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Linear stability analysis of channel inception on slopes with
arbitrary shapes: purely erosional case
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The existing linear stability analysis of incipient channelization was limited to the case
of self-preserving slope profiles. In this study, the theory is extended to include the
channelization on slopes with arbitrary shapes under the assumption that the growth of
perturbation is sufficiently faster than the evolution of base state slope profiles; thus, a

time derivative term in base state equations is neglected in the linear level (frozen time
approach). As the result of a momentary stability analysis, the dominant wavelength is
found to decrease with increasing curvature of slopes. In addition, the analysis shows
the possibility of channelization even in the case of arbitrary slope profiles.
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1. Introduction

Since the first theoretical analysis of channel incep-
tion on hillslopes by Smith and Bretherton), a large
number of studies have been proposed. In some of
the recent studies?»*)%), Izumi and Parker’s® analy-
sis may deserve special mention. They performed a
linear stability analysis to provide a physical explana-
tion on the formation of gullies commonly observed to
be uniformly spaced at the edge of plateaus. Accord-
ing to their analysis, the spacing is on the order of one
thousand times the depth of sheet flow on plateaus.
Their result provides a reasonable explanation for the
gully spacing observed in the field.

Their linear stability analysis was limited to the
case of self-preserving slope profiles, which are con-
sidered to be fully-developed unchannelized slope pro-
files. If no channelization takes place, an arbitrary
base profile evolves into a self-preserving profile which
preserves its shape and migrates upstream at a con-
stant speed due to erosion. However, there is no rea-
son to deny that channelization takes place even be-
fore the slope profile becomes the self-preserving pro-
file. In that case, the slope profile does not satisfy the
self-preserving conditions, so that the existing analy-
sis is not applicable. In order to investigate the chan-
nelization on slopes with arbitrary shapes at a given
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instant, we have to deal with linear stability analysis
involving the temporal evolution of the base state.

In this study, the theory is extended to include the
channelization on slopes with arbitrary shapes with
the use of the frozen time approach and the momen-
tary stability concept. The frozen time approach as-
sumes that the growth of perturbations is sufficiently
faster than the evolution of basic arbitrary shapes, so
that time-dependent terms of the base state can be ne-
glected in linear stability analysis. With this assump-
tion, the instability of instantaneous arbitrary shapes
is analyzed in a fashion similar to the analysis for the
self-preserving problem. However, the growth or de-
cay of disturbances is meaningful only in comparison
with the growth or decay of the evolving base state.
We adopt the concept of “momentary stability” by
Shen® and others®”). Shen introduced a more gen-
eral definition of instability, in which, if a disturbance
grows faster than the evolution of the base state, the
disturbance is amplified in time. This is referred to
as “momentarily unstable” in his paper.

2. Formulation

2.1 Governing equations

Let us consider sheet flow on a slope with an arbi-
trary shape as shown in Fig. 1. Since the scale of the
lateral direction is sufficiently large, we employ the
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Fig. 1 A slope with an arbitrary shape and flow on
the slope.

depth-averaged St. Venant equations of shallow water
flow in the analysis. In addition, we adopt the quasi-
steady assumption in which the time variation of the
bed is far slower than that of flow, so that the time
derivative terms can be neglected in the flow equa-
tions. Then the flow can be described by
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where “means the dimensional variables, Z and ¢ are
the streamwise and lateral coordinates respectively,
4 and ¥ are the £ and § components of velocity re-
spectively, A and 7 are the flow depth and the bed
elevation respectively, 7, and 7, are the & and § com-
ponents of bed shear stress respectively, p is the water
density, and g is the gravity acceleration.
The bed shear stress vector (7., 7,) is written as

(Far7y) = pCy (@ + %)

(4, 0) (4)
where Cf is a friction coefficient and assumed to be a
constant for simplicity.

In this study, a purely erosional formulation is em-
ployed; thus, the effects of deposition is ignored. This
formulation is applicable when the erosion rate is suf-
ficiently small, and storm-driven flows have a capac-
ity to transport sediment on slopes far downstream.
With this in mind, the Exner equation of the conser-
vation of bed sediment takes the form

o1 = —b(7) )

where E denotes the erosion rate of the bed due to
the flow of water. It is normally approximated by the

form
if 7> 7Ry
if T< 7y

Br) = { g0/ =) ©
F= (7 )2 (7
where 75, denotes the threshold value of 7 for the on-
set of bed erosion, v denotes a dimensionless exponent
and « is a parameter with the dimension of velocity.
The domain of solution is {~o0,Z.) where . de-
notes the point at which Froude critical condition
is achieved. Appropriate upstream and downstream
conditions can be set as follows. Far upstream from
the Froude critical point, the slope is assumed to be
a constant S,, so that the flow should attain steady,
uniform normal conditions. Thus, we have
i
0%

