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An unstructured mesh method is presented for the nondinear k-&model to predict the
complex 3D flow filed in engineering practices. The cell-centered FVM (Finite Volume
Method) is used for the discretization of the governing equations on a collocated polyhedral
mesh. A strict but effective data structure is adopted for the store of the CVs (Control
Volumes). It can simplify the application of hybrid polyhedral mesh. Special treatrments in the
discretization and the boundary conditions have been emphasized. The nondinear model in
combination with the wall function approach is employed to a number of turbulent flows. For
each test case, the standard k- & model is also implemented for comparison. It is shown that the
results of the simulation are in reasonable agreement with those of experiments. Moreover, the
nondinear model is always able to give a more accurate result than the standard one.
Key Words: non-inear k-¢ model, unstructured mesh, FVM, hybrid polyhedral mesh

1. Introduction

Recently, the application of unstructured mesh is
undergoing considerable expansion in the community of CFD
(Computational Fluid Dynamic). It attributes mostly to some of
its inherent advantages. Unstructured mesh offers significant
flexibility in treating complicated geometries and provides a
convenient means of pursuing mesh adaptation. Both of these
are important considerations for the engineering practice to date.

However shifting from structured mesh to unstructured
mesh, engineers and researchers have to face a great number of
challenges. For example, the boring process of mesh generation,
especially the effective generation of arbitrary polyhedra is still
not attainable with the current techniques and sometimes
becomes the bottleneck of the simulation. The resulted algebraic
equation set is usually symbolized by a non-symmetrical,
non-positive-definite or even ill-conditioned coefficient matrix.
It necessitates the invention of novel solution atgorithms. Either
of which is worthwhile enough to form a new scientific branch.
As the mesh generation and solution algorithms for equation
sets involve more mathematics, these subjects are not furthered
hereafter.

The last decades have witnessed the rapid rise of LES

(Large Eddy Simulation) and DNS (Direct Numerical
Simulation), but these are still under development and a little far
from the practical uses for most of the hydraulic engineering
applications so far. From the engineering interest and
cost-effective standpoint, methods derived from the RANS
(Reynolds-Averaged Navier-Stokes) equations are preferred.
The nondinear k-¢ model is documented to be a compromise
between the ARS (Algebraic Reynolds stress Simulation) model
and the standard k-¢ model. It greatly improves the
elaborateness of the standard k~&¢ model with very small
increasing of the computational effort. As a result it has achieved
a distinctive flourish by the publishing of inexhaustible
literatures, e.g. ™%, Nevertheless, investigation of non-inear
k-& models based on unstructured mesh method is still quite
few . This has greatly limited the application of non-inear k-¢
models to flows in complex geometries, with moving
boundaries or interacting with hydraulic structures.

‘When unstructured mesh is selected, the connectivity of the
mesh has to be explicitly defined. The store of the CVs becomes
a problem, especially when the mesh consists of hybrid
polyhedra and the number of the CVs is quite large. An
object-oriented method is intuitive which includes all the
elements of a CV such as faces, edges and vertices, but it might
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result in a vast consumption of computer memories. The
discretization of the governing equations is an error-prone
process. Comparing with the structured mesh, it is blwrred by the
mesh skewness and the non-inear terms in the expression of the
Reynolds stresses. Disregarding them might sometimes lead to
intolerably slow convergence or even undesirable program
crash. Furthermore, the boundary conditions pose a more
challenging and interesting problem for numerical simulation
than their physical appearances. Cautious interpretation and
implementation play an important role for a success running. All
these problems are tried to solve in this paper.

The proposed methodology is firstly applied to predict the
3D flow filed in a rectangular channel. After that, it is employed
to flows around embayments of different sizes. Different types
of unstructured mesh including a hexahedral mesh and a hybrid
mesh of hexahedra and prisms have been tested.

