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This paper focuses on the stability of fracturing process in reinforced concrete beams and derives a fracture
mechanics based transformation between crack opening displacements (COD) and re-bars force. Bridged
crack model is adopted which considers distinct phenomena for damage process in concrete and bridging of
cracks by re-bars. The derived transformation yields crack profiles for known re-bar force determined by
either RC section analysis or computations having fracture mechanics based approach. Inverse of the
integral transformation is ill-posed when experimentally collected COD’s are not exact. Tikhonov method
of regularization is followed to compute re-bar force from COD where the extremals of the Tikhonov
functional is determined numerically. A numerical example proving the applicability of this method with
different noise levels are demonstrated. It is observed that current method of numerical inverse analysis on
external surface COD can satisfactorily determine location and force of re-bars in the beam cross-section
within limited tolerance of noise in data. Application of this method enables the maintenance engineers to
retrieve inner cross-sectional information from outer measurements in a non-destructive way.

Key Words: reinforced concrete, crack opening displacements, fracture mechanics, inverse analysis, crack
bridging stress, re-bar force.

I ducti from outer response measurements are right
1. Introduction choices for such cases. In this paper, Tikhonov

Determination of re-bar force from external
measurement of cracks is important for existing
structures when available cross-sectional information
are not adequate and/or reliable. Besides, re-bar
corrosion, progressive crushing or crumbling in
concrete as well as retrofit works (underlay, overlay
etc.) alter cross-sections from that of the
detailed constructed one. System identification in health
monitoring and maintenance requires determining
cross-sectional information like clear cover, layers of
reinforcements, reactive force in re-bars under known
flexure and so on in a non-destructive way. Inverse
analysis methods capable of computing inner sources
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regularization in context of a fracture mechanics
based operator equation is explained where the
operator is an integral equation working out crack
widths in reinforced concrete beams on flexure.
Such integral equations were previously derived
for continuously aligned fiber composites'’ and for
plain concrete based on cohesive force model”,
Extensive crack profiles’ solutions for brittle-
matrix  ductile-fiber composites  with  various
geometries and loading conditions are available™ "’
where bridging law was considered a priori.
Reverse computations considering noise in crack
widths encountered Hi-posedness while
determining softening curve of cohesive crack



span resembles a standard SEN fracwure specimen. If

beam span is large compared to the other dimensions,
weight functions of SEN specimen with infinite length
and finite width 1s applicable.

Linear elastic material response is assumed for both
concrete and steel focusing on existing structures under
service loading. Fracture failures under service loading
are important for massive bridge girders or large dams
where propagation of individual crack dominates the
failure, generally below the structural capacity by limit
analysis. Crumbling and crushing of concrete at the
crack surfaces are taken into account by discrete crack
approach i.e. all in the concrete side. It is assumed that
a perfect and total stress transfer occurs between steel
and concrete between two crack surfaces and there is no
question of bar pull-out as adequate development length
is provided in RC design. Constitutive modeling based
on these assumptions for bridging effects and bond
activation in RC is available including variational

formulation and numerical analysis with finite
elements'”.
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Fig. 1: Reinforced concrete beam under flexure. Re-
bars are bridging the crack with forces F.

With the assumptions described above and applying
Castigliano’s theorem in Fig. 1, crack profiles in
reinforced concrete beams are derived by computing
variation of strain energy functional with an imaginary
point load at any location x as" ¥

’
o

u'(x)= g—, JJG(.\", d Do(x)- (N 'Glx, a”.p)da’

0
(2)
where £ = E_for plane stress and E' = F (] —v- )for
plane strain respectively , E_ being the Young's

modulus of  concrete and v the Poisson ratio. ¢(x) is

the stress from external loading that would exist in the
x-plane if there was no crack (shown linear in Fig. 1 at
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the edges) and Gl b} is the weight function to
determine stress intensity factors. Standard {orms
of weight functions for a large varicty of
geometries are abundantly available in the stress
intensity factor handbooks of fracture mechanics.
The weight function for a SEN specimen of infinite
length and a finite width & with a crack of length a
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where g(.x/a,a/’b):g(.\'/a.rf) is given in the
Appendix. Distribution of bridging stress by re-
bars is shown in Fig. 2 and simulated by Heaviside
step functions as

)

G(.\‘, a, [>) =

7= 3l n)-Hleh )] @

where f, =(F, /d, ) are uniform re-bar (bridging)
stresses within their diameters along crack length,
F, being the total force in i-th layer, r the total

number of reinforcement layers, 4. the clear

7
distance of a layer from bottom face, d, the bar

diameter. No micro-mechanical parameter in this
monotonic loading case is considered for simplicity.
The bar forces depend on crack openings
considering relative displacements between steel
and concrete governing bond activation and
bonding process. Bridging stress due to post-peak
strain softening of concrete is neglected for its
insignificant  contribution to crack closing
compared to that of re-bar force.

