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The partial analysis method is developed to solve the scattering problem of Lamb waves
by a finite crack in a plate. First, the scattering coeflicients of Lamb waves due to a
semi-infinite crack are obtained by using the mode-exciting method. Then we consider
the equivalence between scattering coeflicients of Lamb waves by a finite crack and those
by a semi-infinite crack to obtain a system of equations depending on the crack length
explicitly. The partial analysis method has an advantage in computational time when
several plates with single cracks of various lengths are to be analyzed. Comparison
between the results of the partial analysis method and the direct mode-exciting method
shows a good agreement. The application of the partial analysis method to an inverse

analysis is also demonstrated.
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1. Introduction

Lamb wave ultrasonic method in detecting a defect
nondestructively in a thin plate has recently attracted
great attention. The properties of Lamb waves such as
dispersion relation and wave motion have been stud-
ied in detail and summarized in many books!)2):3).
However, knowledge about scattering properties of
Lamb waves by various types of defects is still insuffi-
cient for quantitative evaluation of a plate. This is due
to complexity of the scattering mechanism of Lamb
waves which is characterized by the mode conversion
including a finite number of propagating modes and
also an infinite number of nonpropagating modes.

The studies on the scattering analysis of Lamb
waves have been carried out by various methods.
Rokhlin®:5):%) has applied an analytical method of the
Wiener-Hopf technique to solve the scattering prob-
lem of Lamb waves due to cracks with semi-infinite
length and finite length. Liu and Achenbach” ap-
plied the strip element method to investigate wave
scattering by cracks in anisotropic laminated plates.
As numerical methods for the scattering analysis of
Lamb waves in the frequency domain, Koshiba et al.®)
and Al-Nassar et al? have applied a finite element
method (FEM), whereas Cho and Rose!?)'1) have ap-

plied a boundary element method (BEM). Galan'?
has also developed a hybrid method of finite element
and boundary element formulation. Since the scatter-
ing problem of Lamb waves is usually formulated for
a plate of infinite length, however, FEM or BEM in
the frequency domain can not be individually used in
solving the scattering problem. They have to be cou-
pled with other technique such as the normal mode
expansion technique to express the wave field in the
infinity. Recently, the authors'® have proposed the
mode-exciting method to solve various types of Lamb
wave-scattering problems. The mode-exciting method
enables us to perform the numerical analysis in a fi-
nite domain to solve the scattering problem for the
infinite domain. Owing to this benefit, in the mode-
exciting method, the numerical method such as FEM
and BEM can be used individually without coupling
with other technique.

In this paper, we propose an innovative method
called the partial analysis method combined with the
mode-exciting method to solve efficiently the scatter-
ing problems of Lamb waves due to finite cracks with
various lengths in an infinite plate. In the partial anal-
ysis method, the diffraction of Lamb waves at each
edge of a finite crack is considered partially in solving
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the scattering problem by the finite crack. First, the
scattering coefficients of Lamb waves due to a semi-
infinite crack are obtained by using the mode-exciting
method. Next we consider the equivalence between
the scattering coefficients of Lamb wave propagating
modes in the vicinity of the edges of the finite crack
and those by the semi-infinite crack. Then we obtain
a system of linear equations depending on the crack
length explicitly. The partial analysis method, there-
fore, has an advantage of computational time when
several plates with single cracks of various lengths are
to be analyzed because the numerical method such as
FEM and BEM, the part of which takes much com-
putational time, need to be carried out only once.

Fundamental relationships of Lamb wave modes
and statements of Lamb wave-scattering problems are
presented in Section 2 and 3, respectively. Formula-
tion of the partial analysis method is presented in Sec-
tion 4. Some numerical results and the application of
the partial analysis method to estimate the location
and the length of an unknown finite crack are shown
in Section 5.

