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A method for structural matrix identification is presented that uses microtremor measurements
based on the canonical variate analysis (CVA), one of the subspace methods that enable the
simultaneous identification of parameters under the multi-input-multi-output (MIMO) system.
In the case where the structural responses at all nodes can be measured as well as the vibration
at the basement, the damping and stiffness matrices can be obtained using the proposed
method. Compared to the methods that tries to identify directly the element stiffhess and
element damping based on least squares method and prediction error method, the proposed
method does not need to assume any distribution of stiffhess and damping matrices, and
identifies directly the total stiffness and damping matrices. The method is vatidated with the

numerical simulation using a four-story structure.
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1. Introduction

Presently it is predicted that a large earthquake will hit the
area along the Nankai trough in Japan in near future,
government, engineers, and researchers are responsible to
enhance the earthquake-resistance of various types of structures.
In this view of needs, the establishment of structural health
monitoring system is a pressing task.

With improvements in measuring apparatuses and technology,
various new structural identification and damage identification
techniques been developed through vibration
measurements™'”. Artificial vibration using exciters or actuators
is advantageous in that both input and output data can be used
for identification, therefore identification accuracy is supposed
to be high. Arntificial vibration, however, is expensive and
impractical, and sometimes infeasible due to the condition and
scale of structures. In contrast, microtremor measurements using
ground motion are freely available, and tum out to be useful
altematives to the artificial excitation. Therefore, this study
proposes the structural identification method using the
microtremor measurement from the ground motion.

Model-updating-based structural identification methods are
based on the first order perturbation methods. They are based on

have

the assumptions that the difference between the analytical model
from the design drawing and the real structure is small. When
the structural parameters change drastically between the
analytical and real structures, this method fails. In such cases, we
should identify directly the whole structural parameters of the
structure not the change from the analytical model.

Most structural identification methods assume that the total
structural matrix is the summation of the elemental structural
matrices for all elements, assume the distribution of element
matrices, and try to identify element stiffness and element
damping. These assumptions, however, are not always true in
the real situation, therefore the development of methods to
identify total stiffness and damping matrices are important.

Recently, the subspace identification method attracts
attentions in the field of system identification?"". It
identifies discrete-time, linear, and time invariant state
space models. The advantages are as follows. It has
mathematical stabilities because it adopts singular value
decomposition or QR decomposition. The results will
not drop into the localized optimization point. Also it
enables identification problem of multi-input-multi-
output (MIMO) data because it is based on the state
space models, and this is the important merit over the
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other system identification techniques such as prediction
error method. The equation of motion of structural
vibration responses is converted into a state space model,
and the subspace identification technique then is applied
to obtain state matrices. Subspace identification does not
require any nonlinear computation and this makes the
calculation much faster and more robust than the
method'®.  Recently  several
subspace-based identification techniques have been

prediction  error
developed. Two algorithms commonly in use are
eigensystem (ERAY®  and
' Norman et. al.

realization  algorithm
canonical variate analysis (CVA)'®*
compared two algorithms over a range of signal-to-noise
ratios, and concluded that CVA technique provides
estimates which are substantially more accurate than
those provided by ERA'?.

In this study, we propose the structural identification method,
which identify whole stiffness and damping matrices from
microtremor measurements based on the CVA. We first identify
the two products between the inverse of mass matrix and the
damping matrix, and the inverse of mass matrix and the stiffness
matrix using the CVA. We assume that the mass matrix is
known priori, then the stiffness and damping matrices are
obtained. The method is validated with numerical simulation
using a four-story structure.

2. Proposed method for total
identification

structural matrices

2.1 The canonical variate analysis (CVA)

The subspace identification methods recently attract
attentions in the field of system identification and are
now applied for modal parameter identification as
substitute for the conventional peak-picking method with
visual estimation from Fourier transforms. Canonical
variate analysis (CVA) is one of the subspace methods,
initially applied to time series by Akaike'* ')
improvements for general linear systems were made by
Larimore'®* 17,

A finite dimensional, discrete-time, linear, time-invariant
dynamical system is modeled as the state-variable equations

and

xX(t+1) = Ay x(0)+ Bu(t) + w(t) 1

y(0)=Cx(O) +v(t) @

where x(t) is an w-dimensional state vector, z(t) is an
m-dimensional control input vector, M) is a p-dimensional
output vector, and w(t) and Wt) are zero mean white noise
vectors. Ap, Bp and C are nxn-, nxim- and pxn-dimensional state
matrices. The matrix A4y characterizes the dynamics of the
system and it is a representation of mass, damping, and stiffness
matrices.