Crack length = ¢
X

o TN

-

Fig. 2: Crack bridging stress by re-bars as
described by Eq. (4)
3. Numerical Approximations

The net crack profile by Eq. (2) is the resultant
of opening by the external load ﬁ(x) and closing

by internal stress u{x) which is decomposed as

' {(v)=i(v) = ulx) (

N
~—



model for concrete™ and crack bridging law in fiber
composites”.  Tikhonov regularization was shown
successful”' for determining monotonic “bridging stress
{-opening displacement ()" relationship considering
p to be a continuous function of u or location along the
crack v . This facilitated expansion of plir) or p{u(.\')}
by orthogonal basis (e. g. Legendre polynomials) within
the closed intervals ofworx. This paper embarks on

mverse analysis of COD in RC beams with one or
multiple layers of reinforcements which are bridged by
discrete re-bar forces. Closing pressure along the crack
surfaces is a step function and no analytical p{u(,\‘)}
relation exists in the interval [umm,umax]. Although
concordant results can be obtained by a mathematically
compatible continuous p(x) , numerical analysis

deduces the number and location of reinforcement
layers along with re-bar forces at particular load with
desirable accuracy. All these inverse analyses
(analytical or numerical) need extreme noiseless data
for better convergence and exact results . This paper
furnishes the goal of determining crack bridging stress
by re-bars in reinforced concrete beams under flexure
by numerical inverse analysis of Tikhonov
regularization on COD data.

Fracture analysis of RC structures previously
adopted standard single edge notched (SEN) fracture
specimen to analyze stability of fracturing process in
RC beams” where superposition of rotations by
external and internal stress rendered statically
indeterminate re-bar force. Onset of matrix cracking
was demonstrated with the fracture toughness of
material constant’.

concrete, K, , considered a

Applicability of a single linear elastic fracture
mechanics (LEFM) parameter K, is defended if a

cotrect stress intensity factor calibration is available for
specimens large enough compared to crack length
and/or aggregate size'”. Analyses based on compliance
by weight function method were extended to cyclic
loading'".  COD was never used to determine re-bar
force without cross-sectional details. Cross-section was
always assumed to be well-documented beforehand.

This paper utilizes crack widths and determines re-
bar force as the bridging stress of bridged crack model
for reinforced concrete beams under flexure. Generally,
cohesive crack model 1s adopted for concrete where
fracture process zone (FPZ) with extensive micro-
cracking ahead of the traction free crack is considered
to be under cohesive stress stretching the crack length
until net stress intensity factor is made zero. Inclusion
of a secondary material inside concrete shifts this
comprehension to bridged crack model by the fact that
intrinsic  resistance of concrete to fracture s
“reinforced™ and brideing lanw is governed by the
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properties of the reinforcing phase and how it is
coupled to concrete. Criterion for crack advance
under monotonic loading tor such model is

K(,~K,,:/\",(- (h

where K, and K, are the stress intensity factors
due to applied stress and reactive rebar force

respectively, K being opposite to K, .

It should be noted that recent constructions of
smart structures with embedded sensor networks
are also capable of determining real-time stresses
in re-bars. This research focuses on existing
infrastructure  systems from a maintenance
engineering point of view. Repair or retrofit works
on the “sensor-less” existing infrastructures which
have passed a fairly long period of service life are
the aim of this paper. To furnish those,
determination of physical and mechanical state of
rebars is necessary and this paper describes a
method to determine stress in rebars. Other non-
destructive testing and evaluation (NDT&E)
techniques (e.g. impulse-echo, acoustic emission
and so on) have their limitations in accessibility,
accuracy and economic viability'”’ in determination
stress in buried steel. The current method of
inverse analysis on COD is versatile and applicable
almost everywhere.

The objective of determining rebar force from
COD can also be furnished by obtaining COD’s at
rebar locations only and by using steel constitutive
relations. Even if it is difficult to determine COD’s
at rebar locations, crack mouth opening
displacement can be measured and a particular
shape of the crack (linear or quadratic) can be
assumed to obtain COD’s at those locations. Such
computations inevitably needs the location of
rebars known explicitly and possibly their sizes
which we assume unknown in the current method.
However, such a method for known cross-sections
in the laboratory experiment will serve a check for
the current method.

