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The novel concept “tangential stress rate relaxation”, abbreviated as “tangential relaxation”,
is proposed in order to predict rigorously the plastic instability phenomena in which the stress
rate has a tangential component deviating severely from the proportional loading. Further, the
constitutive equation based on this concept is formulated.
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1. Introduction

The following facts are generally observed in the elasto-
plastic deformation behavior of real materials.

1 ) The magnitude of the inelastic strain rate depends not only
on the component of stress rate normal to the yield surface,
called the normal-stress rate, but also on the component of
stress rate tangential to the yield surface, called the tangen-
tial-stress rate.

2 ) The direction of the inelastic strain rate depends not only on

the stress but also on the stress rate.

3 ) Thus, the non-coaxiality, ie., the discordance of principal

axes of the plastic strain rate and the stress is exhibited.

3 ) Thus, the non-coaxiality, i.e., the discordance of principal
axes of the plastic strain rate and the stress is exhibited.

However, the traditional elastoplastic constitutive equation,
which has a single smooth yield surface and plastic potential
surface and which derives the plastic strain rate based on the
consistency condition, is incapable of describing these facts.

Then, it has problems in the analysis of the deformation behav-

ior for the loading path that deviates significantly from propor-

tional loading as observed in plastic instability phenomena with
localization and/or bifurcation of the deformation; these tend to
the prediction of unrealistically stiff mechanical response lead-
ing to an excessively high critical load. Then, the extended con-
stitutive equation accounting for these facts has to be formulated.

Here, the following facts also have to be considered in the for-

mulation.

4 ) Rudnicki and Rice (1975) showed that "no vertex can result
from hydrostatic stress increments” based on the considera-
tion of the sliding mechanism in a fissure model. For soils, it
has been experimentally observed that the contribution of
the isotropic part of the tangential stress rate to the inelastic

deformation behavior is small compared with the deviatoric
part (cf. e.g. Poorooshasb et al., 1966; Lewin and Burland,
1970; Tatsuoka and Ishihara, 1974; Pradel et al, 1990;
Gutierrez et al., 1991, 1991). Further, this fact has been veri-
fied in numerical experiments based on the discrete element
method for granular media (Bardet, 1993, 1994; Kishino
and Wu, 1999; Kishino, 2002). Besides, for metals, if inelas-
tic strain rate is induced by the hydrostatic component of the
tangential stress rate, it leads to the physically unacceptable
prediction that an inelastic volumetric strain rate is induced
by that component. Thus, it might be assumed that only the
deviatoric part of the tangential-stress rate, called the devia-
toric tangential-stress rate, influences the inelastic deforma-
tion behavior.

5) The direction of the tangential-inelastic strain rate induced by
the tangential-stress rate would have the components not
only tangential but also outward-normal to the yield surface,
as has been found in various experimental and theoretical
studies: test data of metals (Ito ez al., 1992) and soils (Tatsu-
oka and Ishihara, 1974; Pradel et al., 1990; Gutierrez et al.,
1991, 1993); numerical experiments for metals based on the
KBW model (Kroner, 1961; Budiansky and Wu, 1962) by
Ito (1979) and the Taylor polycrystalline model (Taylor,
1938; Asaro and Needleman, 1985; Kuroda and Tvergaard,
1999) by Kuroda and Tvergaard (2001); and numerical ex-
periments for granular media based on the discrete element
method by Kishino and Wu (1999) Kishino (2002).

In this article, while the relaxation relevant to the nor-
mal-stress rate, called the “normal relaxatior”, is induced in the
traditional plastic constitutive equation, the novel concept that
the relaxation relevant to the deviatoric part of tangential-stress
rate, called the fangential relaxation, is also induced is proposed
in order to take into account the aforementioned fact 4). Then,
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incorporating this concept into the subloading surface model
(Hashiguchi and Ueno, 1977; Hashiguchi, 1980, 1989), the ex-
tended constitutive equation is formulated, which is referred to
as the fangential-subloading surface model. Further, based on i,
the concrete constitutive equation of metals is formulated and
then it is verified that the equation is capable of describing all of
the aforementioned mechanical properties 1)-5).

