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Free vibration problem of rectangular plates with multiple point supports is analyzed
by a discrete method. The concentrated loads with Dirac’s delta functions are used to
simulate the point supports which limit the displacements of the plate but don’t offer
constraint on the slopes. The fundamental differential equations are established for the
bending problem of the plate with point supports. The solution of these equations is
obtained by transforming these differential equations into integral equations and using
numerical integration. Green function which is the solution of deflection is used to ob-
tain the characteristic equation of the free vibration. The effects of the number and
positions of point supports, the boundary condition and the aspect ratio on the frequen-
cies are considered. By comparing the numerical results obtained by the present method
with those previously published, the efficiency and accuracy of the present method are

investigated.
Key Words :

1. Introduction

The free vibration analysis of the rectangular plates
with point supports has received considerable atten-
tion during the past decades. According to the po-
sitions of the point supports, two kinds of the plates
with point supports have been studied. One is the
plate with point supports along the edges. Another is
the plate with interior point supports. Bapat, Venka-
tramani and Suryanarayan [1,2] investigated the free
vibration of rectangular plates with symmetrical and
asymmetrical point supports along the edges, respec-
tively. The flexibility function approach and the im-
pulse function approach were used to simulate the
point sgpports. By using these two approaches, some
results were obtained for plates having two opposite
edges simply supported and two other edges free with
simply or clamped mid-point supports. A comparison
of these two methods was also given and the advan-
tage of the flexibility function method was shown. By

discrete method, multiple point supports, Green function, vibration

using the same methods, they [3] also studied the free
vibration of rectangular plates with interior point sup-
ports. The plates with two opposite edges simply sup-
ported and classical boundary conditions on the other
edges were studied. One or more interior point sup-
ports existed along a line perpendicular to the simply
supported edges. By dividing the plate into two sub-
plates and satisfying the continuity conditions along
the partition line and the compatibility at the point
support, a set of equations were obtained. From the
set of equations and the equivalent equations, the co-
efficient matrix was obtained and its determinant was
set to be zero to obtain the characteristic equation.
The effects of the boundary condition, aspect ratio
and the positions of the point supports were consid-
ered. The free vibration problems of the rectangular
plates with point supports were also studied in refer-
Recently, Zhao, Wei and Xiang [8] used
discrete singular convolution method to solve plate

ences [4-T7].
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Fig. 1 A rectangular plate with point supports.

vibration with irregular internal supports. Some re-
sults were obtained for plates with a pattern of dou-
ble rhombuses or randomly distributed points support
points. The discrete singular convolution method is
very powerful method to handling the problems afore-
mentioned.

In this paper, a discrete method [10-13] is ex-
tended for analyzing the free vibration of rectangular
plates with multiple point supports. The fundamen-
tal differential equations of a plate with point sup-
ports involving Dirac’s delta functions are established
and satisfied exactly throughout the whole plate. By
transforming these equations into integral equations
and using numerical integration, the solutions are ob-
tained at the discrete points. The Green function,
which is the solution for deflection, is used to ob-
tain the characteristic equation of the free vibration.
The present method is a general method. It can be
used to analyze the free vibration of rectangular plates
with multiple point supports along the edges or inte-
rior point supports, various aspect ratio and general
boundary conditions. The purpose of the paper is
(1) to investigate the efficiency and accuracy of the
present method for the rectangular plates with point
supports by comparing the present results with those
reported early, and (2) to investigate the effect of the
number and positions of point supports on the fre-
quency parameter of rectangular plates.

2. Fundamental Differential Equations

Consider a rectangular plate with multiple point
supports as shown in Figure 1. The length, width,
thickness and density of the plate is expressed as a,
b, h and p, respectively. An zyz coordinate system is
used in the present study with its z—y plane contained
in middle plane of the rectangular plate, the z—axis
perpendicular to the middle plane of the plate and the

origin at one of the corners of the plate.