The problem of system realization is to estimate state matrices
[45 Bp C] from given input and output vectors, u(t) and i(t).
There exist infinite number of realizations that will meet this
condition. The triple [TADT], 7By, CT' ] are also the realization
(T is the transfer matrix), however, the eigenvalues of the matrix
Apalways are the same.

The algorithm is as follows;

Step 1: Define the two new state vector, p(t) and At); ()
represents the past information and ft) represents the future
information as

(u(t-1)]
y(=1)
pn=| ©)
u(t—1)

| y(@E-1)]

(1)

f@0= @

| y(t+k-1)

where / and £ are the integer indicating the considered length of
time history for past and future data. The dimensions of p(t) and
f{t) respectively are /(p+m)x1, and kpx1. Assume that we have
N data for both #(t) and y(t), and define N'=N-k-I+1, I =lp+m),
k=kp.

Step 2: Calculate the covariance matrices among vectors p(t)
and f(t), and define them as

N-k+1
LS popy s

w7
N o

- Nz FOFOT ©)

1 Nzk+l r
N ,§+l PO f(0) @)

L,=

pr =

Step 3: Calculate the eigenvalues and eigenvectors of )y o and

b3 5 and obtain
2, P=us U’ ®)
2, =0,8,"u, ©)
where o I and £ f/fl/ ? respectively are the square root of

A

inverse matrices of X o and X 7o

U and U,
respectively are the matrix composed by eigenvectors of by o
and £,. 87 and S, are the diagonal matrix

composed by eigenvalues of ) ,» and )y P

Step 4: Calculate the following singular values decomposition
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(SVD)
&Y & -2 T
£, 2,2 P =USY, (10)
T
UUy =1, 1
vy =1 (12)

where I, and /- are respectively /*-th and &*th order identity

matrices. U, and V," are left and right singular value
vectors and S, is the diagonal matrix composed by singular

L . ]
valuesof £~ F ..

Then define
U=uls " (13

In CVA, U indicates the matrix which converts p(t) into the
vector which has the highest correlation with At) we want to
predict.

Step S: Determine an optimal n-order memory function (At)

w =1, olp), r=1+1,-N—k+1 (14

where 1, is respectively #-th order identity matrices. Since z4t)
has the condensed information to predict future, it is regarded as
the state vector at time ¢ Noting that the covariance matrix of
1(t) is identity matrix, the state vectors % and x(t) are
connected with appropriate transfer matrix 7"as

x() = Tu() (15)
Step 6 : Substituting Eq.(15) into Egs.(1) and (2), we obtain
u(t+l)=[T’1ADT T"BD{'U(Z)]+T1W(t) (16)
u(t)
(&)= CTu(e)+v(1) amn

Matrices Ap, Bp, C depend on the transfer matrix 7, but
eigenvalues of matrix Ap, is independent from transfer matrix 7.
Step 7: The state matrices [T ApT, T'Bp, CT] are estimated
using least squares method

[r4,7 T*BD]=(%N§&1@+I)][M:>T u(r)T])
/18

1 von[ p(r) , ; -
(—, > [u(,)}[ua) u(t) ])

N t=1+1

ore (Al[’ T;jly(t)][u(t)r}I Al[, [jépl(t)][ﬂ(tﬁ ])_ 19)

where we define [ 4, B,C 1= [T ApT, T'By, CT)

The above is the algorithm when we know the dimension of
! and k. We determined the dimension of state matrix, »,

according to the number of nodes of the structural model.

We also have to determine the value of / and £, the length of
time history of past and future. In this study, we decided the /
and k in order that they minimize the residual error covariance
matrix R.

1 N=k+1

R=1 3 (1(6) - CTu) () - CTu®)  (0)

1=1+1

2.2 Vibration response of a structure
The vibration response is obtained by solving the equation of
motion;
Mz(t)+ Dz(t) + Kz(t) = —Mz, (2) 2n
where M, D, and K respectively are the mass, damping,

and stiffness matrices of the baseline model. z(¢) is the

displacement response vector, and z,(¢) is the time

history of input ground motion.
The equation of motion can be rewritten in the
following continuous-time system
x(£) = Acx(t) + Bou(t) 22)
where Ac- and B are state matrices in continuous-time
system. Followings are one representation. Here we
omitted the noise term.

x(t)={z) ) (23)

Ac =[ 0 ! ] (24)
-M'K -M™D

Bo =1 25)

wry=9 -z,0f (26)

The continuous-time system can be converted into
discrete-time system as
Ap, =exp(4-A) 27
B, = [yexp(4-T)dTB, (28)
where A is the time interval.