2. Outline of the Subloading Surface Model

The subloading surface model (Hashiguchi and Ueno,
1977; Hashiguchi, 1980, 1989) is reviewed briefly,
which will be later applied to the prediction of soil de-
formation behavior.

Denoting the current configuration of material particle as x
and the current velocity as v, the velocity gradient is described as
L = 6v/0x by which the strain rate and the continuum spin
are defined as D=(L+L")/2and W=(L-L")/2, re-
spectively, ( )' standing for the transpose. Let the strain rate
be additively decomposed into the elastic strain rate D¢ and the
inelastic strain rate D7, i.e.

D = D¢+ D?, )]
where D¢ is given by

D¢ =E-'6- @
¢ is the Cauchy stress and (°) indicates the proper
corotational rate and the fourth-order tensor E is the
elastic modulus.

Let the following yield condition be assumed.
f(6,H) =F(H), G)
where
6=0-a. @)
The scalar / and the second-order tensor H are the isotropic
and the anisotropic hardening variables, respectively, @ is the
kinematic hardening variable, i.e. the back stress. The function /°
is assumed to be homogeneous of degree one inthe & .

The subloading surface model falls within the framework
of the unconventional plastic constitutive equation (Drucker,
1988) enabling to describe the plastic strain rate due to the rate
of stress inside the yield surface by excluding the premise that
the interior of the yield surface is a purely elastic domain, while
the conventional yield surface is renamed as the normal-yield
surface. Then, the following subloading surface is introduced,
which always passes through the current stress point and also
keeps a shape similar to the normal-yield surface and the orien-
tation of similarity to the normal-yield surface with respect to the
similarity-center s. The degree of approach to the normal-yield
state can be described by the ratio R (0 < R <1) of the size of
the subloading surface to that of the normal-yield surface. Thus,
the variable R is called the normal-yield ratio. Then, it holds that

6,=4{6-(1-R)s} (6-s=R(6,~5)), ()

where &, on the normal-yield surface is the comjugate stress
of the current stress 6 on the subloading surface. By substitut-

ing Eq. (5) into Eq. (3) (regarding ¢ in Eq. (3) as6,), the

subloading surface is described as
f(6,H) =RF(H), ©)
where
G=06-a (=RG,), M
6,=0,-0, ®)

d=S—R(S—a) (@-s=R(@-8)). )
a in the subloading surface is the conjugate point of @ in
the nommal-yield surface. In the calculation, R has to be calcu-
lated first by substituting current values of ¢, H, a, H, 8

into Eq. (6), and thereafier @ is calculated by Eq. (9).
The material-time derivative of Eq. (6) is given as

w(TEH ) (X & W), (T &M g

oH
= RF+RF'H., (10)
where
v dF 11
F'=a5 an

and (°) stands for the material-time derivative. Here, the ma-
terial-time derivative can be transformed to the corotational rate
(°) (cf. Hashiguchi, 2003). Eq. (10} as it is cannot play the
role of the consistency condition for the derivation of plastic
strain rate since it contains the variables that are not related to the
plastic strain rate. Then, consider below to transform it to the
consistency condition.

As observed in experiments, the stress asymptotically
approaches the normal-yield surface in the plastic loading proc-
ess DP# 0. Thus, the following evolution equation of the
normal-yield ratio R is assumed.

k =UR)|D?| for D £0> (12)
where || || denotes the magnitude and U is a monotonically
decreasing function of the normal-yield ratio R, fulfilling the
following conditions.

o for R =0

viR= {o for R = 1, (13)

(U(R)<© for R>1).
Let the function U satisfying Eq. (13) be simply given by

U(R)=-ulnR, (14)
where u is a material constant.
The Similarity-center s has to lie inside the normal-yield

surface. Then, it has to hold that
(8, S F(H), (15
S§=s—a. (16)

The time-differentiation of Eq. (15) in the ultimate state
f(s, H) = F(H) where s lies on normal-yield surface leads
to:
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[ (oL (P R))5)] <o

for (8, H)= F(H), a7
while the relation tr[{5f(S, H)/as}s$]=F due to the
Euler’s theorem for homogeneous function is used for
deriving Eq. (17). The inequality (15) or (17) is
called the enclosing condition for the similarity-center.
In the ultimate state f(s, H)=F(H), the vector
6y —s (=(6—s)/R) makes an obtuse angle with the
vector Of (S, H)/as which is the outward-normal to
the similarity-center surface 7(s, H)= F(H) coincid-
ing with the normal-yield surface, provided that the nor-
mal-yield surface is convex. Noting this fact and
considering the fact that the similarity-center moves only
with the plastic deformation, let the following equation
be assumed so as to fulfill the inequality (17):

g_m.;_{t (5f<s Wir)-#ls=c|p”|S

from which the translation rule of the similarity-center is
given as follows:

