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A 1D theoretical model based on the depth-averaged flow equations has been developed to calculate
the variation of water depth of flow with air-core vortex at an intake. The use of curvilinear coordinate
avoids invalidation of the Kelvin's theorem in the core of vortex, thus the conservation of circulation
can be applied for whole flow. The results of calculation show the ability of the model in analyzing
the water surface profile and in predicting the critical submergence for vertical intake.
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1. Introduction

Air-core vortex formation at intakes is a significant
hydraulic engineering problem in many situations. It
occurs typically whenever the submergence is less than a
critical value and causes some detrimental effects as
reduction in intake discharge, resulting vibrations and
noises as well as -operational difficulties. Several
approaches have been presented in the literature to deal
with the problem of determination and prediction of
critical submergence serving in design works. These
approaches basically can be labeled as analytical
modelsl,2,3) 4,5,6,7,8).

Many analytical approaches have been presented in

and physical models

the literature in order to attain a theoretical view of the
far-field velocity; the flow representation has not been
defined so far by any comprehensive analytical analysis.
The concept of simple Rankine vortex normally used in
the basic equations >* could not be applied for the case
of air-entraining vortex. Trivellato et al ¥ set the water
surface equal to the stationary headwater while other
experimental works on the
submergence. Consequently, these approaches could not
be used to predict the water surface profile of flow with
air core vortex.

In this paper, the water surface profile of a steady air
core vortex flow into a vertical intake was derived

only focus critical

through out a depth-averaged model of open channel
flows over the 3-D curvilinear bottom plane using a
generalized and body fitted coordinate system. The
assumption of fully free air-core vortex in the new
coordinate allowed us to use the Kelvin’s theorem of the
conservation of circulation for the whole flow field. The
vortex was assumed axisymmetric and steady. The

assumption of shallow water and kinetic boundary
condition at water surface were also used. The equation
describing water surface profile was derived and
calculated results were compared to formmia introduced
by Orgaard 2.

The application’s results showed us the ability of the
model in analyzing the water surface profile and can be
improved to simulate the flow structure of an air-core
vortex.

2. Mathematical Modeling
2.1 Coordinate setting

To consider the vortex occurring at a cavity on the
bottom surface (Fig. 1), the position of any point P was
defined by three value of (£,7,{), where &,7
define the position of Py (projection of P) on the bottom
plane, and £ is the distance from point P to that plane.
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Fig. 1 Definition of coordinate components
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Assuming that the shape of bottom surface (i.e at
¢ = 0) has the form of

Co-a)
aand b are the coefficients which define the
shape of the bottom as in fig. 1.

7, is the distance from a point on bottom to

axis z: ¥, = 1/x02 +y02 .
From eq. (3): 820 = b >
a”o (ro —a)’

Refer to Fig. 1 wecan get X, =7, C0S7} and

Yo = "F,8m7y.

Then, the bottom surface was expressed by the
following equation:

O(xy, yy,2,) = (r, —a)z, +b=0

The unit normal vector (#7) to the bottom surface

was derived as:

P grad® 1 XoZo =
‘gradq)j w/202 +(r,—a)® T
n 1 YoZo = ry—a P

]+
2, +(r,—a) T Nz, +(r, —a)’

At ¢ = the relations between (x,),z) and

(f 1, ( ) were expressed as:
1 X,z

x=x, + L
2.t +(r,—a)® o
=7, cosn — beosn ~14 @
@, —a)t +b°
1 Yoz
Y=V T > . =g
z, +(r,—a)” T
=—7,sinn + bsinn ¢ (5)
@, —a)t +b°
z=z,+ o —d <

z, +(r,—a)’
b . (r,—a)’

= 6
(ro—a) @, —a)* +b d ©

Using equation (4)-(6), the covariant base vector

components on the bottom surface were denoted as
follows:

€; :x0§i+y0§j+zoggk

sin7 —
77]_

. b -

LU —k
P 2 pr,—a)

e =X, i+y, j+z,k

= —~F, sin ’7;"70 cosn”}

— —

€ =X i+ Yo J+ 2ok
bcosn bsinn
=— i+
Jo, —a)y 67 o, —a)t +57
(ro—a)2 i{'

and Jacobian right on the bottom plane is:

X, X X
1 & 0 T 4o 1rom

—=e, Voo Yeo|=—
J o e P ("o_’a)2
foo Z’?o Zgo

.

