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A study has been carried out on estimation of flow in rock joint using depth-averaged flow model. Based on the

results from an idealized sinusoidal rock joint roughness, it is found that the hydraulic conductivity of rock

joints is strongly affected by both aperture and joint surface roughness. The model proposed herein has

shown its ability in simulating the flows on rock joints especially for small shear displacement with comparison

to experimental results.

However, it is recommended that more research has to be carried to investigate on

how the effect of wall roughness deformation due to shear displacement can be accommodated in the model.
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1. Introduction

Flow past rock joint has attracted considerable research
attention because of the central role they play in several
intriguing phenomena such as stability and performance
of underground structures especially nuclear waste
disposal issue. Therefore, it is important to grasp the
hydro-mechanical behavior of rocks underneath. This
includes understanding the behavior of permeability
(hydraulic conductivity) of the single rock joint under
different geometry properties.

Several studies on flows in rock joint investigating the
effects of geometry characteristics using an idealized

sinusoidal and or Sawtooth patterns have been conducted'.

These studies made possible to have some analytical
solutions expressing the relationship between hydraulic
conductivity, fracture geometry variation and stresses
acting on rocks basing on empirical relations" . However
they could not give details on how, the flow variables
such as pressure and shear resistance respond to geometry
variations. On the other hand, by applying the shear
mechanical model of rocky joint, the shear behavior and
the variation of joint surface roughness on rock joint have
been clarified™ *.

there exists few

However in all effort made,

mathematical models that can simulate the flow behavior

in rock joints and understand the response of flow
resistance from theoretical point of view. As result more
research depends on experimental results.

The present study is concerned with simulation of flow
in rock joint using the depth-averaged flow model. An
idealized sinusoidal wall roughness of the rock joint is
firstly assumed for model calibration'. Also the behavior
of flow variables such discharge, shear resistance and
pressure distribution is studied for different roughness of
an idealized sinusoidal pattern. Thereafter the model is
applied to physical rock joint specimen and then
comparison is made between the model and experimental
results.

The numerical model developed herein is based on
Reynolds- depth averaged Navier-Stokes equations which
is verified by analytical solution of one-dimensional flow
model.

2. Laboratory tests

The simultaneous direct shear and permeability tests
were carried in consideration of joint surface roughness
and material properties under constant normal confining
conditions™ ®. The outline of the experimental apparatus is
shown in Fig.1.
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Fig.1 Schematic setup of permeability test experiment
2.1 Outline of the laboratory tests

The experiment was carried out according to the
standard method used in several studies for permeability
test, where shear displacement, dilation, shear stress,
normal stress, transmissibility, and pore pressure, can be
measured™®

In this study, the hydraulic-head and the normal
confining stress were kept constant at 1.0 m and 1.0 MPa
respectively. The permeability tests were performed at
each predetermined shear displacement up to 3mm.

Before performing the tests, measurements of the
joint surface roughness were taken with a roughness
profiler at an interval of 0.25 mm.

2.2 Typical results

Figure 2 and 3 shows the effect of joint surface roughness
and aperture size with regard to transmissibility of the
joint. It is observed that transmissibility increase with
advance of shear displacement as well as aperture size.

Also it is important to note that there exists an increase
of transmissibility with increase of JRC (joint surface
roughness) at the same value of shear displacement.
However this is noticed at higher values of shear
displacement in this case beyond 0.5mm.

JRC is number that can be estimated by comparing the
appearance of a discontinuity surface with standard
profiles”. JRC = 0 corresponds to totally smooth surface
and JRC = 20 corresponds to a very rough surface
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Fig.2 The variation of joint transmissibility with respect
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Fig.3 The variation of joint transmissibility with respect
to aperture size

3. Numerical modeling using the depth-averaged
model
3.1 Problem formulation

It is assumed that flow occurs between two reservoirs
maintaining constant head difference (AH ) refer Fig4
(a) this is based on the experimental setup Fig.1. The

fracture aperture is expressed as the difference between
the ceiling and the bottom bed elevations, Z, and Z,

(Fig. 4(b)).
3.2 Governing Equations

The governing equations consists of continuity and
momentum equations of plane 2-D flows, obtained by
integrating the 3-D continuity and Reynolds equations
between the idealized bottom bed and the idealized
ceiling (figure 4b) based on Cartesian coordinate system.
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where; 7;,,7,,7,and 7, : shear vector on the wall;

(U, V): depth averaged velocities; Pp: pressure at the top
boundary; f: momentum correction factor; v :
coefficient of kinematics viscosity; depth (D)=Z, -Z, ;

g: gravitational acceleration,
The wall shear stresses (7,,,7,,,7,, and 7,,) are

calculated from resistance law of laminar flow.