2. Bridged Crack Model of RC
Beams under Flexure

Concrete fracture is characterized by extensive
micro-cracking, surface roughness and three
dimensional uneven apertures. Beams in flexure
are idealized in Fig. 1. Zero or negligible shear
assumption at the crack plane ensures a Mode |
fracture condition. We consider a through-
thickness crack to exploit 2D simulation where
relevant quantities are applicable to unit thickness
of the beam. A single dominant crack at the mid-



external  load s
exactly for any

The opening of cracks by
deterministic  which is computed
loading magnitude and distribution as

ﬁ(.\‘):%j jG(.\". & DY )l |G, o b)eder’ (6)
0

v

After rearranging Eq. (5), closing of cracks by the
statically indeterminate reactive re-bar force can be
expressed as

ulx)= —;7 _[ JG(.\", a’,b)f(x ) |G(x,a’, b)da’
X0

=i(x)~u'(x) )]

The solutions of Eqg. (2), (6) and (7) encounter
singularities at x =g which can be avoided analytically
by substituting

x'=d’sin@ and o’ =xcosh @ (8)

However, we consider Eq. (7) as a transformation
between rebar force and crack closing values and
approximate the transformation T by T), raising the
upper integration limit a little bit higher. Convergence
of the resulting quantities is checked for such
alterations and most convergent one is considered for
numerical computations. This approximation is shown
in Fig 3 using exact and approximated transformations
for determination of crack profiles in the example of
section 6. Such approximations in the transformation
are well handled in Tikhonov method of regularization”
as long as the corresponding approximated weight
function G}, is real-valued, continuous on,

M={0<a’<a.0<x<a’} 9)

and non-singular. The regularizing parameter a will be
chosen based on this error in transformation / > 0

|7 -1, <h (10)

The values of /s are calculated in numerous
computations in example of section 6 with different
definitions of norms in both the spaces and it was found
that the order of 4 is always 10°-10" due to the
approximation.

Further approximations include discretization of the
weight function into its finite difference equivalent. A
suitable grid is chosen as

{a, k=1....p}and {v, k=1, ph (n

where v, <a,,for i< ; with equal step interval /1 .

Consequently, the weight function is approximated with
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the matrix d, € D {=G,) for constant width of
specimen as

(///:Glz('\.w“/)- F= 2 /)r\t
_ G, (-\ (",) ( J=lo.p

==
(12)

Ji=Lp

The matrix D is a lower triangular matrix for
the choice of grids stated above. The elements of
the domain of T are the discrete bridging stresses,
either computed by section analysis for an
“forward problem” or to be determined by inverse
analysis

=1 k=1 p} (13)

where f,‘ for cracked parts without re-bars are

almost zero. Experimental COD data should be
collected following the same grid as

W =l k=1, p} (14)

Same discretization is utilized to determine
crack opening by external load from Eq. (6)

a={ k=1 p} (15)

Probable elements of the range of T are the
crack closings in the grid deduced as

z/:11'~17::{uk,k:l, ...... ,p} (16)

Ir—7,)<1.57x107

E o1 Exact solution
20.05 |
8 0 | Approximate solution

R

0 200 400

Location along crack, x (mm)

Fig. 3: Approximation in the transformation

4. Tikhonov Regularization

We consider Eq. (7) as a linear ill-posed
problem

Tf =u,with fe FanduelU (17)
with 7 [)(T)c F — U being a linear operator

with closed range. F and U are infinite
dimensional real Hilbert spaces with corresponding



inner  products  and norms.  Linearity  of  the
transformation can easily be checked by proving
Teofi+onf)=aT(f)+ e T(f,) U8

We are interested in the approximate solution
1’ giving the extremum of the following Tikhonov

functional
VA N e 1 (19)

where we have /5 € U, the available noisy data as

“u—u(gnb <6 (20)
with  known moise level, & in the space
U=1L, [umin ,umax] . The p-dimensional Euclidean

space F has the following definition of norm for its
elements f € E?, with g=2

no “
IMI{ZM} , l<g<eo @1
k=l
Numerical  solution of ill-posed problems

approximates the initial infinite-dimensional problem to
a finite dimensional one, for which numerical algorithm
and computer programs can be developed”. To ensure
better convergence of the extremals of Tikhonov
functional with that of finite dimensional approximation,
the dimension of the finite dimensional approximation
should increase unboundedly. We choose a sufficiently
large dimension so that the error in the approximation is
substantially small. Thus the following Tikhonov
functional set by using Eq. (7) and (19)

mlrl= j {(’IG,, (x’,a’)f(x’)dx’}

° (22)
p
X G, (x,a)da’—uz (X)) + OIZ re
k=1
is approximated as
N ) ]) /} 2
m=lr]= dU[z dif, )h\ —uy | hy
k=1{ j=1 i=1
(23)

r 5
oy 1
k=)

