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A recently developed semi-analytical method, called scaled boundary finite element method, is
applied to evaluate the coefficients of stress field at a crack-tip for two-dimensional linear-elastic
cracked structures. The method has ability to analytically compute stress and displacement field
of singularities region at the crack-tip more accurately without any a priori assumptions. A
simple and independent formulations for evaluating the coefficients, not only of the inverse
square root singular term but also of the constant and higher order non-singular terms, of the
stress fields near crack-tip is presented by comparing the stress along the radial points ahead of
the crack-tip with that of standard Williams® eigenfunction solution for the crack-tip. The
accuracy and efficiency of the formulations are examined by numerical examples for a range of
crack sizes. The results are in agreement with available solutions in literatures
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1. Introduction

Failure of a structure is often a result of a complex process of
crack initiation, growth and fracture pattern formation. An
understanding and accurate modeling of the fractural process is
required for failure prediction. The stress and displacement fields
near a crack-tip govem the fracture process that takes place at the
crack-tip. Therefore, the study of these fields is vital for the
fracture analysis. It has been difficult to model the region near a
crack-tip by traditional methods due to existence of singularity
nature. Generally a single parameter called stress intensity factors
(SIFs) — coefficients of the singular term of the stress field — has
been used to characterize fracture processes. However, recent
studies show that constant and higher order non-singular terms of
stress field are of great relevance in characterizing the fracture
behaviors” ~® and hence the accurate and efficient numerical
evaluation of these coefficients for cracked geometries have been
receiving much attention over the last few years ¥

In order to calculate these parameters of the stress field,
researchers have proposed several analytical and numerical
techniques. Since the analytical solutions for the fractural
parameters are available only for a few idealized cases, numerical

methods need to be employed for practical problems. Finite
element method (FEM) and boundary element method (BEM)
are the most popular numerical methods when rigorous solutions
to realistic crack problems are sought. Unfortunately, these
methods have some limitations and are inefficient to deal with
crack problems. FEM’s shortcoming is that its solution
converges very slowly if conventional elements, that do not
include stress singularities properly, are used. Tong and Pian R
have shown that, in general, the convergence rate of FEM
solution is dominated by the nature of the singularities. They
have also shown that regular high accuracy element (i.e using
high order polynomials as interpolation functions) cannot
improve the rate of convergence because the error from the
elements immediately adjacent to the point of singularity is of the
same order as that from the remainder of the elements. Therefore,
the use of finer elements cannot improve the situation either. In
order to improve the rate of convergence of the solution,
considerable research has been directed towards developments of
sophisticated mesh generation procedures or adaptive techniques
such as hybrid crack element (HCE) method ¥, extended finite
element method (XFEM) ?, S-version FEM (s-FEM) '” and
singular p-version FEM'. On the other hand, BEM has certain
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advantages over the domain-type method eg. FEM and
mesh-less method '; it reduces the problem size and the
problem setup since it only needs boundary discretization of the
studied problems. But the numerical implementation of BEM
requires fiundamental solution and advanced mathematical
knowledge to deal with various singular integrals. Besides, the
standard FEM and BEM are based on assumed piecewise
smooth functions, which do not resemble the exact solution near
the singular point ).

A recently developed computational method, the scaled
boundary finite element method (SBFEM)'¥ is emerging as an
alternative approach in order to overcome the deficiencies of
FEM and BEM. 1t tries to combine the advantages of both FEM
and BEM and avoids some of their drawbacks. As will be
discussed later, SBFEM has a unique capacity to accurately
compute stress and displacement field of singularities region at
the crack-tip without any a priori assumptions; and it is not
necessary to discretize the straight crack faces and faces ahead of
the crack-tip when the so called ‘scaling center’ lies on the
crack-tip.

Since SBFEM is a new method, the applications of the
method are still unexplored in many fields, especially in the area
of fracture mechanics. In this regards, Song & Wolf 19 and
Deeks ' have previously applied SBFEM to determine SIF in
two-dimensional problems. Recently Song'” has applied
SBFEM to determine dynamic SIFs by using super elements.
This paper extends the application of SBFEM for computing the
elastic T-stress and higher order non-singular terms in
two-dimensional fracture problems. In this paper a simple
technique for these coefficients is presented by comparing the
stress along the radial points ahead of the crack-tip with that of
standard Williams” eigenfunction expansion of the linear elastic
stress field at the crack-tip. The technique can be applied directly
as well as independently to evaluate coefficients of the stress
fields and has more advantages than other methods because of its
simplicity in expression and less computational efforts in
implementation.