2. Fundamental relationships in Lamb
wave modes

The dispersive relations of Lamb wave modes prop-
agating in a homogeneous, isotropic and linearly elas-
tic plate with free surfaces are described ag!)2):3)

tan(gh) 4k?pq
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tan(gh) _ (g 2k — @)
tan(ph) 4k2pq

for symmetric modes and antisymmetric modes, re-
spectively, where k and w denote the wavenumber and
the angular frequency, respectively, and h is the half
of the thickness of the plate. In Eq. (1),

2 2
9 9 2 2 [73) 9
=2 = -k, 3
reg =z (3)

cr, and cr are the velocities of the longitudinal and
transverse waves, respectively. Fig. 1 shows the
dispersion curves for a steel with ¢;=5940m/s and
cr=3200m/s. Here S,, and A,, denote the sym-
metric modes and the antisymmetric modes, respec-
tively, of mth order (m=0,1,2,...). Detail discus-
sion on dispersion curves of Lamb waves can be found
in many books, e.g., see the text book authored by
Achenbach.?

The displacement u of the Lamb wave modes can

——— Re(kh) , for the case of Im(kh)=0
El S Im(kh) , for the case of Re(kh)=0
Re(kh)
EIERES Im(kh)

for otherwise

Dispersion curves of Lamb wave modes in a
steel plate. Solid curves and dotted curves
denote the propagating waves with pure real
wavenumbers and the nonpropagating waves
with pure imaginary wavenumbers, respec-
tively. Dashed curves and double dashed
curves denote the real parts and the imagi-
nary parts, respectively, of the wavenumbers
of the nonpropagating waves with complex
wavenumbers.

be expressed as
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for antisymmetric modes, where z; and z» are taken
in the longitudinal and thickness’ direction, respec-
tively, I=v/—1, and A is an arbitrary constant. The
stress components can be evaluated by substituting
Eqgs. (4) and (5) into the stress-displacement relation

Tij = p(c — 207 Yuk ki + peg(uij + ),  (6)
where p is the density and d;; is the Kronecker delta.
3. Scattering problems of Lamb waves.

There are two scattering problems of Lamb waves

taken into consideration in this study: scattering by
a finite crack and scattering by a semi-infinite crack.
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The former is called the main scattering problem,
which is the objective of our analysis in this paper,
while the latter is called the sub-scattering problem,
which will be considered in the application of the par-
tial analysis method to solve the main scattering prob-
lem.
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Fig. 2 Scattering of Lamb waves (a) by a finite crack
and (b) by a semi-infinite crack in an infinite
plate.

3.1 Main scattering problem

The main scattering problem dealt with in this
study is the scattering of Lamb waves by a finite crack
in an infinite plate as shown in Fig. 2(a). The crack
is a horizontal crack with 2s in length and lies at the
distance y from the center of the plate. The surfaces
Sy, and S. of the plate and the crack are assumed
to be traction free. Note that the infinite plate can
be divided into three parts, i.e., two plain plates @
and (@ and the scatterer part containing the finite
crack. Let ;4F denote the propagating Lamb wave
modes of nth order in the plain plate ). Here ;%
and ;% denote the incident wave propagating toward
the scatterer and the scattered wave traveling away
from the scatterer, respectively. It is noted here that
; €+ include both symmetric modes and antisymmet-
ric modes, and are normalized in such a way that the
powers of the modes with unit amplitudes are equal
to unity.'®)

Suppose that the Lamb wave 1%, of nth propagat-
ing mode in the plate () with unit amplitude is inci-
dent to the scatterer and scattered waves of all Lamb
wave modes are generated in both plates @) and @) as
shown in Fig. 2(a). In the far field where all scattered
nonpropagating modes vanish, the scattering process

can be written in the form:
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where ;r,’; is the amplitude of the scattered Lamb
wave ;6,5 of the mth propagating mode in the plate
@ due to the incident Lamb wave ;% of the nth
propagating mode in the plate ), and N is the num-
ber of propagating modes in the plate (), which de-
pends on the frequency times the thickness of the
plate as shown in Fig. 1. The arrow in Eq. (7)
means the scattering process in which the incident
wave ;%, is transformed into the scattered waves
65 (7=1,2; m=1,...,Nj). In the main scattering
problem, the scattering coefficients %77, are the un-
knowns which are to be determined. Note that the co-
efficients }r?n are complex variables, and their square
absolute values and arguments represent the powers
and the phase shifts, respectively.