Variation of Eq. (23) with respect to f, lead to the
following p number of equations
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=1h=1\i=] =1

L
= /7_\ [ (//I'd"n'l' }I/{ (24)
k=1\i=l

for/ =1...... -.,p. We solve this as the following

system of equations

Bf+aCf=v (25)
where
» P Y
by=h | Y dpdy | Y. d;dy [€B (26)
k=1 i=1 =1

r{r
v, :Z[Zdﬁdh}uk €V 27
k=1\ =i

For the current choice of Euclidean norm
shown in Eq. (21), the matrix C is a pX p identity
matrix. The choice of the regularization parameter
o > 0 should be such that @ — 0 in such a way
that

2
(h+0) 50
o

(28)

5. Solution Procedure

Direct solution of Eq. (2) yields crack profiles
where total rebar force, F under bending moment
M is determined by a different RC section analysis
as

F= M (29)
jd
where j is the well-known section parameter.

This computation usually under-estimates the rebar
force for which COD profiles have small values at
rebar location. Exact computation of F would have
yielded zero COD at rebar locations. However, the
inverse analysis will determine this rebar force
from COD’s without any cross-section details as
required by other methods.

Small errors in computed bridging stress do
not lead to large variations in COD as the
transformation is defined by integration. The
inverse mapping is the opposite of integration
where a small error in COD can lead to errors
greater than the worst case error™

The stringent 2D assumptions under estimate
the COD’s in direct analysis due to slip at rebar-



concrete interface and practical COD profiles would be
of higher values due to this. However. we assume that
the gradient of a COD profile does not change for slip
and so, there is no effect on inverse analysis as the
governing equation Eq. (1) 1s an integral transform. The
results of the inverse problem depend on the gradient of
the COD profile, not on the absolute values.

In addition, tension in surrounding concrete leads a
reverse channel shaped 3D profile for which COD’s at
rebar surface are almost zero but the surface COD’s are
higher. This affects the results of inverse analysis for
which the inverse analysis will underestimate the rebar
force in practical cases which needs to be verified by
experiment.

Experimental COD’s [u/(x)] should be deducted
from crack openings in Eq. (15) to get crack closings by
bridging stress for inverse analysis of the operator
equation Eq. (7). For analytical checking, experimental
noise can be simulated by adding random numbers of
particular mean (e.g. zero) and width @ of Gaussian
distribution to the COD’s in Eq. (14).

In the following example, re-bar forces in a cracked
beam are estimated as bridging stress per unit length by
RC cracked section analysis for a particular external
load (Fig. 4). The crack length is computed by fracture
condition at the crack tip for monotonic loading. Crack
profiles are estimated by Eq. (2). The COD’s are made
noisy by adding computer generated random numbers
of Gaussian distribution with them (Fig. 5). The noisy
crack profiles are input in Eq. (27) for inverse analysis
to retrieve the bridging stress distribution in Fig. 4. No
cross-sectional information is necessary here. The
retrieved bridging stress with different percentages of
error levels are shown in Fig. 6. It is observed that
larger error level leads to larger variations in the results.

6. Numerical Example

A 250 mm x 554 mm concrete beam is reinforced
with three layers of re-bars with steel areas 900 mm”,
400 mm” and 200 mm” arranged at 25 mm, 65 mm and
101 mm clear distances from the bottom face. A section
is cracked under a bending moment 176 KN-m where
shear stress is zero. Fracture condition in Eq. (1) shows
that the crack length is 380 mm for K, =15 N/mm'~,
The steel stresses found by cracked transformed section
analysis are 278 MPa, 258 MPa and 240 MPa
respectively from the bottom. Using a concrete of
cylinder strength, /7 =20 MPa , steel Young’s modulus,

E, =200 GPa and a plain strain condition, the crack
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profile is determined by solving kqg. (21 which is
called forward analysis here.
6.1 Forward Analysis

The distribution of re-bar stress at different
layers is appropriately simulated as bridging stress
per unit length of the crack following Eq. (4) and is
shown in Fig. 4. The step function has values only
at the re-bar locations and zero elsewhere.

Bridging stress by Layer |

Bridging stress by Layer 2

ridging stress by Layer 3

0 100 200 300 400

Bridging by re-bars, 7, N/mm

Distance along the crack, mm

Fig. 4: Simulation of bridging stress by re-bars
with Heaviside step function in Eq. (4).