(U, 7) = (Un,0), I — —0o0
(8a,b)
where 4, is the velocity in the normal condition, de-

rived from

- S, as

Cti2 = ghnSn, fnhn=§ (9a,b)

where ¢ is a constant water discharge per unit width.
When the bed shape becomes steeper in the down-
stream direction, the Froude critical condition is
achieved at some point Z., where the bed elevation
7] is taken to vanish for convenience. It follows that

Fr=1 #§=0 at &=2%, (10a,b)
where the Froude number Fr is denoted as
~9 ~oN 1/2
Fr= (“ akl > (11)
gh

and Z. is set to be zero without losing generality.

2.2 Non-dimensionalization

The following non-dimensionalizations are intro-
duced. The variables without tildes are the dimen-
sionless version of the corresponding variables with
tildes.

@0 = Ouwv), (5,0) = o@y)  (12a,)
f
(h,7) = De(hyn), k= <%> koo (12c,d)

= 0\ Y

i=D. {a <:r_c> } t, F.=pCiU%  (12e,f)
Tih

where the subscript ¢ denotes the Froude critical con-

dition.

Introducing Egs. (12a—f) into Egs. (1)-(3) and (5)
and reducing, the following dimensionless relations
are obtained:

9 | gy1/2
u ve_ 92 (u_tu (13)

oz Oy dr Oz h
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The function E denotes the dimensionless rate of bed
erosion, given by

2, oy | (WP =¢) i w0 >y
Blu J””‘{o if u?+0? <y
(17)

where v denotes the ratio of the critical shear stress
for bed erosion to the shear stress at Froude critical
condition:

V== (18)

The corresponding non-dimensionalization of Egs.
(8a, b) and (10a, b) yields the upstream and the down-
stream boundary conditions

0
/NP

(1,0)  (un,0), =5

T — —X
(19a,b)

and

w+vi=h, =0 at =0 (20a, b)

where o denotes the normalized upstream slope (=

Sn/Cs).

2.3 Coordinate transformation

We employ a linear coordinate transformation de-

scribed by

t"=t, zt=z+ct, N=n-—1"b (21a—¢)
where * denotes the moving coordinate corresponding
to the migration speeds ¢ and b in the horizontal and
vertical directions, respectively.

Appropriate values of ¢ and b are selected under
two conditions. The first condition is to preserve the
domain of the solution (—oo,Z.) in the temporal vari-
ation. Second condition is that the bed evolution far
upstream should vanish and the normal flow condi-
tion should be achieved. The computation of ¢ and b
will be discussed in the next section.

With the use of the above coordinate transforma-
tion, the governing equations are rewritten in the
forms

2 4 ,2\1/2
Us— F VU = — e — — — M—u (22)

(23)

Oz oy oy Oy h
Ouh  Ovh
@ @ - 2 2
8t+08x+b__E<u +v?) (25)

where x is dropped for simplicity, herein and hereafter.

3. The one-dimensional base state

3.1 Formulation

In the one-dimensional base state, flow is consid-
ered to be uniform in the lateral direction; thus,
the terms associated with the lateral direction are
dropped. Then, the governing equations reduce to

ou Oh On u?
et T Ut A 2
6w+5x+8:r+h 0 (26)
uh =1 (27)
On  On 2
4 A = 2
8t+68m+b+E(u) 0 (28)
where
oy _ [ WE—) i u?>9
But) = { § LRz e

3.2 Solution for arbitrary shapes
(1) Solution for flow
Since the base state profile is assumed arbitrarily,
the solution of the flow can be achieved by substitut-
ing Eq. (27) into Eq. (26). Thus, we have
! 3
’ n +u
v =—-—— 30
u— u"2 (30)
where ' denotes the partial derivative with respect to
z.
At the Froude critical point, u takes a value of unity.
It is found that the denominator of the above equation
vanishes. In order for «' not to be infinity at the
Froude critical point, the numerator has to vanish at
once, such that

7'(0)=-1 (31)
Applying L’hopitel’s rule to Eq. (30), we have
"0) = ' +3ud  9"(0) +3u/(0)
v - z—=0,u—1  u + 2'LL_3’U,’ - 3u’(0)