2. Stress field near a crack-tip

The Williams’ eigenfinction expansion' for crack-tip stress
fields in any linear elastic body is given by a series of the form

0, (r.0)= Alr_lzf{/(”(ﬁ)+A2r“fU(2) 6)+ iAnr 1Zf,j.”(e) )

where (r, 6) are the local polar coordinates with the origin at the
crack-tip, as shown in Fig, 1, the coefficients 4;, 4, embodies
SIFs and T-stress whose values vary with applied load and
geometry of the cracked body, £ 6)are the functions of & and 4,
is the higher order coefficient term. The first term consisting of
the inverse square root singular #* component is referred to as
the singular stress and the remaining terms, regular in the radial

Crack -ti r
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Fig. 1 Stress fields near crack-tip

co-ordinate (r), are referred to as the non-singular stress.
According to Ref. 2, the asymptotic stress field for Mode I
can be written as

. (9). (38)
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where K; is the SIF for Mode 1 and T is the elastic T-stress. The
Eq. (2) indicates that T-stress appears only in the o, component.

3. Scaled boundary finite element method

The scaled boundary finite element method is a new
semi-analytical fundamental solution-less BEM based on FEM™.
It is semi-analytical in the sense that it transforms the partial
differential equation of a variety of linear problems into ordinary
differential equations. These ordinary differential equations are
solved analytically in radial direction and the coefficients of these
equations are determined by the finite element approximation in
the circumferential directions. The virtual work derivations of the
stress and displacement fields in the method are presented in
detail in Ref. ™ but are summarized here for convenience as
follows

Governing equations of elastostatics

For two-dimensional elastostatics problems, the strains {e(x,

)} related to the displacement {zx, )} by

£, o/ox 0 y
{e(x. )} =1, ;=1 0 O/Oy {u} 3)
Vi ofoy ofox)
= [L]{u(x, y)}
where [L] is linear differential operator.
And the stresses {o(x,y} }=[0:, G, 'rAy]T are given by
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{o(x, )} =[De(x, )} =[DI[LHu(x, »)} @
with the elasticity matrix [D]
In no body load case, the intemal equilibrium in elastostatics
leads to the differential equation
[L] {o(x. )} =0 )

which must be satistied at every point within the domain.
Scaled boundary coordinate system

In this method, a coordinate system consists of a radial
direction (£) and a local circumferential direction (77) is
introduced (Fig. 2). The radial coordinate is defined to be zero at
‘scaling center’, and to have unit value on the boundary. The
circumferential coordinate measures the distance anticlockwise
around the boundary. The coordinate system is termed the scaled
boundary coordinate system, and related to Cartesian coordinate
by

x = xg + ¢ x(77) (62)
y=yo+< () (6b)

where x{(77) and (7)) are the functions describing the variation of
the boundary in x and y directions as functions of 7.

Applying standard procedures to transform the geometry
from Cartesian co-ordinates to the scaled boundary co-ordinates
defined in above Eq. (6), the linear operator in Eq. (3) can be
written in the co-ordinate & 7 as

[L]= [b‘(n)]a% +§[b%n>}% )

where [6'()] and [6°(7)] depend only on the geometry of the
boundary.

Displacement function

The displacements at any point in the domain defined by
scaled boundary coordinates (& 1) can be expressed in the form:

— axis

Scaling-center

Side faces

Fig. 2: Scaled boundary coordinate system

W)= N @ =Ny ©®

which represents a discretization of the boundary only.
Substituting Eqs. (7) and (8) in Eq. (5) lead to the approximate
stresses in the co-ordinate £, 77as

{o(&,m)} = (DB (Mu(é)} £

1 5 )
+E[D][B (mMHu(é)}

where
[B'(m]=[b" MIINGD]
[B2]=16" (IIN(]

These results can be used in the virtual work equation to solve
for the radial displacements.