2. Governing Equations

Turbulence models based on the RANS transform the
Navier-Stokes equations in such a way that the transport
equations are used for the mean flow quantities only, while the
time-averaged statistical turbulent fluctuations are modeled from
the information of the mean flow. As engineering practices care
more about time-averaged meean values than the transient ones,
they have been epjoying a wide spectrum of investigation and
application. The representative models of this kind come from
the k-¢ model family based on the eddy viscosity hypothesis.

2.1 Mean flow field
The unsteady 3D RANS equations and the continuity

equation expressed in a Cartesian coordinate system with the
Einstein summation convention are as follows.

Momentum equations:
Ou; 1 O’u, 107,
-~ =/ 1P, v——* ey,
Ot pox, Gx X, p G‘x
Continuity equation:
Ou,
i = 0 2
Pe @

i

where u;= time-averaged velocity; x;= Cartesian coordinate
component; o= density of the fluid, fi= body force; p=
time-averaged pressure; v= molecular kinematic viscosity of the

fluid; T, = —pu;u} , are the Reynolds stress tensors, and

u; is the fluctuating velocity component. As is readily seen, the

above equations are not closed because of the unknown
Reynolds stress tensors.

2.2 Turbulence closure

In order to constitute a relationship between the Reynolds
stresses and the mean flow field, different turbulence models
have been put forward. Before the description of the detailed
models, some definitions are given as below

5, = A0, O
Y Gx ox,

0 =% %
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where S;= the strainate tensor; 2= the rotation-ate tensor;
&= the Kronecker delta; G= the rate-of-production of the
turbulence kinetic energy k.

In the standard k-&¢ model, the Reynolds stresses are
evaluated through the linear constitutive equation

—uu ——i—k& AR @)

where the eddy viscosity v, is evaluated as

2
=C, L2 ®)
£
In the above expression, C, is a coefficient, and is usually set
to be a constant and equal to 0.09; ¢ is the dissipation rate of the
turbulence kinetic energy, which together with %, is computed
from the following transport equations.

ok ok 0O v, |k
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The commonly used model constants are suggested by
Rodi® and taken the universal values as follows

©)

+ (C:wG - C25€)%

0.=10 oc.=13 C.,=144 C_=192 (7

It is well-known that the k-¢ model has some drawbacks, in
particular, the omission of any anisotropic eddy viscosity effects,
although it has a widespread use and still vivid nowadays. These
defects can be overcome to some extent by introducing a
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nondinear constitutive relation between the turbulence stresses
and the mean strain rate satisfying certain tensorial properties.

Introducing quadratic or cubic terms in the standard linear
model, a great number of nondinear k-¢ models have been put
forward ™ 2 ¥, A general form for a quadratic constitutive
equation can be summarized as

- 2
uu, = gkéij ~2v,8;

k| Ou, Ou, Ou, Ou, 2 0u, ou
+al___ ,_+_~________m5“
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g | ox ox; 30y dx

where a;, a, and a; are coefficients.

For the verification of the current unstructured mesh method,
the model coefficients proposed by Kimura and Hosoda ¥ is
employed in this paper. The model has been tuned by
experimental studies and consideration of the constraints of
realizability such as non-negativity of the normal Reynolds
stresses and Schwarz inequality between turbulent velocity
correlations. With this model, the coefficients are given as
below.

C, = min 0.09,————9'—3————
# 1+0.09M* ©
0.4C, -0.13C
a =0.0, Ay =——————, O, =—”2
1+0.01M 1+0.01M
and
M = max(S,0Q)

(10)

_k k
= ;,/2S”SU_ , Q= = 12Q,Q,
where S= strain parameter and 2= rotation parameter.

3. Numerical Scheme

Suitable numerical treatments are needed for the solution of
the governing equations. Substituting the Reynolds stress
expression into the momentum equation, the following equation
is obtained.

a_ui.+u_.a.il_i-=fi—i £+£k +
o 7 ox, ox\p 3
(1D
o%u o (Ou, ON
o)y, 200 ], O
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where N;= the nondinear terms introduced in the Reynolds
stress expression, which is a polynomial of the derivatives of the
velocity components.