(32)
The solution of the above equation is

W(0) = % {—1 i 1- %n”(O)} (33)

This implies that once the slope profile 7 is given,
u'(0) can be derived from the above equation. We are
assuming the upward convex slope profile as shown in
Fig. 1; therefore, n"(0) is negative. On such a slope,
the velocity should be accelerated in the streamwise
direction, so that u'(0) should be positive. Because of
the above restrictions, Eq. (33) is reduced to

1

W(0)= 5 {-1 +4/1- %77”(0)} (34)

with the condition

n"(0) <0 (35)
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Fig. 2 Comparison of the bed profile between the self-preserving profiles and arbitrary shapes when o = 0.1

(“self” denotes the self-preserving profile and
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Fig. 3 The one-dimensional base state solutions u, h, n+ h for (a) ¢ = 0.1 and 8 =1, and (b) ¢ = 0.1 and

8 = 10.

(2) Solution for the bed variation
As mentioned before, in order to preserve the do-
main of the solution (—o0,0) in the temporal varia-
tion, Eq. (31) remains to be satisfied; therefore, the
following condition has to be achieved at the Froude
critical point:
%y
ozt
Taking the derivative of Eq. (28) with respect to z
and with the use of the above condition, we obtain
2
g;z— + Eug;—; =0 at
where E,, is the derivative of the dimensionless erosion
rate with respect to u (= OE/Ju) described by

E.(u?) = { Zrulu? — gt it w? >

if u? <
Evaluating the above equation at the Froude critical
point, we have the following relation:

e (0) + Eu(1)u'(0) = 0

Thus, the appropriate migration speed is derived from
the above relation as
Ey(1)u'(0)

n"(0)

=0 at =0 (36)

c z=0 (37)

(38)

(39)

— -1
- —1(—177—,,‘%_— {—1 +14/1- %nn(())} (40)

The constant & can be obtained by considering flow far
upstream where the time variation of the bed eleva-
tion vanishes and normal conditions are maintained;
thus, we obtain

b=co—E, (41)
where E,, denotes the dimensionless erosion rate un-
der the normal flow condition far upstream as

_f (WE—-v)r for wl>9y
En= { 0 for w2 < (42)
3.3 Results and discussion of the base state

In this study, an arbitrary slope profile is assumed
to be described by

n=-—or-~ 1 [eﬁ(l_")°‘ - 1] (43)
B

where 3 is a parameter representing the curvature
of the profile. The slope is assumed to asymptot-
ically approach the constant slope ¢ far upstream
(r = —o0). At the Froude critical point, the first
and second derivatives of arbitrary shape are written,
respectively, in the form

n'(0)=~1, 7"(0) =—-B(1~o0)* (44a,b)

- 1000 -



It can be seen that, at the Froude critical point, the
bed slope equals —1 corresponding to the condition of
Eq. (31) and the curvature of the bed increases with
the parameter 3.

The comparison between arbitrary slope profiles
and the self-preserving profiles is shown in Fig. 2. It
is found that it requires longer distance for the slope
t0 become a constant o with decreasing 8. If an ap-
propriate value of 3 is selected, the arbitrary profile
becomes close to the self-preserving profile.

The flow is solved numerically using Eq. (30) with
the boundary condition (34). Some examples of the
base state solution u, 7 and 5 + h are shown in Fig.
3. We found that the flow is intensively accelerated
near the Froude critical point with increasing 3.

4. The two-dimensional perturbation
problem

4.1 Linearization
The following perturbations are imposed on the
slope profile:

n = 1no(z) + an (z)e™ cos ky (45)

Correspondingly, other variables are expanded as

u = ug(z) + auy (x)e cos ky (46)
v = av; (z)e’¥ sin ky (47)
h = ho(z) + ahy (z)e cos ky (48)

where a is the amplitude of the disturbance assumed
to be small,  and & are the growth rate and the
wavenumber of the disturbance, respectively.

Substituting the above equations into the governing
equations (22)—(25), we have the following equations
at O(a):

du;  (ud +uguh + 2ub — ¢ By (ud)ul

dr 1—ud “
k uoug + ud e 10
- - hi — 49
1—u(3)v1 1—ud ! 1—ugn1( )
d’U1 k k
bt R L he 2
iz UgU + ug + Uom (50)
dhy  2up+ 2uf — 1 E, (ud)
de 1—ud “
kug ud + udul) 10
h 1
+1—-u3v1+ 1—ud 1+1-—u8n1 (51)
d
—d%l— = —c 'E,(ud)u; — c71Om (52)

4.2 Boundary conditions
Far upstream from the Froude critical point, the
flow asymptotically approaches to the normal flow
condition, and the perturbations disappear, such that
Uy =v; =hy=m =0 as

z— —00  (53a-d)

It appears that the above equations include four
boundary conditions. However, as found in Eqs. (49)-
(52), if three of the four boundary conditions hold, the
rest is automatically satisfied. Thus, there are only
three boundary conditions included in Eq. (53a-d).