(10)

Scaled boundary finite element equation

The virtual work statement is applied to introduce the
equilibrium. When the domain is subjected to a set of boundary
tractions {¢}, the virtual work statement is

[{sey {oyav = [{ou} {t}ds (11)
vV S

Performing integrals over the domain and then a series of
mathematical manipulations, the virtual work statement is
satisfied for all virtual displacements {3:4£)} when

("X 04D} HIETHET ~([ETNHO} AETuO}=0 (12)

where the coefficient matrices

1
[E°]= [[B""[DWB"|J|dn (132)
-1
(E']= hBZ]T[D][BIJJJ}dn (13b)
-1
1
(E*]= [(B*1"[DN[B*}J|dn (13¢)
-1

are independent of & The integrals of these [£}, [E"], and [E]]
are evaluated using Gaussian quadrature. Eq. (12) is a standard
ordinary differential equation for the displacements (&) with the
dimensionless radial coordinate £as the independent variable.

Solution procedures

By inspection, solution to the set of Euler-Cauchy differential
equation represented by Eq. (12) must be of the form

w0, ()} = Zed 8 (142

where the exponents A, and vectors {¢;} are interpreted as a
radial scaling factor and a displacement modes shapes.
The displacements for each mode from Eq. (14a) can be
written as
u(&,m}y =¢"{¢) (14b)

Now substituting the Eq. (14b) and its derivations into Eq.
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(12) and then simplifying yields the quadratic eigenproblem.
[(PIE1-AE'T - [E'N-[E* 114} = {0} (15)

This eigenproblem can be solved using standard techniques,
yielding 2# displacement modes, where # is the number of nodes
used in boundary discretization, and hence is also the size of the
coefficient matrices.

Bounded problems can be represented conveniently by taking
0 < £< 1. For such problems, only » modes with negative real
component of Alead to finite displacements at scaling center.
This subset of #n nodes is denoted by [®]. For any set of
boundary node displacements, u, the integration constants are

{ey=[® ] {u} (16)
The displacement fields can be obtained using

= IV e 19,3 a7
i=1

and the stress field is
o n}=[DISIes ™ FAB I+ B B3] (19

Egs. (17) and (18) are, respectively, the semi-analytical
solutions for displacement and stress fields inside the domain.

4. SBFEM formulation for fractural parameters

In the numerical SBFEM analysis, it is already mentioned that
the stress and displacement field along the radial direction
emanating from the crack-tip where the stress singularity occur
can be analytically calculated when the so called “scaling center’
is chosen at the crack-tip, as shown in the Fig. 3. In addition, only
the boundaries, but not the straight crack faces and faces passing
through the crack-tip, are discretized,

Now the stress field Eq. (18) can be expanded as

1 1 n__
HEMN=AE 2+ A+ Ay 2 4o A E D
2 -1 19
=S 42 (19
i=l
where the coefficients 4, =¢{ & (9}, & (i) is the stress

component that depend only on the circumferential coordinate
17, and are constants for a given radial direction of a given

n
! f
i n=1
Scaling center |
at crack-tip ' 7 B
! A - -
! P _LemTT
| T,
H ‘,36"’ F"(GU) ’7=_1
— o
¢=0 0<é<l1 {le

Fig. 3 SBFEM element with different coordinates

element.
The stress components & (77) are

{6}y ={6,.6,.6,,}"

(20)
=[DI[-ALB' ()] +[B* ()1}
and the power of £ is
A =§ YV =123, 1

For a given radial direction emanating from the crack-tip
and inclined at an angle @ to the global x-axis as shown in Fig.
(3), the following relationships are obtained from Eq. (6) as

r=r(&n)=¢F 22)
and tan @ = 201 23)
x(m)

where 7= H{n)=yx(7)* +}{()° are the radial distances

of the boundary nodes from scaling center, and r is a distance
measured from the crack-tip along the ray. The angle & and the
distance 7 are constants for a given radial direction of a given
element.

After substituting the Eq. (22), the Eq. (19) becomes

SEM =4 2 2 + )
1

n
=Y 4F T2 24)

Eg. (24) is similar to Williams” expansion of the stress field,
Eq. (1) at @ = 0. Thus, the stress intensity factors and T-stress and
higher order coefficient terms of stress field near crack-tip can be
computed by equating the coefficients of like powers of » terms
of Egs. (24) and (2) as follows.