In the above equation, the terms in the Reynolds stresses
have been divided into three parts, the diffusivedike ferm

v,0%u, /Ox; is treated implicitly as a diffusive term, the term

2/3kd, is incorporated into the pressure term and the

remainder is transferred to the source terms. If the pressure
gradient is also considered as a source term, it is seen that the
momentum equations have the same form as that of the
transport equations of kand ¢ .

By satisfying the integral form of the conservation law to a
number of continuous polyhedral CVs covering the study
domain, the governing differential equations can be integrated
using a cell-centered FVM. The general form of the
mesh-independent equation over a CV is

g [padv+ [ gunds-[TVpnds+(pav a2

where V= the volume of the CV; S= the CV surface with a unit
normal vector n directing outwards; ¢ = general conserved
quantity representing either scalars or vector and tensor field
components; u= the fluid velocity vector whose Cartesian
components are u; or (4, v, w); 1= diffusion coefficient and b=
the volumetric source of the quantity¢. The equation has a left
side of a transient term and a convective term, which is balanced
by a diffusive term and a source term on the right.

3.1 Numerical mesh

Although any kind of polyhedral mesh can be used in the
simulation theoretically, the generally adopted unstructured
mesh in industrial practices is confined to tetrahedra, pyramids,
prisms and hexahedra. It might due to the sophistication of mesh
generation as well as no certificate of obvious relationship
between the mesh complexity and the accuracy improvement. It
is noted that among all the above mesh types the hexahedron
can be accounted as the general case. (And the quadrilateral is
the general case for the surface correspondingly.) Concerning
this, the data structure and FVM treatments in this paper are
simplified for the hexahedral mesh only, and other polyhedra are
considered as hexahedra with some nominal faces. It makes it
possible that a hybrid mesh system can be stored with the same
data structure irrespective of the type of the polyhedra.

In order to define the connectivity of the CVs, there are a lot
of alternatives. As has mentioned before it is possible to define
the CV by its six faces, faces by the lists of edges and edges by
their corresponding vertices. This method is intuitive and easy to
understand, but it is not preferred owing to its great consumption
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of computer memory.

A more restricted but simple data structure is employed here.
The CV is simply defined by a list of its eight vertices in a
counterclockwise order. With such definition, the faces
enclosing the CV and the edges forming the faces are also
uniquely identified. They can be organized in an ordered way
without occupying extra computer memory. Moreover, the
neighboring CV which shares the common face with the current
CV can also be indexed in the same ordered way as that for the
faces. For nominal hexahedra, due to the existence of nominal
faces, some of the vertices will be repeated during storing. After
this kind of treatment, the input of the mesh system includes
only a list of nodal coordinates, a list of vertices of the CVs and a
list of the neighboring CVs.

3.2 Spatial Discretization

For a collocated variable distribution, all the unknowns are
defined at the center of the CV. The gradient of the unknown is
assumed to be an average over the CV and evaluated with the
Gaussian Theorem. For instance, the derivative of ¢ with
respect to x, is evaluated as

o) Lrdd,, 1
alp V-I.VadV V;¢fsf 13)

where the subscript P= the present CV and the subscript /= the
surface of the CV. With this approximation, the gradient is
transformed to a summation of the surface values.

If the transient term is absent for the time being, by
employing Eq.13, Eq.12 can be discretized term by term as
follows:

5]
Z¢f(ufl Sf)=ZTf Enq‘j‘fsf +bp = spp (19
7 7

where u;, = the fluid velocity normal to the surface; bp= part of
the source term containing all the contributions excluding
unknown variables and -~sp¢ 7= part of the source term
including the unknown variables which can be treated
implicitly.

Eq.14, together with Eq.13, is not an explicit expression of
the unknowns that defined at the center of the CVs. There are
lots of surface values that need to be determined. The commonly
used method is an arithmetic interpolation from the values of the
CV on either side, for a quantity ¢

d
¢, =a,p,+1-a and g, =— & 15
)y T A Pp ( f)ﬁA f d, +d, 15

where the subscript A= the adjacent CV, dp and dj are the
distances from the surface to the present CV and to the adjacent
CV, respectively. In practices, this method sometimes leads to
questionable result, and it is not applied for all the quantities. In

this paper, the surface diffusive coefficients, the surface fluxes
and the surface values of the conserved quantities are
interpolated in sorme more effective way.