Eq.(1) corresponds to Eq.(22). In the structural
vibration responses, the counterpart of y(t) in Eq.(2) is
x(t) in Eq.(23) and that of C in Eq.(2) is the identity
matrix.

2.3 Identification of continuous and discontinuous-
time system

The proposed method identifies not A, but 7"'ApT.
But because the eigenvalues of matrix A4p are
independent from transfer matrix 7, we can obtain the
eigenvalues and eigenvectors of 4p

AY = u¥ (29)

where 4 denotes the diagonal matrix whose i-th
component, (; , is the i-th order eigenvalue. ¥ denotes
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is the i-th order
eigenvector ¢;. I-th natural frequency f, and damping
ratio 4; are obtained as

1 2 2
f = ﬂ\/Re(ln 11,)? + Im(In 1v) (30)
_ —Re(lng)
" JRe(np,)? + Im(Inp,)?
Mode shapes are obtained as C'V . We regard CT obtained
from Eq.(19)as C.
Here, the mode shapes of 4., and those of 4 is the

same. The eigenvalues of A¢, 4, are related to those of
Ap, 1, as

the matrix whose i-th column

h

€1y

Re{A} = LAlog{Re(u)2 +Im(n)’} (32)

2
1 arctan{ Im(z) } (33)
A u

where 4 and p are the eigenvalue of A and 4.
Then the matrix 4 can be obtained as
4, =CYACY)™ (34

where A is the diagonal matrix composed by eigenvalues A .

24 Structural matrices identification method

Two matrices M'D and MK are obtained

simultaneously from Ac according to Eq.(24). Assuming that
the mass matrix A/ can be calculated from the design
document of the structure, stiffness and damping matrices are

obtained by multiplying M to M'C and MK from
the left side.

3. Numerical Verification

3.1 Analytical model

The proposed method is applied to a four-story structure
modeled by a four degree of freedom mass-damping-stiffness
system as shown in Fig.1. The structural parameters for each
floor are shown in Table.1. The mass, damping, and stiffhess
matrices respectively are as follows.

0.50E +07 0 0 0
- 0 0.10E + 08 0 0 (35)
0 0 0.13E+08 0
0 0 0 0.11E+08
0.1194E+09 -0.753E+08 0 0
-0.753E+08 0.1257E+09 -0.504E +08 0 (36)
a 0 -0.504E+08 0.1194E+09 -0.69E+08
0 0 -0.69E+08 0.69E+08

031SE+11 -0.17SE+11 0 0
S0.175E+11 0386E+11 -0211E+11 0 37
- 0 <0211E+11 0351E+11 -0.14E+11
0 0 S0.14E+11  O0.14E+11

The natural frequencies and damping ratios are shown in
Table.2.

3.2 Analytical conditions

We assumed that the structure is affected by the ground
motion with very small amplitudes at the basement. The time
history of the input ground motion, which was generated using
random numbers between —5 to 5 cm/sec?, as well as its Fourier
amplitude are shown in Fig2. We assumed that the
displacement and velocity response at all floors are measured, as
well as the input ground motion. The noise (t) in Eq.(1) was
neglected, and the noise Wt) in Eq(2) was only considered.

The noise ratio was defined as,

y = Froie . 100(%) (38)

resp

where ¢ is the standard deviation of the true

resp

responses without measurement noise, and ¢___ is that

noise

of measurement noise. In this study we considered 0%,
1%, 3% and 5% measurement noise cases.

The time history of calculated displacement and velocity
responses are shown in Figs. 3 and 4. The difference in
responses of each case is very small. We use these responses of
20 minutes time duration as the input of the proposed method.
We applied /<4 and & =1 because they minimized the residual
error covariance matrix R in Eq. (20).

3.3 Identified results

(1) Identified natural frequency and damping ratio

The Fourier amplitudes of velocity and transfer functions for
noise free case are shown in Figs. 5 and 6. In this study, the
transfer function is obtained by dividing the Fourier spectrum of
response at each floor by that of the input ground motion. Most
popular method that identifies natural frequencies is the
peak-picking method from the transfer function by the eye
inspection. As for identifying damping ratios, the methods
commonly in use are half power method and curve fitting
method done by eye inspection. These methods regard the
frequencies whose transfer function takes the peak values, and
estimate damping from the shapes of the transfer function
around the natural frequencies. In this case, however, it seems
very difficult to estimate them from the transfer function shown
in Fig.6 because there are many frequencies that take peaks
carresponding to the peaks of input ground motion.