In this paper, the concentrated loads with Dirac’s
delta functions are used to simulate the point supports
which limit the displacements of the plate but don’t
offer constraint on the slopes.

The fundamental differential equations of the plate
having a concentrated load P at a point (zg,yr) and
the point support P.q at each discrete point (zc,yq)
are as follows:
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where Qg, @, are the shearing forces, My, the twist-
ing moment, M,, M, the bending moments, 0,6,
the rotations of the z- and y-axes, w the deflection,
D = ER3/(12(1—v?)) the bending rigidity, F, G mod-
ulus, shear modulus of elasticity, respectively, v Pois-
son’s ratio, k = 5/6 is the shear correction factor,
5(z —z4), 6(z — z,), 6(x —xc), 0(x —xq) Dirac’s delta
functions.

By introducing the non-dimensional expressions,

2
[X1,%0] = gy =y Q0 Qe s
(X5, X4, X5] = E‘Oﬁa—_‘lﬁj [ Mgy, My, M, ],

{X6~,X77X8} = [9y79$7w/a]7

the equation (1) is rewritten as the following non-
dimensional forms:
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where u = bja; I = wp(l — v*)(ho/h)% J =
201 + v)(ho/B)%; H = (1 + v)/5)(ho/a)*(ho/h);
P = Pa/(Do(1 — v*)); Pea = Pega/(Do(1 — v?));
Dy = ER3/(12(1 —v?)) is the standard bending rigid-
ity; hg the standard thickness of the plate; 6(n — nq),
3¢ — &), 0(n —ne) and §(¢ — (g) Dirac’s delta func-
tions.

For the plates with uniform thickness, D = Dy and
h = hy.

The equation (2) can also be expressed as the fol-
lowing simple form.

oC an
+Po(n —1g)d(¢ — ¢r)01e

+ D" Pead(n — ne)d(C = Ca)du =0,

c=0d=0

8
0X; 0X
Z{Flts_"’— + FQtS—s + F3tsXs}

s=1

t=1~8), (3

where t = 1 ~ &; d;¢ is Kronecker’s delta; Fii1 =
Fipy = Fizz = Fis6 = Fier = Fies = 1; Fls = v
Far1o = Faoz = Fags = Fayr = Foge = p; Fas7 = pv;
Forg = 15 Fao1 = Fizg = —p5 Fags = Fasy = — 1[5
F3e3 = —J; F372 = —H; F3y7 = 15 F3s1 = —pH;
Fagg = ;5 otherFis = 0.

3. Discrete Green Function

By dividing a square plate vertically into m equal-
length parts and horizontally into n equal-length parts
as shown in Figure 2, the plate can be considered as
a group of discrete points which are the intersections
of the (m+1)-vertical and (n-+1)-horizontal dividing
lines. To describe the present method conveniently,
the rectangular area, 0 < 7 < n;, 0 < { < (j, corre-
sponding to the arbitrary intersection (,7) as shown
in Figure 2 is denoted as the area [i, 7], the intersec-
tion (i, ) denoted by (O is called the main point of the
area [1, j], the intersections denoted by o are called the
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Fig. 2 Discrete points on a rectangular plate.

inner dependent points of the area, and the intersec-
tions denoted by e are called the boundary dependent
points of the area.

By integrating the equation (3) over the area i, j],
the following integral equation is obtained:

8 %
Z{Fns /77 (Xa(1,¢) — Xs(n,0))dn

s=1 0
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c=0 d=0

where u(n—1g), u(¢ — ), w{n—nc) and u(¢— (q) are
the unit step functions.
Next,

method, the simultaneous equation for the unknown

by applying the numerical integration
quantities Xg;; = Xs(m;, ;) at the main point (7, 7)
of the area [7, j] is obtained as follows:

i
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where Bix = ai/m, Bj = aj/n, o = 1 — (dox +
5i)/2 o =1— (Bor +8j0)/2 t=1~8,i=1~nm,
Ta)s Ujr = u((; — Cr)s Uie =
u(n; — 1e); tja = u(( — Ca)-
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By retaining the quantities at main point (7, 5) on
the left hand side of the equation and putting other
quantities on the right hand side, and using the matrix
transition, the solution X,;; of the above equation (5)
is obtained as follows:

8 i
Kpij = Z {Z Bik Apt | Xeko — Xej (1 — din)]

t=1 k=0

J
+ Eﬂszpz (Xior — Xea(1 = 651)]
=0

i 7
+ Z Z Bik Bj1Cperr Xt (1 — 5ik5jl>}
k=0 1=0
—Ap1 Psqujr

- Z Z Poguictjadie, (6)

¢=0 d=0
where p = 1 ~ 8, Ap, By and Cpyr are given‘ in
Appendix A.

In the equation (6), the quantity X,;; is not only re-
lated to the quantities Xk and Xyo; at the boundary
dependent points but also the quantities Xig;, Xeu
and X;x; at the inner dependent points. The number
of unknown quantities is rather large. But with the
spread of the area (¢, j] according to the pointed or-
der, the quantities X¢gj, X¢ and X at the inner
dependent points can be eliminated and the equation

(6) is rewritten as follows.

6 i j
Xpij = Z{Z apijraXego+ ) bpijngsOg}
g=0

d=1\f=0

m n
i P4 Y Tpijealea, (7)
c=0 d=0
where apijfd, bpijgd, Gpij and Gp;jeq are given in Ap-
pendix B.

The equation (7) gives the discrete solution of the
fundamental differential equation (3) of the bending
problem of a plate having a concentrated load and
point supports, and the discrete Green function is cho-
sen as Xg;;a%/[PDo(1—1?)], that is w(zo, yo, z,y)/P.

The integral constants X,f, and X4 involved in
the discrete solution (7) are all quantities at the dis-
crete points along the edges ( =0 (y =0) and n =0
(z = 0) of the rectangular plate. There are six in-
tegral constants at each discrete point. Half of them
are self-evident according to the boundary conditions
along the edges ( = 0 and n = 0 and half of them
are needed to determine by the boundary conditions
along the edges ( =1 and n = 1.

Along theedge (=0or (=1, My, =0, =w=20
for simply supported boundary condition, 6, = 8, =

w = 0 for clamped boundary condition, and @, =
M, = M, = 0 for free boundary condition. Along
the edge n =0o0rn=1, M, = 8, = w = 0 for simply
supported boundary condition, 6, = 8, = w = 0 for
clamped boundary condition, @z = Mzy = M, =0

for free boundary condition.

4. Characteristic equation

By applying the Green function w(zo,yo,,y)/P
which is the displacement at a point (xo, yo) of a plate
with a concentrated load P at a point (z,y) and omit-
ting the effect of the rotary inertia, the displacement
amplitude @ (zp, o) at a point (zo,%o) of the square
plate during the free vibration is given as follows:

b pa
’ﬁ)(movyo)*/o/o Phwzw(%?J)[w(ﬂ«”o,yowyy)/ﬁ]dzdy,
(8)

where p is the mass density of the plate material and
w is the circular frequency.
By using the numerical integration method and the

following non-dimensional expressions,

h 2.4
N = i A=Y,
3 h’ bl L i
H(n.¢) = 222 (20” —(zoy>’W("=<) - 2ew),
’ )y Do(1— 2
G, Go,n, () = U002 Dol V)

where pg is the standard mass density , the charac-
teristic equation is obtained from the equation (8) as

Soo  So1  So2
Sio Si1 Si2
S20 S21 S22

SOm
S1m

Sml Sm2

SmO Smm
where
BroHjoGi050 — Adyj BrnHjnGiojn
BroHjoG:i150 BnnHjnGiljn
S.. — ,6' ) BnoH;0Gi2j50 BnnHjnGi2jn
1y — ~Mmg
BroHj0Ginj0 . ﬁnnHjnGinjn = Adyy

The size of square matrix in the equation (9) is
(m+1)x (n+1).