For the evaluation of the diffusive coefficients on the surface,
the harmonic mean can reflect more physics and reasonableness.
It results in

I = r,r,
! afrP+(1_af)rA

(16)

A simple arithmetic mean for the fluid velocity on the
surface might lead to checkerboard variable distribution, which
has caused the collocated mesh out of favor for a long time. This
problem can be cured by the interpolation method proposed by
Rhie and Chow . The method introduces an additional term
related to the pressure gradient when calculating the fluxes on
the cell face.

As is known, the unknown quantities of the present CV can
be finally expressed by all of its neighboring CVs after
discretization. For instance, the momentum equations for u at
present CV and one of its adjacent CVs can be written as

5]
apup = Zanbunb P _J.VEIJ%dV\P +b,
nb

an

- dp

au, = nzbanbunb A fvé;dVl 4 Tby

where a= coefficient for the unknown at the center of the
approximated CV and nb= the neighboring CV.

From the conservation principle of the FVM formulation, the
velocity at the common face of the two neighboring CVs must
also have a discretized momentumn equation of the similar form
as that of Eq.17, ie.

0
afuf = Zbanbunb f —J‘V_é'px_dvif +bf (18)

Approximating the solution u; of Eq.18, the information
from Eq.17 can be used. By using some linear interpolation and
simplification, the following equation is obtained.

1 Op _(%p
uf—uf+;[fv—a;dV|f J;—de]fJ (19)
where

U =afup+(l—af)4A

a; =afa,,+(1—af)aA

op _ ap 3 dp
_Lg;dV‘f—afJ;adWﬁﬁ af)J.V‘a;dVlA @

J:,Z‘idV‘f = Sfx(pA 'Pp)
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where S;= projected area of the surface to the yz plane
(perpendicular to the x axis). The extension to other velocity
components at the surface is straightforward.

For the conserved quantity ¢, evaluation of the surface value
is very important for the convective term. Adopting the power
law scheme, the finally discretized equation can be assembled as

);([DfA(\Pf!)+m(-1~},0)](@—@)+F,¢P]
~b s/

where the strength of the convection F; diffusion conductance
Dy and the ratio of them are given as

a2y

Fp=u;S,, D/=1:;Sf’ Pf=£_ff (22)
AP
and
Alp,|)= max}o, 1 —0.1|Pf|)5J 23)
3.3 Mesh skewness

In the above section, such assumption has been made that the
line connecting the neighboring CV centers is almost orthogonal
to the cell face and passes through the cell-face center. Under
this presumption, the numerical simulation can give almost the
same accuracy as that achieved by the mathematical derivation.
However it is not always the case. When unstructured mesh is
used, the mesh sknewness is almost unavoidable.

Mesh sknewness is generally classified into two kinds:
non-conjuctionality and non-orthogonality. The former means
that the intersection is not the midway of the surface and the
latter stands for a poor perpendicularity. Ferziger and Peric have
suggested some ways to maintain the discretization accuracy. ¥

If a nonconjuctional mesh occurs, the value at the
intersection (f'in Fig.1) is firstly evaluated by interpolation, and
then a correction term is introduced. The value at the center of
the surface (fin Fig.1) is evaluated from

¢f = ¢f' + (V¢) - (r YRy ) 24

where f= the intersection of the surface and the line connecting

Fig.1 Treatment of non-conjuctionality

the two neighboring CVs, the gradient at f”is obtained by
interpolating the cell-center gradients at either side of the face.

For a non-orthogonal mesh, the normal gradient of a quantity
at the surface in the diffusive term has to be corrected. Dividing
the diffusion into a normal diffusion and a cross diffusion, the
following approximation is suggested.

0 4~ ¥p exp
), s

(25)
Iy~ Ip

1=
}rA—r},l

Fig2 Treatment of non-orthogonality

where I= the unit vector in the direction of the line connecting
the center of the current mesh and its neighbor.