3.2 Sub-scattering problem

The sub-scattering problem dealt with in this study
is the scattering of Lamb waves by a semi-infinite
crack located at the distance y from the center of
the plate as shown in Fig. 2(b). The sub-scattering
problem is necessary for the application of the par-
tial analysis method in solving the main scattering
problem. Note that because the crack’s surface S, is
traction free, the regions above and below the crack
can be considered as plain plates. Hence, the infinite
plate in the sub-scattering problem can be divided
into three plain plates @), ®), and (® as shown in
Fig. 2(b), where the plate (@) is perfectly connected
with the plates (3 and @.

Similarly to the main scattering problem, the sub-
scattering problem can be described as follows. As-
sume that when the Lamb wave ;%€ of the nth prop-
agating mode in the plate @) (i=1,2,3) with unit am-
plitude is incident to the plates’ connection, the scat-
tered waves ;%1 of the mth propagating modes in the
plates (j) are generated with the scattering coeflicients
;t"m, as shown in Fig. 2(b) for i=1. The scattering pro-
cess of the sub-scattering problem can be written in
the form:

Ni

L%y = Y Y %

j=1,3,4 m=1

(i=1,2,3). (8)

The scattering coefficients ;r,’; of the main scat-
tering problem and %t7, of the sub-scattering problem
can be found by using the mode-exciting method. De-
tail explanation about the mode-exciting method can
be found in our previously published paper'®) and will
be omitted in this paper. In the next section, the re-
lation between %y, and %7, will be discussed.
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4. Partial analysis method
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Fig. 3 Basic concept of the partial analysis method,
where the diffraction properties of Lamb wave
modes in the vicinities of the left and the right
edges of the finite crack in the main scattering
problem (a) are equivalent to those in the sub-
scattering problems (b) and (c), respectively.

Fig. 3(a) shows the scattering process of the main
scattering problem, where the Lamb mode 1%,, with
unit amplitude is incident to the finite crack. Let us
first consider the region above the crack (—s<z; <s,
y < z3 < h). Since the crack’s surface S, is trac-
tion free, it is obvious that the region above the
crack can be considered as the finite plain plate (3,
where the wave field is decomposed into Lamb wave
modes.?)»13) Similar decomposition can be made for
the wave field in the region below the crack, i.e., the
plate @). Let the propagating Lamb wave modes gen-
erated in the plates @) and @) be 377, 36, + 367 36,
and 4V} 4C + 407, 46,7, respectively, as shown in
Fig. 3(a). Here, the superscripts — and “~ in ;%
and ;% denote the directions of the propagating
modes, and ;77 and ;67 are the amplitudes of ;%
and ;%,, respectively (i=3,4). Note that nonprop-
agating modes in the plates 3) and (@) are neglected
here.

Now let us consider the wave field near the left edge
of the crack as shown in Fig. 3(b). It is clear that
the wave fleld is expressed by a Lamb wave-scattering
process with 1-1%,, and ;77 ;%,, (i=3.4) as incident
waves, and 177, 14,7 and ;07, ;%,,; (i=3,4) as scattered

waves as follows:

4 N
L%+ > ivmi%m

=3 m=1

— erl 1%++22351 e (9)