$= cl]DP”“ +arL {FH tr(af(s ) H)}s (19)

(18)

where c¢ is a material constant influencing the translating
rate of the similarity-center and

6=0-s. (20)

It is conceivable that the similarity-center s approaches
the current stress ¢ as can be seen from the simple
case of the nonhardening state (& = ﬁ =0, I:I =0), al-
though the translation rule (19) is assumed to fulfill the
requirement (17) in the ultimate state (s, H) = F(H).
Substitution of Eqs. (9), (12) and (19) into Eq. (10)
leads to the consistency condition for the subloading surface:

(L&) (T E W) (TS W gy
=U|D*|F+RF I @1
with
a-ROG+(1-RS§-SUD’|- @2
Adopt the associated flow rule
D’ = AN, 23)

where ] is a positive proportionality factor and the sec-
ond-order tensor N denotes the normalized outward-normal to
the subloading surface, i.e.

A (0, H) /” & (6, H)

(N-n- e

The propomonahty factor j is obtained by substitut-
ing Eq. (23) into Eq. (21) with Eq. (22)leads to

7=ihe), @s)

and thus
D’ = Lf%,‘f’lﬁ, @6)

where
37 = e [N(a{ £ h o (L8 ) U3 ]
@7

The variables 4, hand a are functions of the stress, plastic
intemal state variables and N of homogeneous degree one,
while these functions are relatedto H, H and @ as

ZE _H ,_0 (28)
h=70=7 A
,=_%=Ra+(1 Rz-Us. (29)
§ ) , of (s, H
2=8-c8iail Ly, t(f( Dp)ks. (0)

while the following relation due to the Euler’s theorem
for homogeneous function is used for deriving Eq. (25).

o(TEWG)
of (o, H) _ f(G, H) —
o0 tr(NG) tr(NG)
- RE Q. (31)
tr(NG)

The strain rate is given from Egs. (1), (2) and (26) as

D-E'6+_tr(N&N. (32)
MP
3. Tangential Relaxation
It can be written from Eq. (32) that
6 =ED-——EG, (33)
MP

where G, is the normal-stress rate, i.e.

&, = tr(N&)N=(N® N6 (34)

It is observed in Eq. (33) that the relaxation relevant to the
normal-stress rate is induced. Let it be called the “normal re-
laxation”. Now, in order to take into account the fact 4) de-
scribed in the introduction, let it be postulated that the relaxation
is induced also in the deviatoric-tangential direction to the
subloading surface. Let it be referred to as the “devia-
toric-tangential relaxation”’, abbreviated as “tangential reloxa-
tion”. In what follows, let the extended subloading surface
model, called the tangential-subloading surface model, be for-
mulated.
Now, let Eq. (33) be extended as

1 e 1

L&), (35)

where G is called the tangential-deviatoric relaxation stress
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rate and is given as

<

5% = 0'? d, * 36
6} (u&;u )67 (36)

or
6} = 6; +d.0* o}, €Y

where the deviatoric-tangential stress rate 6} is given as fol-

lows:
&= 6% +67, G8)
& - @ en —(rers-@ens, |
=6 -G =(1"-1"'0n")6
o (YO H N g
2EMy [\ FCHy| K (-,
Cl)

()* stands for the deviatoric component and 1" is the
fourth-order deviatoric transformation tensor, i.e.

Z;klzz(ﬁxk511+55k) 3 5,6y (41)

The material function Aff, called the tangential-relaxation
modulus, is a monotonically decreasing function of R and is sim-
ply given by

*2)

where » is a material constant and £ is a material parameter
which is a function of stress and plastic intemal variables in gen-
eral: a material constant for metals and a fimction of stress for
frictional materials. d, is a material constant by which the relaxa-
tion is induced in the direction not only tangential but also in-
ward-normal to the subloading surface .