_+_

7

®)

in which
I(r, —a)* +b(r, —a)+br,

O G ) 412 (r, —a) + 20b(r, —a) + b

[ is defined as in Fig. 1.

The Riemann-Christoffel symbol is defined as follows
using the contravariant and covariant components of
metric tensors:

r=-2 % ©)
087 9EF | ox™

Using the equations (4)-(6), after some manipulation
the value of Riemann-Chistoffel symbols on the bottom
were derived as following:

2 =T’ =0 °=T¢% =0 (10)

0én Opg "~ ~O0ng 0&n
2.2 Equation of water surface profile
The constant-density, incompressible continuity and

momentum equations in a generalized curvilinear
coordinate system were used.

Continuity equation:

2l7) a7 2l )-
—| =+ = |+—|—|=0 (11)
o&E\J ) on\J) of\J

Momentum equation in & -component:
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Q[Q}rifﬁ +i(VU) G(WU
alJ) oe\J ) an\J ) o

1 V

+7(U21“§§ +UVTE + UWTE,

+VUT + VL, + VWL, + WU, + WVT,

: &
+W21“§§)= G -(pressureterm)+_a_ 4
! os\ pJ

én &
+,§_(T_]+ﬂ(f__j+_l_(ﬁér§+T¢nr§”
on\pl ) oc\pt) pJ

<4 ol néé myé g 1é gETé
+7 1}5 +7 Fn,’, +7 FTm +7 l"n_[ +7 l}i
e Qs )
+7 1"477 +7 Fg (12)

where:

(pressureterm)*—(g 5. +6,8, +¢.8, ) éf( J
+ -j—(ixm + 8,1, + S, )%(%)

(54 FEL, +EL) = g,[ ]

25 %) =5
s\ J ) op\J ) aclJ

<R} 20)
e\ J ) o\ J ) acl g

e 5 a5
oE\J ) o\ J ) ac\J

in which (U,V W) : the contravariant components of

velocity vectors
1 Xe Xy X¢
J : Jacobian, 7 =VeVn Ve
Ze 2y Zs
T;k : the Riemann-Christoffel  symbols,
; ox” 0 (of
=2 00 ) i)
o0&’ o | ox”

G* , 7% . the contravariant
gravitational vector and shear stress vector acting on the

bottom.

components  of

Assuming the shallow water condition, the value of
Jacobian J can be approximately expressed as J, at

as in eq. (8)) and U,V are uniform

§=0J,=J|,,
in ¢ -direction, integrating eq. (11) with respect to the
¢ -direction from the bottom to water surface, the depth

averaged continuity equation was derived as:

0 N V; oh W W
ondy ayon g, 0
13)
Plugging equation (13) with the kinematic boundary at
the free surface:

Oy by O
o teE Con
the continuity equation can be reduced as:
1oh, oM, 0N _
J, ot Ot J, Ton .

oM Uah

oc T, J, 08 onJ

(14)
in which M =Uhand N =Vh, h is the depth of
water flow in ¢ -direction.

Integrating equation (12) with respect to the
¢ -direction from the bottom to water surface, the

momentum equation became:

)
oMy O L o[
a\J, ) e\ J, | en\ J,

—1—h—(M T, + MNT,} + NMT,S, +N°T,
0

0 0szn 07777)

:_}_I_Gg_fjo‘{"fjo"'fi _5_}_}_7614,
J, Jo o5
§x077x0 +§y0?7y0 +§ZOT720 ihﬂdé—i
Jo anop la]0
s5)

O g 0én

h
with [£dg = {UUFOQ +VUT, ¢ +UVT,S
P
0

2
+VVT,© —Gg}h (16)

Onn 2
Considering the steady status and the condition that
the flow in the air-core vortex is axisymmetric, equation
(14) and (15) became:

oM =0 or M:QO:const. or

o8 J, J

M=0,J, (17)
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0¢¢ 0&n

_a_[%} L (Mg, + Mr + NV,

o0& Joh
h SotEntin o
¢ & 0 20 ¢
N2r0m?) -G —“—Jl—gg UL,
0 0
h s
+VUF0,}§+UVI“4+VVFO§U—64)2}—IO; (18)