3=3 I=1

It is obvious that the scattering problem shown in
Fig. 3(b) is equivalent to the sub-scattering problem
shown in Fig. 2(b). As a consequence, there exist
relations between the amplitudes of the Lamb wave
modes in Fig. 3(b) and the scattering coeflicients ;t;’l
of the sub-scattering problem. As a preliminary pro-
cedure for deriving these relations, Eq. (8) is modified
so as to express the scattering process in Fig. 3(b), in
which the location of the edge of the crack differs from

that in Fig. 2(b) by s. Then we have

N;
B _ . .t
elhnsigs — YNy tpelihe g,

j=1,3,4 I=1

(10)

or

in‘_)ZZztnIk-—k)chlﬂF

=134 =1

(i=1,3,4, n=1,...,My), (11)

where ;k. and jkf are the wavenumbers of the modes
;€ and ;%,7, respectively. Performing some alge-

n
braic manipulations to Eq. (11), it can be shown that

4 N -/vj
LGy + ). > ivmin — Y Zl}tr

i=3 m=1 i=1,3,4 =1
] (g+

eI(j -1k, )s+zzl,yn ztn I(;
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i=3 m=1

Considering that ;%,,=;%,, and ;€}=:%,, (i=3,4)
for the scattering process in Fig. 3(b), comparison be-
tween Eq. (9) and Eq. (12) yields the following system
of linear equations:

4 N
+ -
it?el(lkl ~1kn)s+ § E z’ym ltn I(]k — k )

i=3 m=1
'aNl)a

=7 (=
Lt o Z A e TG ks
1=3 m=1
=00 (G=341=1,....N)),

(13)

where ;k; and ;k;” are the wave numbers of ;%;~
and ;%,, respectively.

Similar relations can be obtained for the wave field
in the vicinity of the right edge of the crack as shown
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in Fig. 3(c).
expressed as:
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For the scattering process in Fig. 3(c), Eq. (8) is mod-
ified as

N
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The Lamb wave-scattering process is
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Performing some algebraic manipulations to Eq. (16),
it can be shown that
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Considering that ;%,,=;%,,; and ;6,;=:%; (i=34)
for the scattering problem in Fig. 3(c), comparison

between Eq. (14) and Eq. (17) yields the following
system of linear equations:
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Assuming that the scattering coefficients ;t% of the
sub-scattering problem has already been obtained by
using the mode-exciting method and the semi-length
of the finite crack s is given, the unknown variables
in Egs. (13) and (18) are 17" and 4r] for [=1,..., M4,
and ;4% and ;07 for i=3,4 and m=1,...,N;. The
total number of the unknown variables for a fixed n
is 2(M1 + N3 + ANy). On the other hand, the total
number of equations in Egs. (13) and (18) is 2(NV; +
N3 + Ny). Since the number of equations is equal to
that of the unknown variables, Eqgs. (13) and (18) can
be solved simultaneously to obtain 177, 3r]*, which are
the solution of the main scattering problem.

It is remarked here that in the above derivation
of the partial analysis method, the nonpropagating
modes in the plates @) and () are neglected on the
assumption that these nonpropagating modes will suf-
ficiently evanesce before they reach the edges of the

crack and their contributions to the scattering pro-
cess in the vicinity of the edges of the crack are very
small. In fact, this assumption is acceptable only for
a long enough crack. For a relatively small crack, the
partial analysis method would give an approximation
solution rather than an exact solution of the main
scattering problem.

5. Numerical results

5.1 Accuracy of the mode-exciting method

The accuracy of the mode-exciting method is ver-
ified by comparing the numerical result obtained by
the mode-exciting method to exact solutions found by
Rokhlin'¥ for the sub-scattering problem with sym-
metrically located semi-infinite crack (y=0). One of
the exact solutions found by Rokhlin is

80 =

H m — 3kn] ﬁ |3km + 3k
|1k +3kn| 2L [3km — 3knl|’
mzn

(19)
where the first product includes multipliers with
wavenumbers 1 k,, of only symmetric or only antisym-
metric propagating modes depending on the sign (plus
or minus) used in the left hand side, and the second
product includes all the multipliers for both the sym-
metric and antisymmetric propagating modes. The
values of |3¢7 +4t7| obtained by the mode-exciting
method and by the exact solution of Eq. (19) are
shown in Fig. 4 by symbols and curves, respectively,
as a function of the nondimensional frequency wh/cr.
A fairly good agreement between both values can be
observed in this figure and the validity of the mode-
exciting method is, therefore, numerically verified.
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Fig. 4 Comparison between the numerical results
obtained by the mode-exciting method and
the exact solution'® of the sub-scattering
problem with y=0.
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Fig. 5 Scattering coefficients for horizontal cracks
with y=0 and various lengths of (a) s/h=0.5,
(b) s/h=1, and (c) s/h=2.