5. Numerical results

To investigate the validity of the proposed method,
the frequency parameters are given for the rectangu-
lar plates with one or multiple point supports shown
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Table 1 Convergence of natural frequency parame-
ter A for CCCC square plate with a central
point support

Mode sequence number

mXn 1st 2nd 3rd 4th 5th

6 x 6 10.017 10.017 12.241 12.812 16.283
8 x 8 9412 9.412  10.902 11.479 13.815
10 x 10 | 9.166  9.165 10.218 11.164 12.963
12 x 12 | 9.039 9.039 9.875 11.000 12.555
14 x 14 | 8.966 8.966 9.675  10.905 12.325
16 x 16 | 8.919 8919 9.545 10.844 12.182
18 x 18 | 8.888  8.888 9.455 10.803 12.086
Ex.*1416| 8.766 8.766 = 9.121 10.645 11.714
Ex.1618 | 8.768 8.768 9.118  10.647 11.727
Ref. [7] | 8771 8771 9.175 10.651 11.745

Ex.:The values obtained by using Richardson’s
extrapolation formula.

in Figure 1. The ratio of the standard thickness and
length ho/a = 0.001 is used. The Poisson’s ratio
v = 0.3 is adopted without any special indication.
In all tables and figures, the symbols F, S, and C de-
note free, simply supported and clamped edges. Four
symbols such as CFFF delegate the boundary condi-
tions of the plate, the first indicating the conditions
at x = 0, the second at y = 0, the third at z = «a
and the fourth at y = b. All the convergent values of
the frequency parameters are obtained for the plates
by using Richardson’s extrapolation formula for two
cases of divisional numbers m {=n). Some of the re-

sults are compared with those reported previously.

5.1 Rectangular plates with a central point
support

In order to examine the convergency, numerical cal-
culation is carried out by varying the number of divi-
sions m and n for a CCCC square plate with a central
point support. The lowest 5 natural frequency pa-
rameters of the plate are shown in Table 1. It shows
a good convergency of the numerical results by the
present method. After studying these results, it is
decided to obtain the convergent results of frequency
parameter by using Richardson’s extrapolation for-
mula for two cases of divisional numbers m (=n) of
14 and 16. By the same method, the suitable number
of divisions m(= n) can be determined for the other
plates.

Tables 2~ 4 show the numerical values for the
lowest 4 natural frequency parameter A of rectan-

Table 2 Natural frequency parameter A for SSSS
rectangular plates with a central point sup-

port
Mode sequence number
1 mxn 1st 2nd 3rd 4th
05|14 x 14 | 9.195  10.132 13.479 15.242
16 x 16 | 9.172  10.055 13.427 15.027
Ex. 9.096 9.802 13.259 14.325
1.0 | 14 x 14 | 7.297 7.297 7.828  9.254
16 x 16 | 7.272  7.272 7.743 9.216
Ex. 7.191  7.191  7.466  9.095
Ref. [7] | 7.192 7.192 7.466  9.098
20|14 x 14 | 4598 5.066 6.740 7.621
16 x 16 | 4.586  5.027 6.714 7.514
Ex. 4.548 4901 6.629 7.162

Table 3 Natural frequency parameter A\ for CCCC
rectangular plates with a central point sup-

port
Mode sequence number
nl mxmn 1st 2nd 3rd 4th
0.5} 14 x 14 | 11.712 12.636 16.804 17.458
16 x 16 | 11.674 12.534 16.702 17.160
Ex. 11.549 12.200 16.368 16.185
1.0 | 14 x 14 | 8966 8966 9.675  10.905
16 x 16 | 8.919 8.919 9.545 10.844
Ex. 8.766 8766  9.121  10.645
Ref. [7] | 8771 8771 9175 10.651
2.0]14x 14 | 5.856 6.318 8.402 8.729
16 x 16 | 5.837 6.267 8.351  8.580
Ex. 5774 6.100 8.184  8.093