0

The model was developed by using the assumption of
free vortex that was conservation of circulation
I'=2m v, where Vv is depth averaged tangential

velocity at the cross-section 7.
v=rV"=rVthus T =22V from which:
Tr
27}
Substituting eq. (10), (17), (19, M =Uh and
N =Vh into (18), it was yielded:

ERC AN/ S
o\

V= (19)

+ =T
0gs 2.4 Onn
h drr, J,

iG(’: _§x0 +5}/0 +520 QO']2 r-O§§
J, J, o8| 2 d
2 2 2 4
o Og,,-h—a}-ﬁ-
4rr, 2 2 A,
or
§x0+§y0+§zo h Oirl -G%h _QO Ql/i
J, 4zt h* | 0&
e QW Qope T b
7] h of h & arrt J 0
_ Tf _fjo+§y20+§zzo Qz r 4%
A, Jo T og
oI AR
2 o& 8zt O\ 2 o0&
@1

The evaluation of the contravariant component of
shear stress acting on the bottomn was computed using the
following relation:

Tzf 2 Tzf Qo2
= flUU = fleJU? = —t—= f =
P Jop 7 rh

where [ is the resistant coefficient.

22)

Substituting (22) into (21) then transforming special

coordinates from & to7,, after some manipulations we

obtained the equation for water surface profile as:

oh __ () )

o, fr(hr)

in which

i (r. —a
NS O(i )2 /2
[(ro_a) +b ]3

r’ 3[(1’0 —a)* +b2]+ 2r,(r, —a)’
87’ roz[(r0 ~a)’ +b2]3/2

2 2
+{gb T 2i}h3
(r,—a)- 4n°r,
5 2(r, -a)?
0;b
+{~O ro[(rO -a)’ +b2]3/2
3(rO a)? [(ro—a) -b ]
[, -y +2]"
-Qfozh—f.Qoz [ro_a) +f }2
% (ro_a)
Sy (hr) = . (r04—a)z /2
[, —a)* + 7]
N I’ 1
4r? r, [(r0 -a)* +sz/2

gb’

-b n

+O

@9

gh’

h -0 (25)

3. Method of Calculation

The common method of analysis including singular
point analysis was applied to calculate the water surface
profile in both the upstream and downstream direction
from this point. The singular point is defined as the point
at which both functions f,(h,#,) and f,(h,7,) in

equation (23) are equal to zero.

The equation f,(h,7,)=0 expresses the
quasi-normal depth line whereas f,(h,7,)=0
expresses critical depth line (refer to Fig. 2).

The water surface was derived from eq. (23) by using
Runge-Kutta scheme with the initial slope near the
singular point defined by the following equation:

2
— a‘f_z +a&£ + a‘f_2 +% _4% _a_[L
dhl 5?‘05 Ohs 57‘0S 6hs ahsaroS
dr, s %
Ohi

(The subscript “s” was denoted for the derivatives taking
at singular point.)
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Fig. 2 An example of computed water surface profile
with quasi-normal depth line and critical depth line.

. Consideration of calculated results

The model has been applied in estimating water
surface profile of flow with air-core vortex in different
conditions.

Posey and Hsu '?, Jain et al * and others have reported
that a large reduction in intake discharge was due to
formation of vortices, especially in cases of flow entering
the intake consisted of air. The model was applied with
different imposed circulations (i.e. different strengths of
vortex) and showed the reduction of discharge when the
keeping the
submergence (water head) as in Fig. 3. It was observed

circulation increases while same

that the larger circulation the deeper air core extends
toward the intake, and in case of air-entrainment the
discharge decreases until very low value (from 0.0015 to
0.0003 m’/s), that is in agreement with the previous

19 Or in other words, intake discharge

experiments
was inversely proportional to circulation as in Fig. 4
which the empty circles are calculated results and solid
line is the trend line calculated by the least squares

method.