5.2 Comparison between results of the par-
tial analysis method and the direct mode-
exciting method

Here we show two examples for comparison between
results obtained by the partial analysis method and by
the direct mode-exciting method. First, we consider

the scattering problem by a finite horizontal crack lo-
cated at the center plane of the plate (y=0). A mode
is considered here as an incident wave. The results
are shown in Figs. 5(a), (b), and (c) for the cracks
with the lengths s/h=0.5, 1, and 2, respectively. The
abscissa and ordinate represent the nondimensional
frequency wh/cr and the absolute of scattering co-
efficients Ji-r;}l, respectively. The unshaded and the
shaded symbols denote the scattering coefficients ob-
tained by the direct mode-exciting method and by the
partial analysis method, respectively. Note that these
scattering problems are symmetric with respect to the
center plane of the plate and, therefore, no symmetric
mode appears for the incidence of Ag mode. Compar-
ison of both results in these figures shows that the
results of the partial analysis method are almost in
good agreement with those of the direct method. The
error in the partial analysis method is, however, rela-
tively large when the crack length is small as shown
in Fig. 5(a). The error is due to the neglection of
nonpropagating modes in the plates 3) and @) in the
partial analysis method. It can be seen that the er-
ror decreases above wh/cy==. This frequency is the
cut-off frequency of A; mode in the plates (3) and
@ (Note that the semi-thickness of these plates is
h/2). As the frequency increases and becomes close
to wh/cp=m, the contribution of the nonpropagating
Ay mode, which has a quite small imaginary part of
wavenumber, to the scattering processes in the plates
3 and @ becomes significant and, therefore, the ne-
glection of A; mode causes large error. The error de-
creases at the frequency higher than wh/cp=mn, where
A1 mode becomes a propagating mode in the plates @)
and (@ and is taken into account in the partial analysis
method. As the crack length s/h increases, the error
in the partial analysis method decreases, as shown in
Figs. 5(b) and (¢). The reason of the decrement of
the error is that the contribution of nonpropagating
modes to the scattering process in the plates @) and
(@ decreases as the crack becomes longer.

Next, numerical results are shown for the cracks
located at y=0.25h subjected to Ay mode incidence.
The results of the partial analysis method and the di-
rect method are shown in Figs. 6(a), (b), and (c) for
the cracks with the lengths s/h=0.5, 1, and 2, respec-
tively. Since the problem is not symmetric, symmet-
ric modes as well as antisymmetric modes appear as
scattered waves even if the antisymmetric Ag mode is
incident to the crack. Although scattered A;, S1, and
S2 modes also occur at the frequencies higher than
their cut-off frequencies, the results of scattered Ag
and Sy modes only are shown in these figures. From
these figures, we can find that the results of the partial
analysis method are in fairly good agreement with the
results obtained by the mode-exciting method as the
crack becomes longer. Particularly, at the frequency
wh/er > 7, both results show good agreement.
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It is also of interest to consider the case when
the system of linear equations (13) and (18) becomes
nearly ill-posed. Figs. 7(a) and (b) show the values
of determinants of Egs. (13) and (18) for the cracks
with y=0 and y=0.25h, respectively. In these figures,
the determinants become close to zero at some fre-
quencies which depend on the crack length s/h. The
zero determinant means that a free vibration occurs
in the plates 3) and (0. At the frequencies where the
resonance oceurs, large reflection coefficients are often
found. In fact, the reflection coefficients in Figs. 5 and
6 become maximum at the frequencies where the de-
terminant are close to zero in Figs. 7(a) and (b). Note
that since both results of the direct mode-exciting
method results and the partial analysis method show
the resonance phenomena at almost the same frequen-
cies, the resonance phenomenon is an intrinsic scat-
tering characteristic of the finite crack which is in-
dependent of the analysis methods. Since resonance
phenomena are discussed by Rokhlin'®, no further
discussion in given here.