The strain rate is expressed in terms of the stress rate
from Egs. (36) and (39) as

D= E“&+M_17tr(ﬁé’s)ﬁ+ﬁ(&;+dnu&;uﬁ*). @3)

Then, the strain rate is additively decomposed into the elastic
strain rate D¢ and the inelastic strain rate D7, while the latter
is further additively decomposed into the plastic strain rate D?
and the tangential strain rate D! , i.e.

D=D°+D!, D'=D"+D', 44

while the tangential strain rate is given for Eq. (43) as follows:

=7 (8} + 1677 (43)

The tangential strain rate equation (45) does not fulfill the ex-
act-differential form, i.e. the complete integrability condition
with respect to the stress rate (cf. Hashiguchi, 1980), while the
elastic strain rate equation (2) fulfills it.

The positive proportionality factor in the associated flow
rule (26) is expressed in terms of strain rate with the tangen-

tial stress rate, rewriting A by A , from Eq. (43) as follows:

tr(NED)— —tr{NE(67 +d:n*(|67()}
Mp+tr(NEN)

A=

( tr(NG))

(46)
The loading criterion for the plastic strain rate is given as
follows (Hashiguchi, 2000):

CY)

D’ #0: A>0,
D? =0: otherwise

or
D’ %0: traﬁED)nﬁlﬁtr{NE(&f+dnﬁ*Ht°r?H)} >0,

D? = 0: otherwise

(48)
since it can be assumed that Af” + tr(NEN) > 0, while the
tangential strain rate D? is always induced for &* = 0. Eq.
(43) is rate-nonlinear and thus an inverse expression becomes
rather complicated form. It should be noted that the loading cri-
terion has to be defined essentially by the sign of the proportion-
ality factor ] as has been revealed by Hashiguchi (2000), while
it has been defined merely by the quantity tr(NED) in the
traditional elastoplastic constitutive equation after Hill (1958,
1967) and even in the past tangential-subloading surface model
(Hashiguchi and Tsutsumi, 2001, 2003; Hashiguchi and Pro-
tasov, 2004; Khojastehpour and Hashiguchi, 2004a, b).

Hereafter, assume that the elastic modulus tensor E is
given by Hooke’s type, i.e.

Eju = (K -

where K and G are the elastic bulk modulus and the elastic shear
modulus, respectively, which leads to the relations
tr(SET*) = 2Gtr(ST*) and I*ET=ET*=2GT* for
arbitrary second-order tensors S and T. Then , it holds from
Eq. (35) that

o tr(NG
& —ED- r(_NP)

%G)%akl +G(6y0; +040 ), (49)

ED Eﬁ—i—lgy(&?+dnﬁ*fl&?t|)’ (50)

It is obtained from Eq. (50) that

Sk * tr(ﬁ&) N * 1 2
6* = 2G{D* - PNt - (8] +dilI 6| } G
from which one has
tr(ﬁ*&*)ﬁ*:2G{tr(ﬁ*D*) tr }(\I;G)tr(_*N*)

(2)

Noting N} (=N*—tr@*N )}n*) =0, the subtraction
of Eq. (52) from Eq. (51) leadsto

6 =i D (53)
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where the deviatoric tangential-stress rate &;‘ is proportional to
the deviatoric tangential-strain rate.
Substituting Eq. (53) and noting

tr(NEG}) (=2Gtr(N6}) =0, (54)
Eq. (46) reduces to
= w(NED)~ dy 72 (N o] 55
M? +tr(NEN)

The inverse expression, ie. the analytical expression of

stress rate in terms of strain rate is derived as follows:

tr(NED) — d,- ,t, tr(N1m%)
& =ED- M +2G i EN
M? +tr(NEN)
R vic)s _
Mt +2G n*)s (56)

o}

where the stress rate & is additively decomposed into
and the elastic stress rate G°, the plastic stress rate &7
and the tangential stress rate @' as

6 =6°+6°+6, (57)
setting
6° =ED,
tr(NED) - d =1~ -tr(Nn*)|D
8" =-ED"= - +2G EN,
MP +tr(NEN)
=N t— __& *|| 3y
6 =-ED Y n*)
(58)
The loading criterion is given as
D? #0: tr(NED) - dy =2 —te(NBID7 >0, | (59