In this situation where traditional eye inspection
method are infeasible, the subspace-based technique
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Table 1 Structural parameter

s 3
. il unit 1st floor 2nd floor 3rd floor 4th floor
s B mass kg 5.00E+06 1.00E+07 1.30E+07 1.10E+07
s J stiffness coefficient N 1.40E+10 1.75E+10 2.11E+10 1.40E+10
oz ks damping coefficient | N/m | 4.41E+07 7.53E+07 5.04E+07 6.90E+07
m: __
BN a2 k2 . . .
o { g Table 2 Natural frequencies and damping ratio
:,_I dik: Istmode | 2ndmode | 3rdmode | 4thmode
FIITRITIT natural frequencies (Hz)| 2.11E+00 6.58E+00 1.03E+01 1.43E+01
damping ratio 2.32E-02 8.73E-02 1.06E-01 1.69E-01
Fig.1 Analytical model
f inpu:groyn? n?ono g 0.028 input ground metion - | 0.528 input ground motion ---- -
R Li ;‘ !i‘ : 0.02 .02
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Fig.2 Input ground motion
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Fig.3 Displacement responses
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Fig4 Velocity responses
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Fig.5 Fourier amplitude of velocity
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Fig.6 Transfer functions

y works efficiently. We obtained natural frequencies and
damping ratios by solving the eigenvalue problem of

identified A, . Results are shown in Tabie 3. Comparing

the true values shown in Table 2, natural frequencies are
identified very well especially in lower modes. Damping
ratios are overestimated and do not have good agreement
compared with natural frequencies. Lower modes
damping ratios have the better accuracy than higher
modes. Even though damping estimation is not with high
accuracy, the subspace-based technique made estimation
possible.

(2) Identified stiffness and damping matrix
The identified damping and stiffness matrices are

follows.

D(0%) =

D(1%) =

-90 -

[ 1.17E+08
-6.77E+07
6.27E + 06
|-3.55E+06

[ 120E+08
-6.97E +07
5.81E +06
|-3.14E + 06

-6.76E +07
1.46E + 08
-7.11E+07
-6.07E + 06

-697E+07
1.50E + 08
-7.29E+07
-6.17E+ 06

6.33E+06
-7.07E + 07

1.20E+08
-491E +07

6.76E + 06
-7.36E + 07
1.23E+08
-5.05E+07

-3.58E + 06|
-6.19E+06
-4.92E+07
5.61E+07 |

-3.62E+06]
-5.68E+06
-507E+07

5.72E+07 |

(9

(40)
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Fig.7 Reconstructed displacement responses
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Fig.8 Reconstructed velocity responses

[143E+08 -870E+07 10SE+07 -4.05E+06] ) . . .
Dy | "HASET0T L8 +08 -9TTE+07 -9.69E+05 1 Table 3 Identified natural frequencies and damping ratio by
326E+06 -899E+07 1.53E+08 -634E+07 CVA
| 9.19E+04 -633E+06 -6.12E+07 653E+07 | () natural frequencies (Hz)
[1.88E+08 -124E+08 224E+07 -627E+06] noise | Istmode | 2nd mode | 3rd mode | 4th mode
D(svgy = |71 1TE¥08 247E 08 -149E 408 106E +07 (42) 0% | 2.11E+00 | 6.59E+00 | 1.03E+01 | 1.43E+01
850E+05 -123E+08 2.10E+08 -893E+07 1% | 2.11E+00 | 6.60E+00 | 1.04E+01 | 1.43E+01
6.53E+06 -7.74E+06 -8.11E+07 8.09E+07 3% | 2.11E+00 | 6.63E+00 | 1.05E+01 | 1.47E+01
) i 5% | 2.11E+00 | 6.70E+00 | 1.09E+01 | 1.54E+01
3.16E+10 -175E+10 -3.73E+07 1.75E407 ] _ ‘
k(v |1 TSEFI0 BESEHI0 -210E+10 -358E+07 “43) (b) damping ratio
-11‘277815:0078 .52016(;;5:0170 _31'111};:11% _1144(;);:11(? noise | lstmode | 2nd mode | 3rd mode | 4th mode
‘ ’ ’ ’ E 0% 2.86E-02 | 8.90E-02 | 1.07E-01 | 1.73E-01
- 1% 2.86E-02 | 9.02E-02 | 1.10E-01 | 1.73E-01
ez e e L DR Db e e s
K(1%)=| ’ ) ' 5% 2.94E-02 | 1.17E-01 | 1.76E-01 | 2.64E-01
-239E+08 -209E+10 3.50E+10 -1 40E+10
| 382E+07 275E+07 -141E+10 141E+10 |
[314E+10 -176E+10 2.55E+08 -1.02E+08] Table 4 Identification error (%)
K3oay=| I TAEFI0 IESEHI0 -213E+10 1 6SE+08 45) noise | stiffess | damping
-5.86E+08 20SE+10 3.50E+10 141E+10 0% 4.10E-01 1.82F+01
| 266E+08 -265E+08 -140E+10 141E+10 | 1% | 4.63E-01 | 1.89E+01
- 3% 1.35E+00 | 3.48E+01
310E+10 -1.77E+10 7.03E+08 -281E+08] 5% 1 2.11E200 | 7.99E+01
k(5% | 1TIETI0 3BAEFI0 218410 ST8E+08 (46)
-1I2E+09 -198E+10 3.50E+10 -144E+10
| 6.34E+08 -798E+08 -138E+10 141E+10 |