Ty = Tox =6 v . Tb)’ = TS)’

P
p p D p p D

3.3 Numerical Procedure

The standard numerical method for incompressible
fluids (HSMAC) is used®. It is assumed that at the initial
conditions the discharge flux vector M (=UD), N (=VD)
and pressure Pp at time ¢ = nAt are known. The hydraulic
variables M and N” at time step ¢t = (n+1)At are then
calculated as follows:

(i) First the hydraulic variables N and M are

calculated using the following relations

*

M -M = —(inertia)" - (pressuré" - (wall sheai)n
A @

_A%]vn. = __(inertia)n - (wallshear)n

—(pressure)’
(ii) Then the pressure Pp, is corrected by using eq. (5.)
P;i,j:PDni,j+éPl; (5)
Where &P, for P, ;. 1s calculated using eq. (6)

*

we; ;

5*pD”. = L) , =05 (6)
’ 1 1
2gD(i’j)At[—wa2 +—Ay2]
2 M, -M,; . Niji—Ni;
Ax Ay

(iii) M* and N* are then re-calculated by substituting
the value of P, to eq.(4). This process is repeated
until the error | ¢ | satisfy the criteria. Then M and
N are considered to be variables at time step ¢ =

(n+1) Ar, (M N,
4. Model Verification

The numerical model is verified by comparing the
calculated results to analytical solution under the simple
hydraulic conditions.

In this case an idealized sinusoidal surface joint
roughness of rock is assumed. Basing on the fact that
the flow considered in this study occurs under small
amplitude-to-wavelength ratio, it is expected the flow
behavior is close to unidirectional laminar flow. This
allows verifying the model using one-dimensional
analytical solution.

Note that different patterns of an idealized rock
fracture are obtained by changing the phase angle of

ceiling boundary eq.9.
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4.1  Analytical Solution

The analytical solution is based on solving the 1-D
continuity and momentum equations reduced from 2-D
equations (1) and (2). The following assumption is made
in the solution herein obtained: It is assumed that the flow
is under fully developed steady state condition.

[-D Continuity equation

oUD
= (M
1-D Momentum equation
2
ﬂaDU ~Da(PDJ a(D+Z)

az,, To 8Zs
8x

" 6_x( Ox ) ®

In this case the bottom bed and the ceiling boundaries
(Zy, Z,) are expressed by the following relations:

Z, =4 cos(nx+¢s)+A; Zy =4, cos(nx); Q)
Where; 4, and 4,. wave amplitudes of the bottom bed and
ceiling respectively; ¢ . profile’s roughness phase angle;
n: wave number.

It is also assumed that the pressure and shear stress
variations consist of two components expressed by
equation (10).
Py=P +P; 1,

X

=7,=7,+71 (10)
Where FP,, r, = pressure and skin shear component

for undisturbed flow (parallel plate flow); P', r’ = wave

induced pressure and wall shear respectively.

In the previous studies of flows 10

past wavy walls™
for both
pressure and shear variation for  wavy profiles with
amplitude-to-wavelength ratio ( 2a/4) < 0.0125.

Basing on this fact the spatial variation of pressure P’is

it was found that there exists a linear response

assumed to be expressed by eq. (11), while the spatial
variation of skin shear is added in the shear stress term in
eq.8 by incorporating the effect of joint surface roughness

variation —= 0Zs and —2- az,,
x o
——={Ap(cos nx+¢p) 1y

where; A4,: Pressure amplitude; n: wave number (27/1);
) - pressure phase angle; C: constant.
After substituting the expression for Pp, to eq. (8), it
follows that:-

2 2
+vqa D __Vq_6D=0 (12)
DY ox ax D? ox

Where; - ai [ﬁ”—) =Sg; g=UD; S:average pressure
x\ p

gradient.

Further, on substitution of expressions for
Z,,Zy,,Dand P’ to eq. (12) and rearrange the like terms
for cos(nx), sin(nx), cos(2nx), sin(2nx), cos(3nx), sin(3nx),
cos(4nx) and sin(4nx) eq. (12)
following general form;

is then written in the

Jicos(nx) + £, sin(nx) + f3 cos(2nx) + f, sin(2rx) +
s cos(3nx) + f sin(3nx) + f5 cos(4dnx) +

Sz sin(dnx)+ f, =0

Where: f, = f(q,Ap,¢p,¢s,n,AS,Ab, and §)

Where; k=0...8
Keeping the mean pressure gradient S constant,

(13)

variables g, 4, and ¢ ,are calculated from simultaneous
equations obtained by equating the coefficients for sine,
cosine and constant term (f,,) of equation (13) to

zero . In this case a set of equations (14) have been
solved.

forag+ay A, cos(@,) +azA,sin(g,)+a, =0
fi:bg* +byq+byA, cos(@,) + by A, sin(@,) +bs =0 (14)

fr10G° +cyq+ 34, cos(d,) +cy A, sin(, )+ cs =0
The coefficients in eq.(14) are given in appendix.