The only forward solution for this problem by
Eq. (2) with linear bending stress is the crack
profile (firm line) in Fig. 5. The profile shows
depressions at the re-bar locations. One hundred
data points (COD’s) are picked up from this curve.
Random numbers of Gaussian distribution with
zero mean and widths 0.001 and 0.005 are added to
make them noisy (dotted lines) which created
errors of 1.32 % and 7.25 % in COD data. It is
advantageous to have more points near the re-bar
locations where the crack widths vary rapidly and
has profound effect on the resulting re-bar stress.
But experimentally collected surface COD’s lack
reliability of the information about re-bars’
location. So, it is better to choose as fine grid as
permitted by experimental equipment and
computation time.



Applied error = 7.25%

COD’s, mm

-0.02 6 100 200 300 400
Distance along the crack, mm

Fig. 5: Exact and noisy crack profiles

6.2 Inverse Analysis

Noisy crack profiles yielded the bridging stress
distributions in Fig. 6 by Tikhonov regularization
method i.e. by solving of Eq. (25) for f.

\é 15000 / Data error = 1.32%
Z .
Z:. 10000 - Aﬂ/ Data error = 7.25%
3 Py
: 1
gt
'f? 5000 ‘ ,"I\‘ N
X \
&p 0 1 '\.‘g‘\h
. Akl
oo Bl
100 "0 ll 1400
-5000

Distance along the crack, mm

Fig. 6: Retrieval of bridging stress profile of Fig. 4
by inverse analysis on noisy COD data.

It is observed that data with very low level of noise
retrieves exact stress pattern in Fig. 4 and re-bar force
becomes more and more approximate with the increase
of noise levels. A comparative assessment of the errors
in data with the errors in results is shown in Table 1. It
is noticed that data errors increase errors in results but
lacks consistency due to randommness. Data crrors are
calculated in terms on its L norm as

Je—ws]

o]

(30

€rror =

Errors in results are calculated as percent errors
in total force of re-bars from the exact value of
section analysis. Small fluctuations in choosing the
regularizing parameter are not significant as long
as it is chosen according to Eq. (28). Further
improvement of the results can be achieved by
another forward analysis with the current re-bar
forces from inverse analysis. But, results changed
very insignificantly in this case and it became
stable after one iteration.

Table 1: Demonstration of errors in inverse
analysis results with errors in input COD data.

Gaussian| g o of Percent
dlsu".t:;:g COD data |Regulariz| error of | percent
OnWICR in Lynorm|  Ing CODin | eprorin
of s parameter| terms of | {4¢a] re-
random o Lymorm |bars force
numbers
w Eq. (20) Eq. (29)
0.002 0.0196 02 2.75 4.68
0.004 | 0.0368 0.3 4.84 4.63
0.006 | 0.0601 0.6 7.91 5.38
0.008 0.0768 0.7 10.11 4.21
0.010 | 0.1000 0.8 13.22 7.34
Very sophisticated technique should be

followed to collect COD’s from field to minimize
noise as much as possible. Instrumental and
computational errors should be defined as
accurately as possible for correct choice of the
regularizing parameter. A technique involving
image analysis on microscopic pictures is being
developed under this research.

7. Conclusions

A straightforward method has been presented to
compute inner re-bar location and force from outer
surface crack measurements. The method is
suitable for decaying infrastructures which need
urgent maintenance and require their System
identification by non-destructive methods. Current
method requiring only crack opening data has huge
potential for industrial use in maintenance
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engineering. Although it is explammed for an ideal case
of single edge cracked specimen under monotonic
loading. it can be extended to multiple cracking if
appropriate weight function is derived. It can also be
extended to repeated loading cases by including
variable micro-structural parameters in the model.
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APPENDIX

Weight function for single edged cracked
specimen is expressed with the help of following

h, (x/a,a/w) function as

glx/a,alw)

(1—a/w)?

(A-1)

h, (x/a, al w)z

where g(x/a,a/ w)= g(r,s) is given by
glr.s)= g1 (s)+rgy (s)+r2 gy (s)+ g4 (s)
(A-2)

2,(5)=0.46+3.065 +0.84(1-5)* +0.665(1-5)’

(A-3)

(A-4)

3

g3 (s)=6.17-28225+34.5457 14395 —(1-5)"*
—5.88(1~5)° ~2.64s2(1-5)
(A-5)
g,(5)=~6.63+25 165 -31.04s% +14.41° +2(1 - 5)' °
~5.04(1—s) +1.9857(1 = s

{A-6)
(Accepted 16 April, 2004)