Stress intensity factor for mode I is

K, =cd 2m @
T-stress is _

T =co0, (26)
and higher order coefficients

Y n=123.. Q7

These equations (Egs. (25H27)) indicate that SBFEM can be
applied directly to evaluate the coefficients of singular, constant
and higher order non-singular terms independently.

R
ay=c,A,F 2

5. Numerical examples

In this section, the proposed SBFEM formulation was applied
to perform fracture analysis, especially the analysis of stress field
near crack-tip of a crack specimen. Only single loading (Mode I)
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condition was considered and the following two fracture
specimens with different geometry were simulated.

i)  Single edge-crack tension (SECT) specimen, and

ii) Center-crack plate under tension (CCPT) specimen.

The analyses were carried out using plain strain condition

with Young’s modulus £ = 1.0 and Poisson’s ratio v= 0.3. The
applied load is & = 1 with its units consistent with that of £. Unit
thickness was assumed. The specimens were subjected to a
uniform remote tension, oy, at their ends. Only a half of SECT
specimen and quarter of CCPT specimen (highlighted portions in
schematic diagrams) were modeled by virtue of symmetry. The
discretizations employed in this study consisted of three-node
iso-parametric quadratic line elements on the boundary as shown
in Fig 4. For the SBFEM calculation, only the stress along the
radial line passing through first node (=-1) of first element, as
shown in Fig, 3, was calculated to approach the crack-tip along
its line of propagation. The scaling center was placed at the
crack-tip in SBFEM mesh and, therefore, the straight crack face
and the face ahead of the crack-tip were not discretized.

5.1 Test of convergence

To examine the accuracy of the proposed SBFEM techniques,
first the convergences of the calculation were checked
considering the first specimen, SECT. The schematic diagram of
the specimen is as shown in Fig 5 (@). Two different mesh
pattems were considered.

i)  Mesh I: uniform mesh
i} Mesh II: fine mesh near crack

In the first mesh pattern called Mesh [ in this paper, the
discretization is uniform on all the discretized boundaries and in
second mesh pattemn, Mesh 11, the discretization is finer near the
crack area compared to other areas, as shown in Fig. 5 (b) and (¢),
respectively. To check the convergence of these mesh patterns,
each mesh pattern was refined into four different meshes (coarse,
medium, fine and very fine) by doubling the number of elements
in each level of refinement. The coarse, medium, fine and very
fine meshes consist of 5, 10, 20 and 40 elements with 22, 42, 82
and 162 degree of freedoms (DOFs), respectively. The medium

2l — === ]
=
w2
E 16 |
Té —O—Mesh1
é 11 b —{+—Mesh 1l
— — Target value
0.6 L L 1
15 65 115 165
DOFs

Normalized T-stress

n=-1 n=0 n=1

° o-——-» 71
1 3

Fig. 4 Three-node line finite element
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Fig. 5 (a) Schematic diagram for SECT, (5) Mesh I uniform
mesh, and (¢) Mesh II fine mesh near crack

mesh in each mesh pattemns, with @/ = 0.4 and H/W = 1, are as
shown in Fig. 5 (b) and (c). The scaling centers, i.e., the plus sign
in the figures, are at the crack-tip. The crack faces and faces
ahead of crack-tip were not discretized. The convergence of
computed normalized SIF, KI/GO(TW)VZ, and normalized T-stress,
T(na)"/K;, of these mesh pattems for SECT with o/ = 0.4 and
HW =1, are presented in Fig. 6 (a) and (), respectively. The
target values from Ref. ™ were 2.106 for normalized SIF and
-0.27 for normalized T'stress. The figures clearly show that Mesh
1T gives better convergence results compared with Mesh 1. In

-0.2
—(O=—Mesh I
05 F {3 Mesh I
— - Target value
_06 1 L i
15 65 115 165

DOFs

Fig. 6 Convergence of (¢) normalized SIF and (b) normalized T-stress in Mesh I and Mesh II for SECT with /W =04

and W =10
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addition, the differences between the results of fine and very fine
meshes are comparatively very less (less than 1%.) than that of
other meshes. Therefore, Mesh II with very fine discretization
was considered for further analysis. However, it should be
mentioned that a formal convergence study was not carried out;
this will be part of a more detailed investigation of the subjects in
the future.