The constant ‘C’ is obtained by applying the boundary
0 to eq. (11).
the following flow parameters are used: - amplitude ~to-
wavelength ratio (24/4) = 0.001 to 0.004 (where a=

condition; x = 0, P’ = In this calculation

amplitude of the bottom bed and ceiling); phase angle
(¢, is varied between 0.0 and 27 ; the mean
pressure gradient (S = AH/L) = 0.1m and the averaged

rocky joint aperture ( A ) = 2mm refer Fig.4a.

4.2 Comparison between analytical and numerical
results

The results of numerical and analytical results presented
herein, are based on an idealized sinusoidal rock joint
roughness.
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(1) Discharge (hydraulic conductivity) variation

The variation of discharge due to different phase
angles (¢ ) while keeping the amplitude ~to-wavelength
ratio (2a/1) at 0.001 and 0.002 is presented in Fig. 5. It
is observed that for rock joint roughness with phase angle
(¢5) =0.0, the dimensionless discharge q/q, (qo —
discharge for an equivalent parallel plate flow) =1.0. This
implies, at this rock joint geometry the discharge is
almost equal to that of flow between parallel plate with
aperture (A) =2mm. Thereafter the discharge decreases
with increase of phase angle (¢ ) and become minimum
at for joint roughness with ¢ == from both numerical
and analytical solution with discharge reduction of about
11.6%.

It is important to note that there exists good
agreement between numerical and analytical solution.
However, the discharge profile from analytical solution is
symmetry about the axis through ¢ = =, while that from
numerical solution is slightly skewed to the right.

Of a particular interest is the observation that increase
of amplitude —to-wavelength ratio (24/4) from 0.001 to
0.002 caused a proportionate decrease of discharge while
maintaining the variation trend. This is seen clearly in
Fig.6 (numerical results), where the increase of amplitude
—to-wavelength ratio (2a/4) from 0.001 to 0.004 for
phase angles (¢ ) 0.0, 0.6z, =
a proportionate decrease of discharge. This points out that

and 1.4 = resulted into

there exists an increase of flow resistance with increase

amplitude-to- wavelength ratio of the rock joint
roughness (increase of roughness). Also it is important
to note that for the joint roughness with phase angle
(o= 7 the reduction of discharge at
amplitude-to-wavelength ratio = 0.004 is about 40%.

This implies that, high resistance to flow is observed

for the rock joint roughness with phase angle (¢ ) =

0.96 1

q/qo

0.92

0.88 | " 1: 2a/A=0.001;4/A=0.01
2: 2a/A=0.002,A/A=0.01
0.84 : - *
0 1 2 3 4 5 6
------- Numeric1 ~-o—- Analytic2 ¢ s(radians)
~—e— Numeric2 Analtic1

Fig.5 The variation of discharge with different profile’s
geometry

(a/q0)
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Amplitude-to~wavelength ratio (2a/ 1)

Fig. 6 Variation of discharge with amplitude

wavelength ratio
(2) Pressure distribution

Using boundary conditions in section 4.1, the constant
‘C’ of the periodic pressure term ( P’) is expressed by
the relation C=-4,cos(¢,) for all range of phase

angles. Eq. (10) becomes:
%:AP{ cos(nx +¢,)—cos(¢,) } (15)

It is observed that the pressure variation along the
sinusoidal fracture is periodic with wavelength equal to
that of the rock joint roughness from both numerical and
analytical results as shown in Fig.7a. This is analogy to
the results presented from different studies on pressure
variation of flows in wavy bed profiles” '. When the
phase angle ( ¢ ;) = 0.0 the existence of periodic variation
disappears, that is, the pressure distribution resembles
that of flow between parallel plates. This is in agreement
to the results observed for discharge variation.

Investigating the periodic component of pressure
variation for one wavelength between L = 0.35 to L =
0.55 (Fig. 7b, ¢, d) it is evident that the pressure
amplitude increase when phase angle ( ¢ ) is increased
and attains maximum value for the fracture with phase
angle (¢ ) =m.

(3) Shear stress distribution

It is observed that there exists good agreement between
the analytical and numerical results (Fig.8a, b, and c). For
the rock joint roughness with phase angle ¢, = = the
maximum of shear stress variation remains near the peaks
while the minimum is near the troughs Fig.8 (a).