Table 4 Natural frequency parameter A for CFFF
rectangular plates with a central point sup-

port
Mode sequence number
Ll mxn 1st 2nd 3rd 4th
05|14 x 14| 3215 3946 7.163 7.896
16 x 16 | 3.206 3.944 7.149 7.847
Ex. 3.176  3.938 7.105  7.689
1.0 | 14 x 14 | 2.992  3.028 4.986  5.746
16 x 16 | 2.990 3.024 4.984 5.735
Ex. 2.983  3.009 4.980 5.700
2.0 14 x 14 | 2.372 2454 3.790 4.570
16 x 16 | 2.371 2452  3.779  4.547
Ex. 2.368 2447  3.744  4.469
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Fig. 3 Nodal patterns for SSSS rectangular plates
with a central point support.
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Fig. 4 Nodal patterns for CFFF rectangular plates
with a central point support.

Three
kinds of boundary conditions and the aspect ratios
#=0.5,1.0,2.0 are considered. The results obtained
by Kim and Dickinson [7] are also shown in the ta-

gular plates with a central point support.

ble. It can be noted the present results agree well with
those of Kim and Dickinson and the frequency param-
eters increase with the increase of the constraint of
the boundary conditions. The nodal lines of 4 modes
of free vibration of SSSS plates with u = 0.5,1.0,2.0
are shown in Figure 3. It can be observed for the
modes with nodal lines passing through the center of
the plate, the frequency parameters and mode shapes
are the same for the plates with or without a central
point support. The mode with no nodal line is the
third one for the square plate, but the second mode
for plates with u = 0.5,2.0. The same phenomenon
can also be found in the modes of CCCC plates which
are similar to the modes of SSSS plates except that

Table 5 Natural frequency parameter A for CFFF
square plates with multiple point supports

Mode sequence number
(v =10.333)
Fig.5 | Refs. 1st 2nd 3rd 4th
(I) | Present | 2.570 4.154 5.205 6.451
Ref.[4] | 2.525 4.099 5.162 6.364
Ref[7] | 2.538 4.127 5.166 6.420
(I) | Present | 3.938 4.343 5.294 6.831
Ref.4] | 3.891 4.263 5.322 6.749
Ref.[7] | 3.896 4.270 5.322 6.763
(II) | Present | 4.811 6.115 6.249 7.260
Ref.[7] | 4.753 6.023 6.147 7.189
(IV) | Present | 3.225 4.118 5.184 7.054
Ref.[5] | 3.173 4.086 5.228 6.999
Mode sequence number
(v =10.3)
1st 2nd 3rd 4th
(I) | Present | 2.586 4.173 5.166 6.467
Ref.[7] | 2.562 4.172 5.1568 6.473
(I) | Present | 3.958 4.349 5.373 6.837
Ref.[7] | 3.912 4310 5.338 6.807
() | Present | 4.807 6.062 6.272 7.238
Ref.[7] | 4.744 6.081 6.204 7.201
(IV)) | Present | 3.133 4.221 5.280 6.831
(V) | Present | 3.1564 4.288 6.141 8.002
(VI)} | Present | 6.048 6.358 6.698 8.267
______ 1' r————™7 r——*"—"1
| 1 *.
J I
o o wm
IR A R B
il
HE HE ;
o V) v1)

Fig. 5 CFFF square plates with multiple point sup-
ports.

there is a change of mode order in the 3rd and 4th
modes for p = 0.5,2.0. The nodal lines of 4 modes
of free vibration of CFFF plates with ¢ = 0.5,1.0,2.0

are shown in Figure 4.