D? = 0: otherwise

For N =n* (pressure-independent yield surface) Eqgs.
(55) and (56) reduce to

o 2G N
G:ED_#;)‘?—G{UO\ID)‘C& v L
__QGY b
M +2G (D}

The plastic strain rate (26) is obtained by substi-
tuting the associated flow rule (23) into the consistency
condition which is obtained by incorporating the evolu-
tion rule (12) of the normal-yield ratio R into the
time-differentiation (10) of Eq. (6) for the subloading
surface. Then, the plastic loading process develops
gradually as the stress approaches the yield surface, ex-
hibiting a smooth elastic-plastic transition. Thus, the
subloading surface model fulfills the smoothness condi-

tion (Hashiguchi, 1993a, b, 1997, 2000) defined as “the
stress rate induced by the identical strain rate changes
continuously for a continuous change of stress state”.
This can be expressed mathematically as follows:

lim 6(6+ 56, S;,D) = 6(6, S;,D), (62)
66 -0

where 6(0,S;,D) designates the stress rate induced by
the strain rate D for the sate of stress 6 and the identi-
cal internal variables S; (i=1, 2, 3, , m) which de-
notes collectively scalar- or tensor-valued internal state
variables describing the alteration of the mechanical re-
sponse property due to the irreversible deformation, & )
stands for an infinitesimal variation. The rate-linear con-
stitutive equation can be described as

6 =M%(c, S;))D, (63)
where the fourth-order tensor M is the elastoplastic
modulus which is the function of stress and internal
variables and can be formulated as

w08 (64)
M oD
Therefore, Eq. (62) can be rewritten as
lim M%(6+56, S;)=M%(0, S;)- (65)
560

Thus, the subloading surface model and its extension to
the tangential relaxation have the notable advantages as
follows:

1) It predicts a smooth response (e.g. a smooth axial
stress-axial logarithmic strain relation in the uniax-
ial loading) for a smooth monotonic loading. By
contrast, a nonsmooth response is predicted by con-
stitutive models violating the smoothness condition
as in the conventional plasticity with the yield sur-
face enclosing a purely elastic domain.

2 ) Only the decision for the sign of the proportionality
factor A is required in the loading criterion of the
subloading surface model, since the stress always
lies on the subloading surface, which now plays the
role of the loading surface, while the determination
of whether or not the stress lies on the yield surface
is not required. On the other hand, the judgment
whether or not the yield condition is also fulfilled is
required in conventional plasticity.

3 ) A stress is automatically drawn back to the normal-yield sur-
face even if it goes out from that surface since it is formu-
lated that R >0 for R<1 (subyield state) and R <0 for R>1
(over the normal-yield state) in Eq. (12) with the condition
(13).). Thus, a rough calculation with a large loading step is
allowed in the subloading surface model when the explicit
method is adopted in numerical calculation.

4 ) The tangential relaxation is induced gradually as the stress

approaches the normal-yield surface, fulfilling not only the
smoothness condition but also the continuity condition (Ha-
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shiguchi, 1993a, b, 1997; 2000) defined as “the stress rate
changes continuously for a continuous change of the strain
rate” which is expressed mathematically as follows:

5[1)1210 6(0, S;,D+5D)=06(0, S;, D). (66)

On the other hand, the tangential-strain rate is induced suddenly
at the moment when the stress reaches the yield surface in the
other tangential-plasticity models violating the smoothness con-
dition, e.g. Rudnicki and Rice’s (1975) and Papamichos and
Vardoulakis’s (1995) models, and thus the continuity condition
is also violated in these models. Further, the unconventional
models other than the subloading surface model, e.g. the multi
surface model and the two surface model also violate both the
smoothness and the continuity conditions if the tangential strain
rate is incorporated. Therefore, they lead to the serious defect
that the uniqueness of solution is violated for the stress path
along the yield surface.

4. Examination of mechanical response

Let the concrete constitutive equation of metals be
formulated based on the tangential-subloading surface
model formulated in the preceding section. Then, let the
mechanical response be specified in this section.