There is no variation of shear stress for the rock joint
roughness with phase angle (¢, = 0.0 This is
identical to the shear distribution along parallel plate
flow.
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5. Application of numerical model to experimental
rock joints

The results presented herein based on the input
parameters from experimental specimen, that is Z,Z,

and AH =1.0m.

Fig. 9 shows the surface roughness distribution of the
specimens herein considered. Fig. 9 shows the surface
roughness distribution of the specimens herein considered.
The aperture size ranged between 0-1.5mm for all
specimens. However it can be noted that the roughness
distribution varied differently from on specimen to the
other. Note that the sections A-A and B-B are taken
mid-way along the width of the specimens.
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Fig. 9 Surface roughness distribution

The comparisons of the experimental results and the
simulation results for shear displacement -transmissibility
relation are shown in Fig.10. It is observed that results of
two-dimensional flow model exhibits good agreement
with the experimental
displacements.

results for small shear

However, there are noticeable
disagreement at large shear displacements for specimens
A-L02 and C-L02, where the results of 2-D model

become smaller than that of the experiment.
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Fig.10 Comparison of the experimental and numerical
results

From Fig.11 it is observed that for the specimens
A-L02 and C-L02 the estimated dilation from the
numerical model is smaller than that of experiments.
Dilation is the vertical movement of one part of the
specimen tending to move away from the other due to
shear displacement as result of misalignment of the
rock joint. Therefore for specimens A-L02 and C-L02, it
is expected that the estimated aperture by numerical
simulation to be smaller that the actual value. This can
results into underestimating transmissibility at higher
values of shear displacement. Also during experiment
there is a possibility of having joint roughness
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Fig.11 The comparison of the experiments and the
simulations on shear displacement —dilation
relation

deformation at larger shear displacements, which could
not be accommodated in the numerical model.

Fig. 12 shows the flow vector distribution simulated by
the model at 2.5mm shear displacement. It is observed
that the model has been able to simulate the channeling
effect across the rock joint specimens.
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Fig.12 Distribution of discharge vector on rock joints

6. CONCLUSION

Basing on the results from an idealized sinusoidal
rock roughness, it is evident that the resistance to flow in
rock joint is largely influence by both longitudinal
distribution of the roughness (surface roughness) and
the size of aperture.

The depth —averaged flow model proposed herein has
shown its ability in simulating the flows in rock joint
especially for small shear displacement. However, more
research is needed to find out on how the effect
deformation of rock joint roughness during shear
displacement can be accommodated in the model. It is
also needed to develop the refined depth averaged flow
model considering the effect of circulation behind spatial
boundary variations to predict the flow and the resistance
precisely.

Appendix

Symbols used in analytical solution of one-dimensional
flow model

I 2 1 o2 3( 4 4
a=—-6v|2+—w,” +—0,” -——\w, +o
1 ( 4 b 4 s 64( b s )J
+ v(ws2 +@,% - 20,0, cos(g, ))

a, = %(aﬁ Sm(2¢s) —ay Sm(¢s) + a_zgsm(¢s )j )
as = gzﬁ(al cos(g ) — a3 — ag cos(2¢;) + ag cos(g; ))

ay = g(Salo + 2 (@5 ~ a3 )sin(g,) + ag sin(24, )j ;
b =-12w, sin(¢,); b, = vn(a)SA cos(g, )— @A )

by = %(— a5 sin(2¢s)+ a5 sin(g,) )
gn
by = 7(055 005(2¢s)_ a; cos(g,) +ay +2ay, )

bs = Sglcr; cos(@,) — a3 — g cos(24, ) + g cos(4,))

ASEN (3110 — g )sin(d, ) + ap sin(d,)

+
g = 1,2(a)b - o, cos(¢s) ) ¢, =-vaognAsin(g;)

n
o5 = %(— a5 cos(24, )+ a; cos(d,) — ag +2a, )

¢4 = - (ar sin(4, )~ as sin(24,) );
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cs = Sgla, sin(2¢,) - a, sin(g, ) + ag sin(4; )

A,gn

+ (Zam —as)cos(g, ) + a7 — dg cos(gy ))

where;
24,7 247 2z
Wp =——; O = ; o m=——
A A A
3

as

as

ag

3 1
a =ZAS3 +3A4,A2 +5ASAZ,2; ay =4 3

s 2

3,3 2 3 2 1 3
=—A,  +3A4AN + A4, a,=—A,;
4 b 4 2 s ‘1 4 4 b

3 3

=ZA’A; ag==A 4, a, =34,A4,
2 4

3 3

2
=ZAS A[) N ag ZEAbZA;

3
ay = -2—AS2A—3A1;AA5 cos(¢s)+%Ab2A+A3

g=9.81m/s2
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