The first term on the right hand side is treated implicitly
while the second term is a deferred correction which is
calculated using interpolated cell center gradients explicitly.
(This is the reason why the superscript exp is used) It is obvious
that in the final algebraic equation, the second term becomes a
source term. And if non-orthogonality is not very severe, the
vectors n and ! are co-linear, this source term disappeats.

3.4 Temporal integral

At the end of the spatial discretization, one can obtain
0
ELWV=F’ F=Zanb ot bp ~app (26)
nb

For a steady calculation, F=0, it is the final algebraic
equation set. All the coefficients can be acquired from the
discretization methods introduced above. In unsteady cases, the
temporal integral should be included. The second order implicit
Crank-Nicolson Scheme is a suitable solution.

3.5 Other details

The resulted equation set is not implemented directly, the
under-relaxation method proposed by Patankar ¥ is adopted
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before the computation. It has been found to be very efficient
owing to its increasing of the diagonal dominance of the
coefficient matrices.

The algebraic equation systems are solved in an implicit
decoupled way. Considering the sparseness and non-symmetry
of the coefficient matrices, Krylov subspace iterative methods
are preferred. The Bi-CGSTAB(/) (Bi-Conjugate Gradient
Stabilized) algorithm suggested by Sleijpen and Fokkema ” is
employed in this paper. The solution procedure follows the
widely used SIMPLE method (Semi-Implicit Method for
Pressure-Linked Equations).

4. Boundary Conditions

The implementation of boundary conditions requires special
attention. As the boundaries do not provide additional equations,
introducing of additional unknowns is not desirable ®.
Commonly encountered boundary conditions in engineering
practice include the inlet, the outlet, the impermeable wall, the
free surface and the symmetrical plane. For the time being, the
free surface is considered as a symmetrical plane. This
presurnption can greatly simplify the solution process and is
acceptable for many hydraulic problems.

4.1 Inlet

The inlet boundary is considered as a Dirichlet boundary,
and all the quantities have to be prescribed. In the discretized
equation for the CV near the inlet boundary, as the boundary
value is given directly, the contribution from the boundary turns
into a source term and no need to be calculated implicitly. In the
pressure-correction equation, as the velocity field is given, the
velocity correction is zero. And the Neumann boundary of zero
gradients is suitable for the pressure.

4.2 Outlet

At the outlet boundary, the flow information is usually very
little. In order to avoid the propagation of errors, an alternative is
to place the outlet boundary as far downstream of the study
domain as possible. Then a Neumann boundary with zero
gradients can be assumed. In order to ensure the global
conservation of mass, the following technique is employed.
Firstly, an initial estimation of the velocity at the outlet is
acquired by extrapolation from the near boundary CVs. And
then the velocity is corrected by making the outlet mass flux the
same as the inlet mass flux. A mathematic interpretation is

Zufl Ny
old inlet
S 27)
Z”ﬂ S,

outlet

where uz= the velocity component at the outlet boundary (i
ranges from 1 to 3) and the superscript old means the value is an
initial estimation as mentioned above. As this also provides a
way to correct the velocity field at the outlet, the velocity is no
need to be corrected again in the SIMPLE procedure.

4.3 Impermeable wall

The wall function approach is used near the impermeable
wall. Hence the integration through the viscous sub-ayer is
unnecessary, and meanwhile it makes the consideration and
implementation of the wall roughness more easily.

In the wall function approach, it is assumed in this model that
the near wall CV velocity is parallel to the wall and is denoted
by u,. Although it is not always the case, the treatment can be
simplified without significant influence on the result.