The computational time (CPU time) of the method for Mesh
1 with very fine mesh was less than 4 seconds on a Pentium [V
2.40 GHz PC. The CPU time includes times for the modeling,
stiffhess matrices computation and stress calculation; each taking
1.5%, 96% and 2.5% of total CPU time, respectively. However,
the computational time of the SBFEM in solving the numerical
examples are not compared with those of other method because
Refs? has demonstrated that the SBFEM out-performs the
FEM in situations involving stress concentrations or unbounded
domains, reducing significantly the program nmn-time for the
Same accuracy.

52 Accuracy of the proposed method

In this section, the stress along y-direction o, ahead of the
crack-tip for CCPT and the coefficients, a,(1 < n < 9), of the
asymptotic fields near the crack-tip for both SENT and CCPT
were evaluated by using Eq. (18) and the proposed SBFEM
formulations (Eqs (25) — (27)), respectively. The first analysis ie.,
computation of near tip stress was considered to demonstrate the
accuracy and efficiency of SBFEM compared with FEM, and
the second analysis was considered to verify the validity of the
proposed formulation.

(1) Stress ahead of crack-tip

A center crack plate under tension (CCPT) was considered to
analyze the stress ahead of a crack-tip. The schematic diagram of
the problem is as shown in Fig. 7 (@), where H and ¥ are plate
dimensions and a is the crack length. The geometrical parameters
used for the analysis were a =1, W= 2, and H = 4. The objective
was to predict the near tip stress o, by the present method,
SBFEM, and compare with the corresponding FEM to verify the
accuracy and efficiency of SBFEM.

The SBFEM analysis was performed with single
discretization of 42 DOFs (21 nodes), as shown in Fig. 7 (¢). The
FEM analysis was performed with three different discretizations
- coarse of 90 DOFs (45 nodes), medium of 366 DOFs (183
nodes) and fine of 1260 DOFs (630 nodes). The FEM fine mesh
is as shown in Fig. 7 (b). Fig. 8 presents the plots of computed
stress &, normalized by applied stress o, (6,/5o) as a function of
x(W-a). The computed SBFEM results of 42 DOFs were
compared with those of three different FEM results with
increasing number of DOFs from 90 to 1260. Fig. 8 shows close
agreement of all the computed results except in the region near

(©

Fig. 7 (@) Schematic diagram for CCPT, (b) fine FEM mesh
with 1260 DOFs, and (c) SBFEM mesh with 42 DOFs

Crack-tip

SBFEM (42 DOFs)

—1 - FEM (90 DOFs)
— /— FEM (366 DOFs)
— O = FEM (1260 DOFs)

oY/Go

0.0 0.2 0.4 0.6
x/(W-a)

Fig. 8 Stress along y-direction, 6,, ahead of crack-tip

crack-tip where singularity occurs. In the singularity region,
singularity of FEM results increase with increase in mesh size,
but SBFEM results, with less than 4% DOFs of fine-mesh FEM,
show more singularity than FEM results.

(2) Computation of singular and higher order terms

To compute the SIFs, T-stress and higher order terms, both
SECT and CCPT specimens were analyzed for a range of
crack-sizes. The geometrical parameters W = H = 4 and tensile
stress oy = 1 for both problems were considered for analysis. As
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Table 1 Coefficients, a, (1 <7 <9) in Eq. (27) of the asymptotic stress field near the crack-tip for SECT.