5.3 Application of the partial analysis
method to the inverse scattering analysis

In the analysis of the main scattering problem by
the mode-exciting method as well as other numerical
methods, the numerical analysis such as FEM and
BEM must be carried out repeatedly as the crack
lenght changes. As shown in Section 4, in the partial
analysis method the FEM or BEM calculation is, how-
ever, carried out only once (when the sub-scattering
problem is solved); the scattering coefficients 37‘% of
the main scattering problem can be found only by
solving a system of linear equations with the crack
length as a parameter. The partial analysis method
can, therefore, solve the scattering problems for sev-
eral plates with single cracks of various lengths much
faster than the mode-exciting method alone. Tak-
ing this advantage, we will show the application of
the partial analysis method to an inverse Lamb wave-
scattering analysis. The problem in the inverse anal-
ysis is to determine the location y and the length s
of an unknown horizontal crack when the scattering
coeflicients ;r?n are known in advance.

Let %r7,(wx) be the scattering coefficients at sev-
eral frequencies {wy } from which the crack length and
location will be estimated. When the scattering co-
efficients %t} of the sub-scattering problem have al-
ready been obtained for several crack’s locations {yq}
at the frequencies {wg}, the approximated scattering
coefficients of the main scattering problem for several
crack lengths {s,} can be evaluated easily by the par-
tial analysis method. Let {R7, (wk, 8p, yq) be the ap-
proximated scattering coefficients of the main scatter-
ing problem evaluated by the partial analysis method.
The location y and the length s of the unknown crack
can be estimated after evaluating E(s,, y,), which is

0.8 i :
i Direct|Partial
lfrm ——
0.6 o
—A—
0.4 v
0.2 oo
0 5 e
0 1 2 3 4 5
(a) Luh/cr

Fig. 6 Scattering coefficients for horizontal cracks
with y=0.25h and various lengths of (a)
s/h=0.5, (b) s/h=1, and (c) s/h=2.

defined in Eq. (20), for all sets of {s,} and {y,} and
finding . the values of s, and y, for which E(sp,y,)
becomes minimum.

1 N,
Blw) = 7, 2 2

k=11i,j,n,m

A - 2
I;R%(wk’smyq)_}rm(wk)‘ ) (20)

where N, is the number of frequencies wy at which

§r;ll(wk) are known and N, is the number of sets
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Determinant

(b) wh/cr 3

Fig. 7 Values of determinants of matrices when
Eqgs. (13) and (18) are solved for the cracks
which are located (a) at the center plane of
the plate and (b) at the distance y=0.25h
from the center plate of the plate.

{%,4,n,m} used in the summation.

Numerical examples of the inverse analysis are
performed for two sets of frequencies: wh/cp =
{1.6,1.65,...,2.6} and wh/cy = {3.5,3.55,...,4.5}.
The scattering coeflicients obtained by the direct
mode-exciting method for the cracks with the lengths
s/h=0.5, 1.0, and 2.0 which are located at y/h=0 and
0 25 are used here as the known scattering coefficients
77 (wr) in Eq. (20). The values of E(s, y) as functions
of s and y are shown in Figs. 8 and 9 for the former
and the latter set of frequencies, respectively. Here,
E(s,y) are calculated by using all set of {4, j,n,m} in
Eq. (20) and are shown for 0 < s/h < 3 with the in-
terval As/h=0.01 and 0 < y/h < 1 with the interval
Ay/h=0.05. Tt is noted that to make the locations of
the minimums obvious in Figs. 8 and 9, only the values
of E(s,y) which are relatively near to zero are shown.
It can be seen from Figs. 8 and 9 that the locations
of the minimums of E(s,y) are in agreement with the
true values of s and y. As an exception, the esti-
mated y obtained from Fig. 8(b) seems to be smaller
than the exact value of y. This is due to the large
error of the partial analysis method for a short crack,
as mentioned in the previous section. By comparison
between Figs. 8 and 9, we also find that the values of
y can be estimated more accurately by Fig. 9 than by
Fig. 8. The reason is that as the frequency becomes
higher, the displacement distribution of Ag mode be-
come more complicated in the thickness direction. In
other words, the higher frequency component of the
Lamb wave is more sensitive to the resolution in y
direction.