With the definition of the dimensionless distance y* and
dimensionless velocity u" as follows

sl ==k (28)

where u»= the friction velocity near the bed and y , = the normal
distance from the center of the near wall CV to the wall surface,
the universal wall function can be expressed by

u' = lln(Ey+ ) (29
K

where 4 = the van Karman constant (= 0.41) and E= roughness

parameter of the wall. Assuming that the flow is in local

equilibrium, ie. the production and dissipation rate of the

turbulence are nearly equal, one can obtain

1/ 2
u,=C,'k, (30)
Then the wall shear stress can be written as

o= pul = pCLMIf;,/Zu,, 31)
u
In the momentum equations, the link with the wall is
suppressed by setting it to zero and adding the wall force in
Eq.31 as a source term. The normal derivative of k at the wall
boundary CV is set to be zero in the k-¢ equation, and the
production in the wall region is computed from

i_au// Loy
Py

Gy = 32)

p On
¢ is not computed in the near wall CV, but is directly set to
u 3 _ C j, /4 k ?’/ 2

Ky, Ky,

&p = (33)
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5. Model Verification 4

In order to verify the applicability of the proposed

TTTT T I T T[T T T T[T T TTY

methodology, the flow in a rectangular channel and the flow 22
around different sizes of embayments are tested with different 1
meshing strategies. 0
0
5.1 Flow in a rectangular channel
4

The first verification is the prediction of the 3D flow in a

rectangular channel. Detailed measurements were reported by ’ ? _W
Ishigaki 9 An LDV (Laser Doppler Velocimeter) system was r
used to measure the fully developed turbulent flow velocities in 1 :—
a cross-section. Experimental conditions are given in Table 1. 0 i
0
Table 1 Experimental conditions
4
Width Depth Discharge Slope Re. Froude 5
B (cm) H (cm) Q (I/s) L number | number 3 o
20.0 4.00 2.055 1/1,400 7,700 0.48 '/ ) 3
Considering the geometrical symmetry, only half of 1 E— p—
the flow field is selected as the computational domain. oF ] —
In order that the influence of the inlet and outlet ¢ ® ® 10
boundaries can be negligible, a longitudinal distance of Unit: y, z: cm; u: cm/s
140cm (=35H) has been chosen for the simulation after Fig.3 Comparison of the longitudinal velocity (u):
some trial cases. By using a total number of 10,626 (Experiment, top; Noninear, middle; Linear, bottom)
hexahedral mesh, the non-linear k-&¢ model and the 4
standard k-& model are implemented, respectively. A 3 _;}3;‘ 7 Z\/;;S_—
logarithmic velocity profile is assumed at the inlet z M_ﬁ
boundary. The turbulent quantities k and ¢ are specified 2 r ) 35T A s M
corresponding to a viscosity ratio of 10.0 and taking the 1 E':? ///}:ﬁ
turbulence intensity 8%. ok IR A S
The comparison of the longitudinal velocity in the ° : * y ¢ : "
transverse cross-section is given in Fig.3. The linear
k-¢ model does not include any information of the 4F
vortices and the secondary flow, which in return affects 3 :f‘\im’/“ 5/ { L(_g
the prediction of the mean flow pattern. The difference 7 =2, "—"—j,;f';

of the longitudinal velocity between the non-linear k-¢

N
TTT T T T T I T

model and the standard k-¢ model is very obvious. /A b— 65—
. . 20 e
Near the free surface, the nondinear model is able to 0 RN T T T P T T et
. . o 1 2 3 4 5 6 7 8 9 10
capture the velocity profile quite well, however there y
seems to exist great discrepancy between the result of
the standard model and the experimentai data. Ishigaki 4

also computed the same flow with two ARS models

based on structured mesh'?. It is interesting to find that
the velocity contour predicted by the current non-linear
k-& model seems even closer to the LDV measurements 1
than those calculated by the ARS models.