At the Froude-critical point, the denominator on
the right side of Egs. (49) and (51) vanishes; thus, a
singularity appears again. The regularity condition to
prevent the equations from becoming infinity is that
the numerator vanishes at once. Evaluating Eq. (49)
with multiplied by 1 —u3 at the Froude-critical point,
the following equation is required in order for du; /dz
to be finite:

(2u((0) + 2 — ¢ 1EL (1) ug — kvy — (uh(0) + 1) by
Qe =0 at =0 (54)

Eqgs. (49)-(52) are four first-order ordinary differen-
tial equations with respect to four unknowns u;, v,
hi, m1, and form an Sturm-Liouville type eigenvalue
problem with an eigenvalue of 2 and the four bound-
ary conditions (53a—d) and (54). In order to apply the
relaxation method, we solve (49)—(52) as the nonlin-
ear two-point boundary value problem by setting the
bed elevation at the origin to be unity. The amplitude
of the perturbation on 7 at the origin is normalized
as

m=1 at z=0 (55)

Then, the problem is reduced to the one to solve (49)-
(52) under the five boundary conditions, (53a-d) in
addition to (54) and (55). This is solved with the use
of the relaxation method®).

5. Results and discussion

5.1 The dominant wavenumber and the pro-
file of perturbation

Figure 4 shows the growth rate of perturbations
Q0 as functions of the wavenumber k. As found in
the figure, 0 has common features to the previous
study of self-preserving analysis®. The growth rate
Q asymptotically approaches zero in the limit k£ —
0. In the range of moderate values of k Q increases
in the positive range with & and is maximized when
k= 0.1~ 1. If k exceeds some value around unity, )
becomes negative.

The dominant wavenumber k£ and the growth rate
of perturbation Q are found to increase with increas-
ing curvature of the slope 8. This implies that an in-
crease in the acceleration of flow promotes channeliza-
tion with smaller wavelength. This result agree with
the result of the upstream-driven theory on a non-flat
bed by Revelli and Ridoli¥. From their results, they
concluded that the curvature gives a significant effect
on the characteristic wavelength, and an increase in
the downward-concave curvature corresponds to a de-
crease in the dominant wavelength.
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Fig. 4 The growth rate of perturbations 2 as function of k and 8. (a) 0 = 0.1, ¥y = 0.5 and v = 1.5.
(b) c =01, =03and y=1.5. (¢) c =01, =03and y=2. (d) 0 =0,%¥ = 0.3 and vy = L.5.
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Fig. 5 Profiles of perturbations in the streamwise direction for ¢ = 0.1, » = 0.5, v = 1.5, k = (.35.
(a) B=1and & =-0.017. (b) 8 =10 and Q = 0.085.

Comparing Fig. 4a and Fig. 4b, we found that
a decrease in the normalized critical shear stress v
strongly amplifies the growth rate 0. Meanwhile, in
the case of the self-preserving analysis, the critical
shear stress 1 does not have a significant effect. This
is probably because the self-preserving base state pro-
file depends on 1, so that the effect of ¥ is absorbed
by the profile. From Figs. 4b and 4c. the growth rate
2 is found to decrease with increasing exponent of

the erosion function v. This is also caused by the fact
that the effect of v is absorbed by the self-preserving
base state profile. Comparing Fig. 4b with Fig. 4d, we
find that  increases with decreasing ¢ in both analy-
ses for arbitrary slope profiles and the self-preserving
profile.

The examples of the profiles of the perturbations
uy,v1, k1,7, and the base state ng in the streamwise
direction are shown in Fig.5. It is found that the
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Fig. 6 Comparison between w and Q. (a) 0 =0.1, ¢ =05 and y=1.5. (b) ¢ = 0.1, 9 =0.3 and v = 1.5.
(c)o=01,9v=03andy=2. (d) o =0,v=0.3 and y=1.5.

perturbations u, v; and hy in Fig. 5b (@ = 0.085)
can penetrate further upstream than the ones in Fig.
5a (2 = —0.017).