4. 1 Constitutive equation of metals

Let the von Mises yield condition with the iso-
tropic-kinematic hardening (Hashiguchi and Yoshimaru,
1995) and the associated flow rule be adopted for the
normal-yield/subloading surfaces:

f@rJ%

F(H)=F[1+ h{l —exp(—h,H)}], (68)

i1=3tr(ND") (:\Elz\g“l)"\\), h:\E’ (69)

o G* »l
a“(/ﬁ”%*_H_kza)HD |

, (67)

6*}

~*
, a Ekl“g—*H—kza- (70)
The variables k1, ki, A and h, are material con-
stants, and F; is the initial value of F . The functions

in the plastic strain rate (26) with Eqs. (14) and (24)
are given from Egs. (67)-(70) as
N=N*=i*= O, (1)
lo*|
Rt R RN T A Y
3F R
F'=F, by by exp(-h,H). (73)

In what follows, in order to exhibit concisely the
mechanical properties, let the simple constitutive equa-
tion fulfilling the isotropy with @ =0 (k;=k;=0) and
s=0 (c=0) resulting in @ =0 be examined, leading to

tr(NG) = \ERF, (74)

MP = \E{\ERF’—(uInR)F}- (75)

For the elastic modulus, Hooke’s type in Eq. (49) is

adopted.

4. 2 Mechanical response

The mechanical features of the constitutive equa-
tion of metals formulated in the preceding sub-section is
examined by analyzing the response in the zplane. In
what follows, only the principal components are shown
since all the variables of the inputs and outputs have
only the principal components because of the mechani-
cal isotropy.

1) Strain rate response

Consider the response of the strain rate D to the in-
put of the deviatoric stress rate 6* (=) in the z-plane,
which is given as

& cosf
& —\/gl&H cos{f-(2/3)m)}t> (76)
5 7 cos{f +(2/3)7)}

keeping the magnitude of stress rate to be constant, i.e.
I || = const. from the state of stress

(] 2
o, =%RF 1l an
o, -1
resulting in
N 5
Nz=%ﬁ4: (78)
— 6
N, -1
tr(N 6) =||6lcos 6 » (79)
(67), 0
o N .
(67), —“\/—E—Iloﬂsme _11 . (80)
(67),
where
ok
cos 38 =./6t _?;_3’ 81
Vorr(jge) (81

@ standing for the angle measured in the clock-wise di-
rection from the og*-direction to the direction of stress
rate ¢ on the zplane.

Now, let the following unit vector T be introduced.
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Envelope of
stress rate

Normal-yield
surface

Subloading
surface

Response envelope of strain rate
for R=const.

Associated flow rule

0=180°

Output of strain rate

Fig. 1. 1llustration ofresponse envelope of D (= D*) to the input of the stress rate G (=6*)

with a constant magnitude, ie.||6|| (=]|6*|)=const. for metals.

0

il s &) Dn=tr(ND)={(7(—;+—MI;)COSH+M4 lsm@]}”GHa
~1/42 = t(TD) = (——+—)Ho||sm9

which has the direction rotated 72 in clock-wise direc- (83)
tion from N and thus is tangential to the subloading
surface. Consider the two-dimensional orthogonal coor- Di=35 HG” cosd , (84)
dinate system with the unit base vectors N and T.
Further, let the directions of the coordinate axes of strain Df = % |l6|isin@
rate coincide with those of stress rate, and let compo- _
nents in the directions N and T be denoted as D} =tr(ND”) = E@ﬁ p ——||6llcos &, 85
{ )n and ();, respectively. Then, it holds from Eqs. (76) M M (85)
-(82) that D} =t(TD?)=0
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Dt =tr(ND) = j-i;—,n&n

(86)
= YL jziis
D} =tr(TD") = = llGlisin @

_It has to be put in Egs. (83) and (85) that
1/M? =0 for 7/2<60 <z leadingto A<0.