In practice, it is not easy to obtain absolute phase
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information from measurement. For such a case, the
inversion scheme based on the absolute values of scat-
tering coeflicients is developed as shown below. The
indicator F is modified as follows:

E’(s,y) =
2
o Z > |Rnwn e = ol [
=1li,5,n,m
(21)
Figs. 10(a)-(h) show the values of E(s,y) and

E'(s,y) for several combinations of {7, j,n,m} which
are evaluated for the same target values s/h=1 and
y/h=0.25, and the same set of frequencies wh/cr =
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{3.5,3.55,...,4.5}. First, we consider the case that
all scattering coefficients are available, i.e., all set of
{4, j,n, m} are used. The values of E(s,y) and E’(s, y)
for this case are shown in Figs. 10(a) and (b), re-
spectively. From these figures, it is clear that the
lack of phase information makes the location of the
minimum ambiguous. In addition to the minimum at
the exact values, a local minimum is also observed at
s/h=2.5 and y/h=0.15, as well as the minimum value
of E'(s,y) at s/h=1 and y/h=0.25 in Fig. 10(b).

Secondly, we consider the case that only reflection
coefficients of the same mode with the incident mode
are used in the inversion. The set of {i, 7, n,m} is then
restricted to ¢=j and m=n. The values of E(s,y)
and E’(s,y) for this case are shown in Figs. 10(c)
and (d), respectively. For this case, the length and
the position of the crack can be estimated only if the
phase information is available, but the location of the
minimum is not clear.

Thirdly, we consider the case that only transmis-
sion coefficients of the same mode with the incident
mode are available. The set of {i,7,n,m} is then re-
stricted to i#j and m=n. The values of F(s,y) and
E'(s,y) for this case are shown in Figs. 10(e) and (f),
respectively. The length and position of the crack
can be estimated clearly when the phase information
is available, but the estimation becomes ambiguous
when the phase information is lost.

Lastly, Figs. 10(g) and (h) show the values of
E(s,y) for the case that only Ag mode is observ-
able. The values of E(s,y) estimated from the re-

flection coeflicient %rﬁg and the transmission coefhi-

cient, 3r4° are shown in Figs. 10(g) and (h), respec-
tively. In Fig. 10(g), it is impossible to specify a min-
imum point. On the other hand,a minimum value is
observed in Fig. 10(h), although the location of the
minimum is a little different from the exact location.

6. Conclusions

The partial analysis method has been developed to
solve approximately the scattering problem of Lamb
waves by a horizontal finite crack in a plate. The
partial analysis method is powerful for the scattering
analysis of Lamb waves by cracks of various lengths
at the same transversal location. The results of the
scattering analysis of Lamb waves obtained by the
partial analysis method are found to be in good agree-
ment with those obtained by the direct mode-exciting
method, especially for a long crack. However, errors
of the partial analysis method become relatively large
at the frequencies at which a nonpropagating Lamb
wave mode in the region around crack has a small
imaginary part of wave number.

The application of the partial analysis method to
the inverse analysis method has also been proposed. It
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Fig. 10 Comparison of E(s,y) and E’(s,y) for sev-
eral combinations of {i, j,n, m}.

is shown that the length and the transversal location
of finite cracks can be estimated. It is found that
the phase information and the number of available
scattering coeflicients are important to estimate the
length and the transversal location of crack clearly.
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