted.
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