2 ) Relaxation response (stress rate response)

Consider the response of the stress rate
6 (=6*) to the input of the deviatoric strain rate
D(=D*) in the zplane, keeping the magnitude of
stress rate to be constant, i.e. || DI/ =const. from the
stress state of Eq. (77) resulting in Eq. (78) and (82),
while D is given as

D, cos B
D, v =|D{cos{B-(2/3)x} > (87)
Ds cos{f+(2/3)x}
where
cos3f = \/gtr(TDD;HFY . (88)
Here, it holds from Eqs. (78), (82) and (87) that
tr(ND) = nDncosﬂ , (89)
0
IIDII sing L. [Dz|=|D|fsing-  (©0)
—-sin f

The stress rates are described in the coordinate system
with the bases (N, T) as follows:

2G.'D

Input of strain rate

6, ~26{p][cos
—%{C SP=dy 13%ny bin A1} 1)
_dn%fsin ,Bi]
G, = mJIDUS‘“ﬁ
&5 = 26|D|cos 92)
67=2G|D]sinp
- 2G%HD”{°055
s I
ol =0
&l = -2Gd, %HDIH““/”I ©4)
& = —2GT%%1‘/%HD“““/3

provided that 1/477 =0 for A<0 due to the loading
criterion (47), while A is given as follows:

2G/MP

_ 2G/M' |
=——— =D —dy = .
Fi2G, g Pl(eos B~y 007 1sin £1).09)
The relaxation response is illustrated in Fig. 2.
i / » \\\
AN Response of
G &\ associated flow rule

Response for d, =0

Output of stress rate

Fig. 2. Response envelopes of stress rates to the input of strain rate, i.e,
the relaxation for three levels of the material parameter for metals.
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5. Concluding Remarks

Numerous models have been proposed up to the
present in order to extend the elastoplastic constitutive
equations so as to realistically describe the dependence
of the inelastic strain rate on the tangential-stress rate.
The rigorous formulation could be provided in this by
incorporating the novel concept of the tangential relaxa-
tion. The fundamental features of the present model are
as follows:

i) Single smooth surface is adopted for the normal-yield
surface.

ii) Both the plastic and the tangential strain rates are
gradually induced as the stress approaches the nor-
mal-yield surface, where the smoothness condition is
always fulfilled. Then, the present model keeps the
fundamental features of the subloading surface
model described in the foregoing, i.e. the loading
criterion without the judgment whether or not the
stress lies on the normal-yield surface, the control-
ling function that the stress automatically approaches
the normal-yield surface during a plastic loading
process and the expression of smooth mechanical
response for a smooth loading path.

iii) Both the magnitude and the direction of the plastic
strain rate depend on the tangential-stress rate.

iv) The tangential strain rate is oriented between the
outward-normal and tangential directions to the
subloading surface; the direction can be controlled
by the material parameter , . Here, note that

dn#0 causing the outward-normal component of
the tangential strain rate D’ to the subloading sur-
face makes the constitutive equation rate-nonlinear.

v) The constitutive relation fulfills the continuity and the
smoothness conditions (Hashiguchi, 1993a, b, 1997,
2000).

vi) The novel loading criterion described in terms of the
strain rate, which is applicable to not only the
hardening but also the perfectly-plastic and the sof-
tening processes, is formulated.

vii) The reciprocal expression, i.e. the expression of the
strain rate in terms of the stress rate and vice versa is
derived in spite of the rate-nonlinearity of the con-
stitutive equation, while the stiffness matrix tensor
cannot be expressed analytically because of the
nonlinearity.

viii) The constitutive relation is apptlicable to the anatysis of de-
formation in the general loading process including unloading,
reloading and reverse loading for a wide class of materials
including metals and geomaterials. On the other hand, the
existing models with the tangential-stress rate effect except
the model of Hashiguchi (1998) and Hashiguchi and

Tsutsumi (2001) are applicable only to the monotonic load-
ing process. Since the interior of the yield surface is assumed
to be the purely elastic domain, they violate both the
smoothness condition (62) and the continuity condition
(66): their tangential strain rate is induced suddenty when the
stress reaches the normal-yield state.

The original subloading surface (Hashiguchi and Ueno,
1977, Hashiguchi, 1980; Hashiguchi and Chen, 1998; Hashi-
guchi et al., 2002) has been extended already to describe the cy-
clic loading behavior (Hashiguchi, 1989), the time-dependent
behavior (Hashiguchi, 2000b; Hashiguchi and Okayasu, 2000;
Hashiguchi et al., 2004) and the friction phenomenon (Hashi-
guchi et al., 2004). Tt is extended here so as to describe the non-
proportional loading behavior in the simple and natural way.
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