()
e
- 7z
- a/
N/

U'I\’
Sl

o

I 1
A more reasonable result of the turbulence kinetic ¢ 2 34 ; & 7 8 10
energy distribution is again acquired by the nondinear Unit: y, z: cm; k: cm’/s”
k-e model (see Fig. 4). Nevertheless, both of the Fig.4 Comparison of the turbulence kinetic energy (k):
computational cases slightly overestimate the turbulence (Experiment, top; Noninear, middle; Linear, bottom)
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Fig.5 Comparison of the lateral Reynolds stress distribution (Experiment, left; Non-linear model, right)

kinetic energy near the boundary area. A further
comparison is carried out for the lateral Reynolds stress
distribution at different water depths between the
experimental result and the non-linear k- ¢ model. Fig. 5
shows the variation of the Reynolds stresses normalized

by uf (here u, denotes the friction velocity) along the

transverse direction. It can be concluded that the
Reynolds stresses have been reasonably reproduced in
the area where y/H is relatively large. While in the near
boundary area (ie. y/H is relatively small), an
overestimation can be observed. The exact reason is not
very clear yet, but it might be caused by the defects of
the wall function approach.

The similarity between the computational results and
the experimental data exhibits the applicability of the

current unstructured mesh method. The noninear k-¢
model is observed to need a little more iteration steps
under the same initial and boundary conditions as those
of the standard one. But it manifests its advantages over
its linear counterpart by more reasonable result.

5.2 Flow around an embayment

The 3D flow around the embayment is one of the
most important hydraulic phenomena in the river
engineering practice. Due to the complex flow structure,
the balance of the sediment transport is broken. It results
in a great number of problems, for instance, the local
scouring, the change of environmental parameters, etc.

In this section, the methodology is applied to this
kind of flows. A series of experiments have been carried
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out by Muto et al. '”in a compound flume. The flume
consists of a main channel which has a width of
B=16.0cm and a flood plain with a width b=16.0cm.
Part of the flood plain is removed where forms an
embayment with a length L. The cases of L=16.0cm (i.e.
L=b) and L=48.0cm (i.e. L=3b) are validated. The
experiment setup is given in Fig.6. The experimental

conditions and computational conditions for the

verification are shown in Table 2 and Table 3,
respectively.

Fig.6 Top view of the experimental setup

The inlet flow is assumed to have a logarithmic
velocity profile. At the beginning of the computation,
the initial value of the flow is set to be the same as that
of the inlet. In order to achieve a compromise between
the total mesh number and the influence of the inlet and
outlet boundaries, the inlet boundary is set at the
distance of about 10b from the embayment, and the
outlet, 205b.

Table 2 Experimental conditions
Discharge Water Fncufm Re. Froude
Q (I’s) depth velocity number number
H (cm) ux (crn/s)
2.271 3.8 1.78 9,650 0.74
Table 3 Computational conditions
Aspect ratio .
Cases (L/b) Meshing strategy Number of CVs
Casel 1 Hexahedral/Hybrid 19,683/13,086
Case2 3 Hexahedral 16,902
(1) Meshing strategy

Different meshing strategies have been used as
described in Table 3. From the standpoint of mesh
generation, the hexahedral mesh is easy to be generated
for the current study domain. It is adopted for both cases
to compare the different flow patterns due to different
aspect ratios. In order to investigate the sensitivity of the
model to different meshing strategies, a hybrid
polyhedral mesh of both hexahedra and prisms is also
tested in casel. With this mesh, the areas inside and

around the embayment are tessellated by graded prisms,
while in areas far from the embayment and near the
boundaries, the polyhedral mesh has been used.
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Fig.8 Hexahedra near the embayment (case2,not to scale)

Among all of the meshing methods, the mesh is
clustered near the embayment for a better resolution,
and away from the embayment the mesh is relatively
coarse. Two kinds of mesh structures around and inside
the embayment are shown in Fig.7 and Fig.3,
respectively.

(2) Horizontal cross-sectional velocity profile (u,v)

Comparisons of the computational result and
experimental data in the area including the embayment
(i.e. the main channel and the embayment area from x=0
to x=L) at z=19cm (i.e. half of the water depth) are
given as follows.

A large circulating flow is induced in the
embayment when aspect ratio L/b=1. This circulation
occupies the whole embayment, with a very small
velocity less than a quarter of the main channel flow.
This phenomenon has been well predicted by both the

linear and the nondinear models. (See Fig. 9 to Fig. 11)
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Comparing Fig.11 with Fig.12, one can come to such a
conclusion: although different meshing strategies have been
performed, very little difference is shown in the final result. It
indicates that the treatment for hybrid polyhedral mesh in the
current model is effective and applicable.