0.004

0.002 ©

0.001

0 . ‘
0.3 04 T(m%*/s) 05 0.6

Fig. 4 Variation of intake discharge with circulation
(a = 0.025m, b = 10° m®, water head at the
upstream end = 0.5m, f =0.015)

z (m)
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I = 0.4m’fs, Qu=0.0043m’/s
0y ,/
I = 0.5 m%s, 0;=0.0015 m”/s
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i U | | i
-0.2 -0.15 -0.1 -0.05 0 \ 0.05 0.1 0.15 0.2
| x (m)
i 1
!
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Fig. 3 The effect of circulation on water surface profile and intake discharge with the same water head

(a=0.025m, b=10"m?, f =0.015)
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Fig. 5 Different water surface profile with different value of circulation
(a=0.01m, b=10"m? Qy=5. 10° m¥s, f =0.015)

4 -0.2 02

Bottom surface with b=10"° m?

o4 x (m)

Fig. 6 Changing of water surface profile with different shape of bottom

(a=0.025m, Qo = 5. 107 m’/s, T=0.4m%s, f =0.015)
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Fig. 7 The effects of value of b on discharge (7a) and submergence (75) at an intake
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The results also showed that for small decrease in
submergence the air core became larger (Fig. 5) that was
consistent with Anwar et al’s study *. From Fig. 5, it was
noted that when the
submergence would

increase, the
intake
discharge. Hence, the model has the applicability in

circulation
increase to maintain
representing the effects of circulation on the flow
through vertical intake.

The effects of intake’s shape were examined by
changing the value of ‘6’ in eq. (3). In these cases, three
simulations were considered with value of b = 107, 107
and 10°m” while maintaining the value of ‘a’ at 0.025m.
It can be seen from Fig. 6 that the water depth increased
when the intake entrance became sharper (decrease value
of b). For more clarity, the computation has been done
with the same intake and circulation to test the effects of
valne of b on intake discharge with unchanged
submergence (Fig. 7a) and on submergence with same
discharge (Fig. 7b). This phenomenon is in agreement
with the physical meaning of the coefficient ‘5” and it
also improves the effective performance of bellmouth
intake.

z (m)
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T \\ / ,
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-03 R 8 x(m) 03
d

03

Fig. 8 Definition sketch of critical submergence

The model also can be used to predict the critical
submergence which has been defined as the submergence
when the tip of air core vortex just reaches the intake
(Fig 8). A large quantity of experimental data has been
used in Odgaard’s study ? to verify the equation
presenting critical submergence in the absence of surface
tension (eq. 18 in 2.

S R 0.5 05
O e 5N o 2%
T 732 [N Fr (26)

ST
where circulation function N(I')=—, Froude
0

number Fr = and Reynold number

Re = —Q— X
vd
This equation can be applied for the case of vortex
with turbulent core with v replaced by v+ kI". From
calibration the value of ¥ was then estimated to be

k~6x107.

V
(gd)l/Z
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; .
1 10 100

Computed Critical Submergence, S/d

Fig. 9 Comparison of computed critical submergence
by model (eq. 23) and by Odgaard’s equation (eq. 26)

Critical Submergence, S/d
(=]

L 1 1 1 I

0 0.04 .08 0.12 0.16 0.2 0.24

d(m)

—— b=5.10"m’ —e  b=10m?

Fig. 10 The variation of critical submergence with
different values of b

A total of 12 simulations were made with 4=10"m’
and ail the range of intake diameter from 0.01 to 0.2m.
The comparison of computed critical submergences by
the model and by Odgaard’s equation (eq. 26) is showed
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in Fig. 9. The horizontal coordinate is the computed
critical submergences by the present mode! and vertical
coordinate is by Odgaard’s. The perfect fit between
model and Odgaard’s equation is on the 45° line. It can
be seen from the figure that there was a good agreement,
thus the model
submergence of a vertical intake.

can be used to predict critical

Fig. 10 shows the variation of critical submergence
with different value of b (for each case, intake’s diameter
and discharge were kept constant). It is observed from
the figure that the critical submergence was not
significantly affected by a small change of b with order
of 10°m”.

5. Conclusions

A 1D theoretical model based on the depth-averaged
and momentum equations has been developed to
calculate the variation of water depth of flow with
air-core vortex at an intake. Hence, the water surface
profile can be directly derived from the model. The use
of curvilinear coordinate avoids invalidation of the
Kelvin’s theorem in the core of vortex, thus the
conservation of circulation can be applied for whole
flow.

The comparison of calculated data by the model and
an empirical equation shows that the proposed model
yields reliable results in predicting the critical
submergence of the intake without any limitation of
Froude number - a problem that most of existing model
cannot escape. It is expected that the model can be

improved to unsteady case in follow-up paper.
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