5.2 Rectangular plates with multiple point
supports

Table 5 presents the numerical values of CFFF

plates (shown in Figure 5) for the lowest 4 natu-
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Fig. 6 SSSS rectangular plates with multiple point
supports.

ral frequency parameter. In Figure 5, CFFF square
plates have multiple point supports located (I) at
points (a/2,0) and (a/2,b), or (I) at points (a,b/4)
and (a,3b/4), or (H) at points (a/2,0), (a/2,b),
(a,b/4) and (a,3b/4), or (IV) at points (a/2,b/4)
and (a/2,3b/4), or (V) at points (a/2,0), (a/2,b),
(a/2,b/4) and (a/2,3b/4), or (VI) at points (a/2,0),
(a/2,b), (a/2,b/4), (a/2,3b/4), (a,b/4) and (a, 3b/4).
The first three cases in Figure 5 show the plates with
the point supports along the edges. Figure 5 (IV)
shows the plate with interior point supports.
ure 5 (V) and (V) are the combination of Figure 5
(I, (IV) and Figure 5 (Il), (IV), respectively. In or-
der to compare the present results with those obtained
by Saliba [4,5] and Kim and Dickinson [7], two kinds
of Poisson’s ratio v = 0.333 and v = 0.3 are used. It

Fig-

can be noted the present results are in good agree-
ment with the comparison results and the frequency
parameters increase with the increase of the number
of point supports. By comparing the results of the
plates shown in Figure 5 (I}, (I) and (IV), it can be
seen the best positions of the two point support are
at points (a,b/4) and (a, 36/4).

Figure 6 shows the SSSS rectangular plates with
multiple point supports located at (I) points {c, b/6)
and (c,b/3), or (I) points (c,b/6), (¢,b/3) and
(¢,b/2), or () points (c,b/6), (c,b/3), (c,b/2),
{(c,2b/3) and (c,5b/6). The numerical values for the
lowest 4 natural frequency parameter A of these plates
are presented in Table 6. It can be seen the frequency
parameters increase with the increase of the number
of point supports. The results of an SSSS plate with
a mid-line support at z = a/2 obtained by Xiang and
Wei are also presented in Table 6 for ho/a = 0.01.
It can be seen for the specific ratio ¢ and the case
of point support, the fundamental frequency param-
eter increase with the increase of the value of ¢, and
all the frequency parameters increase when the num-
ber of point supports increases. It can also be seen
with the increase of the number of point supports, the
frequency parameters of square plates with multiple
point supports are closer to those obtained by Xiang

Table 6 Natural frequency parameter A for SSSS
rectangular plates with mutiple point sup-

ports
Mode sequence number

1 ¢ | Fig.6 1st 2nd 3rd 4th
1.0 a/6 | (I) 5131 7.240 8.089 9.633
() 5358 7.450 8.509 9.671
() 5.446 7.669 8.845 10.362
a/3 | (I) 5.692 7.274 8567 10.157
(I 6.123 7.784 9.014 10.157
() 6.240 8.262 10.157 10.891
a/2| (I 6.124 7.191  9.029 9.095
(I 7191 7.379 9.094 9.095
() 7.191 8516 9.095 9.944
Ref. [9]} 7.189 8517 9.091 9.946
1.5) a/6 | (I) 4.368 5.748 7.205 7.342
(I 4.735 5.765 7.314 7.852
() 4.966 6.072 7.650 8.532
a/3 | (I) 4.643 6.231 7.325 7.532
(I) 5319 6.233 7.459 8.350
() 5810 6.802 8.242 9.870
a/2 | (I) 4758 6.779 7.282 7.729
(I) 5.644 6.779 7.729 8.356
() 6.779 7.729 8.226 8.854
2.0| a/6| (I) 3.971 5.116 6.013 6.862
(I 4.347 5134 6.206 7.207
() 4.788 5426 6.406 7.589
a/3} (I) 4.096 5.653 6.296 6.912
(I 4634 5.830 6.684 7.336
() 5.652 6.224 7.101 8.169
a/2 | (I) 4.140 5934 6.629 7.190
(I 4.743 6.629 7.190 7.257
() 6.629 7.190 8.035 8.093

and Wei [9] for an SSSS plate with a line support.
Figure 7 presents the changes of the first three fre-
quency parameters with the aspect ratio g for SSSS
rectangular plates shown in Figure 6 (H). It can
be noted with the increase of the aspect ratio g, all
the frequency parameters decrease. The trend of the
change in the plates with point supports are the same

as those in the plates without point support.