Coeflicient Power of £ Coefficients Ratio*
a; SBFEM  FExact  Emor%  SBFEM BCM?® HCE® BCM  HCF
a -0.5000  -0.5000 0.00 10593 10794 10585 098 1.00
a 29810  0.0000 0.00 01505  -0.1135 -0.1513 133 0.9
a; 0.5000  0.5000 0.00 00795 00656 0.0815 121 098
a, 10000 1.0000 0.00 0.0475 00367 00478 129 099
“as 14999  1.5000 001 0.0056 00057 00055  -098 1.02
as 19999 20000 000 0.0233 - - - -
a 25012 2.5000 0.05 00181 - - —~ -
as 30023 3.0000 0.08 0.0078 - - - -
o 35029 3.5000 0.08 00118 - - - -

* Ratio = computed SBFEM value/ reference value

explained above, the convergences of the calculation were
examined with four different mesh refinements (coarse, medium,
fine and very fine) for both problems. It generally shows that the
convergence of the first three terms is very rapid compared with
the last two terms. The computed results of the first-ninth
coefficient terms of the stress fields of very fine mesh of 40
elements with 81 nodes are presented in Tables 1 and 2 for SECT
and CCPT, respectively, with corresponding eigenvalues (power
of £ ie,—4-1).Both the Tables show that the first-fourth
computed power are in good agreement with the actual values,
but the power terms for higher order coefficients deviated from
actual values which indicated that further refinement is necessary
for higher order terms. The computed SBFEM coeficients were
compared with HCE and Boundary Collocation Method (BCM)
results from Ref, 2™ %), n the reference literatures, a 9-node
HCE together with 112 quadrilateral elements giving a total of
137 nodes are used for the analysis of CCPT specimen and
21-node HCE with p—adaptivity are used for SECT specimen
analysis. Tables 1 and 2 show that the SBFEM coefficient results
of SECT agree very well with the HCE solution compared with

BCM and that of CCPT specimen is very close to that of BCM
(less than 0.4% derivation). Karihaloo et al.” has recommended
HCE method for SECT analysis, but Xiao et al. * mentions that
the n-node polygonal HCE method predicts wrong results for
coefficients corresponding to higher order terms in Mode I and
Mode I, and recommended BCM for CCPT analysis. The
agreement of the result obtained by the SBFEM formulation was
an excellent with that of recommended method in literatures.

The tables also include computed SBFEM results of 6® to 9™
coefficients for both SECT and CCPT specimens. As per the
authors’ knowledge, none of the previous studies have addressed
the computations of these coeflicients.

6. Conclusion

The coefficients, not only singular term (SIFs) but also the
constant (T-stress) and the higher order non-singular terms of the
asymptotic fields near crack-tip of a cracked body can be directly
calculated using a recently developed semi - analytical method,
called scaled boundary finite element method. A simple and

Table 2 Coefficients, a, (1 <n<9) in Eq. (27), of the asymptotic stress field near the crack-tip for CCPT

Coefficient Power of £ Coeflicients Ratio*

a; SBFEM  Fxact FEmor%  SBFEM BCM?* HCE* BCM  HCF
a 05000  -0.5000 0.00 07674 07680  0.7665 1.00 1.00
a 1.52x10"% 00000 0.00 02774 02777 027719 100 1.00
a 0.5000  0.5000 0.00 0.1865  0.1866 0.1915 1.00 097
a 10000 1.0000 0.00 00030 00030 -00018  1.00 -1.67
as 14999  1.5000 -0.01 00278 00279 00235  1.00 1.18
as 19998 20000  -001 0.0008 - - - - -
@ 25014 2.5000 0.06 0.0057 - - - -
a 30023 3.0000 0.08 -0.0001 - - - -
as 35035  3.5000 0.10 0.0018 - - - -

*  Ratio = computed SBFEM value/ reference value
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direct formulation was derived for evaluating these coefficients of
the stress field by comparing the classical linear elastic field
solution in the vicinity of a crack-tip to that of SBFEM after
power series expansion. The validity of these formulations were
examined with two example problems for a range of crack sizes,
with good agreement obtained between the SBFEM results and
the corresponding ones in the literature. Based on the results of
the study it can be confirmed that the proposed numerical method
can be applied to crack problems more easily with relatively
coarse and simple model than other computational methods.

This paper dealt with simple two-dimensional bounded
problems with single crack under single loading (Mode )
condition. The present method can be applied into complex
geometry, multi-cracks, and mixed mode condition problems by
extending the present approach. Moreover, it can be extended
into three-dimensional, unbounded and dynamic problems. In the
three-dimensional and unbounded problems, the advantages of
reducing modeling tasks would be more pronounced than in
two-dimensional cases.
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