5.2 The momentary stability concept

As mentioned in the Introduction, the criterion for
stability needs to be studied in reference to the growth
or decay of the evolving base state. In the momen-
tary stability concept, the stability of the base state
to perturbations at a given instant is evaluated by
comparing the growth rate of perturbations with the
evolution speed of the base state, both averaged over
the whole domain. It should be noted that the results
of this analysis are nevertheless invalid if the evolu-
tion speed of the base state is large (|0n/0t] > 1)
because the time variation of the base state is ne-
glected in the two-dimensional perturbation problem
(the frozen time approach). It may be possible to
obtain a higher order approximation by introducing
asymptotic expansions with a parameter representing
the time scale of evolution of the base state which
must be sufficiently smaller than unity®). If the evo-
lution of the base state is rapid, however, numerical
simulation is the only method to study the stability
of slopes.

In the analysis by Shen®, the flow energy as an ap-
propriate measure is employed to evaluate the insta-
bility of unsteady base flow. Meanwhile, the present
analysis concerns the instability of bed profiles. We

need to introduce an appropriate measure to quantify
the stability of time-dependent base profiles. Since
the normalized erosion represents the normalized bed
evolution in the stationary coordinate as shown in Eq.
(16), the intensities of erosion (erosion rate squared,
E?) may be a possible choice. We introduce the ra-
tio between the erosion intensities of the base state as
well as the perturbation in the form

£ [ B do (56)
T (Bo-En)?dz

where Eg and E; denote the erosion rates of the base
state and the perturbation respectively, and £ is the
ratio between the two.

Thus, the criterion for “momentary stability” of
the time-dependent arbitrary base state, according to
Shen®, is written in the form

_1de
T 28 dt
where ) is the growth rate of perturbation, and w is
the growth rate of base state given by

OE(u2)

ffoo (B(ud) — En) =57 de

T TP (B - B dz %)

G Q—-w (57)

If G > 0, the bed may be momentarily unstable,
whereas if G < 0, it may be momentarily stable. For
the self-preserving profile, w definitely vanishes.
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Figure 6 shows comparisons between w and ) as
functions of 8 from 8 = 1 to 26. It is found that
when [ increases, both w and ) increase. However,
w increases faster than 2, so that, at some value of
B, w becomes larger than 2. This means that the
system becomes momentarily stable in the range of
large 8. From the momentary stability analysis, we
can conclude that even if the slope does not have the
self-preserving profile, channelization is possible when
the curvature of the slope is not so large.

Let us consider flow on a broad and unchannelized
plateau, which was unleveled by tectonic uplift or vol-
canic movement. In the beginning, the downstream
end of the plateau can be rather angular, so that the
curvature there is large. This corresponds to some-
where in the range of large § in Fig. 6a—d, where
the base state is momentarily stable. Therefore, even
though erosion is active at the downstream end of the
plateau, no channelization takes place. As time pro-
gresses, flow induces erosion on the plateau especially
in the vicinity of the downstream end. Thus, the an-
gular edge gradually becomes smooth, and the curva-
ture around the edge decreases. When the curvature
(or B) becomes sufficiently small and € overcomes w
as shown in Fig. 6a-d (G = 0), channelization begins.
The dominant wavenumbers k,, corresponding to 3
where 2 becomes larger than w in Fig. 6a—d are found
to be 0.6, 0.7, 0.74 and 0.73, respectively, which are
expected to be the wavenumbers of incipient channels.

The dimensional characteristic spacing between in-
cipient channels A, is described by

< 27D,
Am = Crlon (59)
where k,, denotes the characteristic wavenumber.

From the results of momentary stability, k., is ap-
proximately equal to 0.7. Let assume the friction co-
efficient Cy equal to 0.01. Thus, we got that the char-
acteristic spacing Am between incipient channels is on
the order of one thousand times the Froude critical
depth D.. This result from the momentary stability
analysis corresponds well to the result from the previ-
ous study®. Nevertheless, the present analysis points
out the processes of channel inception that cannot be
explained by the previous analysis.

6. Conclusion

The linear stability analysis of channelization on
slopes with time-dependent arbitrary shapes in the

purely erosional case is performed. It is found that,
even if the base state bed profile is not the self-
preserving profile assumed in the existing analysis®
the channelization can occur on slopes. The growth
rate of perturbation increases and the dominant wave-
length decreases with increasing curvature of slopes.
Applying the concept of “momentary stability”, we
found slopes become momentarily stable in the range
of large curvatures.
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