4 4 o 4 4
ERR= \/ > 2 (af " —apy? / J PRACHDINCY
i=l j=1 i=l j=

where D(0%) , D(1%) , D(3%) and D(5%) are the

identified damping matrices with 0%, 1%, 3% and 5%  where a;* and a;*"™ are true and identified value of the

noise. Identification for stiffness was described in the

same way. (i, /) component of matrix A4 . The ERR of identified
The identification error (ERR) was estimated in the

- : stiffhess and damping matrices for each noise level are shown in
following equation.

Table 4.
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Fig.9 Reconstructed Fourier amplitude of velocity

Compared to the true values in Eqgs.(35) and (36), the
results for stiffness have good agreement in the case of
5% case, and the results for damping are not good. This
is corresponding to the accuracy of natural frequencies
and damping ratio stated in the previous section.

The structural matrices of real structure are not always
the symmetric and cannot be separated into each element
matrices. The proposed method directly identifies the
total stiffness and damping matrices simultaneously that
represent the relationship between input and output best.

(3) Reconstruction of responses
We recalculated the time histories of displacement and
velocity at each floor using the identified stiffness and damping

matrices. Comparisons with the true responses are shown in Figs.
7 and 8. The reconstructed response of each case is very close to
the true responses. For cases where 0% and 1% noise are exist,
the reconstructed responses show a good agreement with the
true responses. As noise ratio becomes larger, the accuracy
becomes worse, but even the case with 5% noise can trace the
responses very well. The Fourier amplitudes of the recalculated
velocity are shown in Fig, 9. It is shown that the frequency
characteristics are also traced very well. All prominent
frequencies are estimated correctly, and this corresponds to the
fact that the natural frequencies are identified with high degree
of accuracy. The values at the natural frequencies are
underestimated, and this comesponds to the fact that the
damping ratios were overestimated.
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4, Conclusions

A vibration-based structural identification method is
proposed that evaluates the total structural matrices by
use of microtremor measurements. It is based on the
CVA, one of the subspace identification methods that
identify the discrete-time, linear, and time invariant state
space models. We first identify the state matrix of the
discrete-time system, and obtain eigenvalues and
eigenvectors of the state matrix. Next, we obtain the
mode shapes and convert the eigenvalues of the state
matrix of discrete-time system to those of
system. At this point, natural
frequencies and damping ratios can be obtained from the
eigenvalues. Then, we can identify the state matrix of the
continuous-time system using the converted eigenvalues
and mode shapes. Finally, stiffness and damping
matrices can be obtained by multiplying the mass matrix
with the continuous-time state matrix.

We conducted the numerical simulation using the 4 degrees
of freedom mass-damping- stiffhess system. The CVA-based
technique could identify natural frequencies and damping ratios
with higher accuracy than visual estimation method. Identified
natural frequencies have a high degree of accuracy. All damping
ratios were overestimated. The identified stiffness matrix also
had good accuracy in the case of 5% noise. The accuracy of
damping matrices is inferior to that of stiffness and this is
because of the identification error in damping ratios. The
reconstructed responses had a good agreement with the true
values both in the time and the frequency domain.

The proposed method assumed the linear and time-invariant
system. For the future work, we want to develop the method to
identify a nonlinear system.

continuous-time
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