6. Conclusions

A discrete method is extended for analyzing the free
vibration problem of rectangular plates with one or
multiple point supports. The concentrated loads with
Dirac’s delta functions are used to simulate the point
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fist frequency parameter; (B) the second fre-

plates versus the aspect ratio u.

quency parameter; (C) the third frequency
parameter.

supports which limit the displacements of the plate
but don’t offer constraint on the slopes. The funda-
mental differential equations of a plate with point sup-
ports involving Dirac’delta functions are established
and satisfied exactly throughout the whole plate. The
characteristic equation of the free vibration is ob-
tained by uSing the Green function. The effects of
the number and position of point supports on the fre-
quencies are considered. The results by the present
method have been compared with those previously re-
ported. It shows that the present results have a good
convergence and satisfactory accuracy.
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Appendix A

Apl = Tpls Ap2 = OvAp3 = Vp2» Ap4 = ¥p3, ApS =0,
Aps = Ypa + V¥ps, Apr = Vo6 Aps = Yp7, Bp1 = 0,
Bpa = pyp1, Bps = p¥p3, Bpa = 0, Bps = pyp2, Bps =
1Yp65 Bpr = 1(vyp1+7p5): Bps = Vpss Cpirt = p(vp3+
krivpr)s Cpakt = W¥p2 + kkivps, Cpakt = J¥p6, Cpart =
Lavpas Cpskt = Irivps, Cpokt = —pp7, Cprkt = —p8,
Cpsit = 0, [ypr] = Fpl ™! A1 = Biiy 12 = 1By,
Fao = —1Bij, Va3 = Biis Vo5 = MBjj» Va1 = —uBij,
Va3 = WBijs Yaa = Biis Yaa = —LijBijy Yae = B
Var = 18555 Vo5 = —LijBigs 56 = VBis» Va7 = 5
Yoz = —Ji3Bsi, Yes = MBij, Yor = Biiy Vo1 = — k3545,
Yre = UBij, V78 = Biiy Yso = —HijBijs V7 = Bij)
Yss = Bjj, other ¥, =0, Bi; = Bii )5

Appendix B

Q150i1 = A3i0i2 = Q4:0:3 = 1, Aes0i4 = A7i0i5 = Agi0ie = 1

baoj51 = b3ojj2 = bsos53 = 1, be0jj4 = brojis = bsojie = 1,

8 i
Apijfd = Z{zﬁikApt [atkofa — Gikjra(l — Oks)]

t=1 “k=0

J
+ Zﬁlept[atozfd — atirfa(l — 05)]

1=0
i
+ Z Z Bix Bt Cptriatrigall — 5ki5lj)}
k=0 1=0

8 . i
bpijfd = Z{Z Bik Apt[btkogd — bekjga(l — Oki)]

t=1 “ k=0

J
+ Z/@lept [brotgd — britga(1 — d15)]
1=0

i 7
+ Z Z Bir B51Cptibrriga(l — 5ki51j)}

k=0 [=0

8 i
Qpij = Z{Z Bik Apt[Trro — Tury (1 = 0xi)]

t=1 “k=0

J
+ Z BjtBpt (@01 — Tear(1 — d15)]
1=0

J

+ 3" BirBuCrrnt — Aprtiguse

k=0 [=0

8 i
Gfpijed = Z{Z Bix ApelTseroca — Tgerjea(l — Oki)]

e=1 “k=0

V)
+ Z Bi1Bpel@feotca — Ugeiteall — 615)]
1=0

i J
+ Z Z Bk B1CpertT fektea(l — 5ki5lj)}

k=0 1=0

— VpfUikUjrUski
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