According to the report of Nakagawa et al. 12 the number
and the shape of the eddies change according to the aspect ratio.
This is confirmed by the experimental results of Fig9 and
Fig.13. In casel, the center of the vortex is almost the same as
the geometry center of the embayment. However in case2, due
to the increasing of the length, the center of the vortex shifts to
the downstream of the embayment very much. In the upstream
corner area, there forms a small eddy. But it is very weak
comparing with the large one, and this area can be considered as
an almost stagnant zone.

The linear model is able to predict the flow pattern in casel,
but it fails to capture the eddies in case2. In Fig.13, the linear
model gives one large eddy in the embayment although the
aspect ratio has increased to 3. A much larger velocity field has

been yielded in the upstream comer area than the experiment.
This unreasonableness has been effectively overcome by the
non-inear model.

From the above comparison, such conclusions can also be
drawn. The nondinear terms in the Reynolds stresses are not
influential factors when the aspect ratio L/ is small. As the
length of the embayment is not long enough for a full mixing of
the turbulence, the standard k-¢ model seems to be applicable.
With the increasing of L/b, the anisotropy of the turbulence
becomes more and more important, which has a significant
effect on the flow pattern in the embayment. More elaborate
models are thus needed for a better resolution. The non-inear
k-¢ model can be a suitable alternative.

(3) Transverse cross-sectional flow pattern (v,w)
Limited to the available experimental data of the vertical
velocity component w, the comparison of the secondary flow
pattern has not been fulfilled directly. As is well-known that the
standard k-&¢ model could not predict the secondary velocity
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Fig.14 Transverse cross-sectional flow pattern (v,w)
(casel, x=0.3cm: top; x=8.0cm: middle; x=15.7cm: bottom)



vectors. And it is also confirmed by this computation. Taking
the anisotropic characteristic of the turbulent flow into account, a
more reasonable result has been reproduced by the nondinear
k-&¢ model.

Fig.14 the computational results of some
representative transverse cross-sectional flow in casel. These
cross-sections are located at the near-nlet of the embayment
(x=0.3cm), the center area of the embayment (x=8 0cm) and the
near-outlet of the embayment (x=15.7cm). The propagation of
the velocity profile in the crosssections including the
embayment area from the upstream to the downstream can be
obviously observed.

In the main channel area, the secondary flow is evident. And
the velocity profile almost keeps its shape irrespective of the
change of the longitudinal coordinate x. In the junction zone,
significant momentum exchanges occur. There forms a mixing
layer. And the flow velocity field becomes very complex. On
both sides of the junction zone, different flow patterns are
distinguished. As has mentioned in the previous section, the
anisotropy of the turbulent flow in the embayment is not
prominent if the aspect ratio L/b is not large enough. This can be
further observed in Fig.14. Although the variation of the
transverse velocity in the embayment area is considerable, the
velocity in the vertical direction manifests a very small change
from the inlet to the outlet.

shows

6. Conclusions

Anunstructured mesh method for the nondinear k-¢  model
has been presented and validated against experimental data.
With this method, the store of the meshing system is organized
by a strict but simple data structure. It is able to take full
advantages of the hybrid polyhedral mesh system which is
witnessed to become more and more commonplace nowadays.
Special treatments distinguished from those of the structured
mesh methods have been accentuated including the
discretization of the governing equations and the boundary
conditions, etc. The algorithm has been confirmed to be both
stable and effective. As a preliminary study for a morphological
model, some problems involved in the extension from the clear
water to the sedimentdaden flow have also received particular
attention and consideration. As a result, the application to a
movable mesh system and inclusion of the bed roughness are
straightforward with the current method.

Both the nondinear k-¢ model and the standard one work
well with the proposed methodology. The nondinear k-& model
is always able to give a closer result to those of the experiments.
It, combining with the unstructured mesh method, can be
accounted as a promising solution for the turbulence modeling
in hydraulic engineering practices.
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