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This article discusses about localized bifurcation corresponding to shear band formation and diffuse bi-
furcation modes of deformation, such as necking and bulging, for a cylindrical metallic specimen sub-
jected to tensile or compressive loading under axisymmetric deformations. Further, conditions for the
shear band formation, the diffuse bifurcations, and the long and short wavelength bifurcation are dis-
cussed in relation to material properties and their state of stress. We employ the tangential-subloading
surface model, in which tangential-inelastic strain rate term makes the inception of bifurcation modes eas-
ier in not only normal-yield, but also subyield states. Furthermore, their formation is severely affected by
the normal-yield ratio describing the approach of magnitude of stress to that of the normal-yield state.
Keywords: bifurcation, elastoplasticity, subloading surface mode, tangential plasticity

1. Introduction

Instability phenomena in elastoplastic solids involve a
more or less abrupt change from one deformation pattern to
another in the form of localized bifurcation (shear bands) or
diffuse bifurcation modes (necking, bulging or buckling).
Considerable effort has been devoted over the last decades
to gain a comprehensive understanding of the bifurcation
phenomenaV. Results of these studies suggest the defi-
ciency of traditional elastoplastic constitutive equations in
which the interior of yield surface is a purely elastic domain
and the plastic strain rate is independent of the stress rate
component tangential to the yield/loading surface. Among
the existing models describing the tangential stress rate ef-
fect'’> ® the model proposed by Hashiguchi and
Tsutsumi'® would be applicable to the arbitrary loading be-
havior of elastoplastic materials with an arbitrary yield sur-
face. It is formulated by introducing the tangential-inelastic
strain rate induced by the deviatoric tangential stress rate
tangential to the subloading surface model.

This article explains how the existing bifurcation analy-
ses of deformation in a cylindrical specimen®'" can be ex-
tended to include tangential-subloading surface model. The
tangential-subloading surface model is reviewed briefly for
incompressible solids, and then based on the constitutive
equations; the localized and diffuse bifurcation modes of
cylindrical specimen subjected to an axisymmetric load are
analyzed. The conditions for the shear band formation, for-
mation of diffuse bifurcations, and long and short wave-
length limits of diffuse bifurcation modes are discussed in
relation to the material properties and stress.

2. Tangential-Subloading Surface Model

In this section the tangential-subloading surface model,
previously proposed by Hashiguchi and Tsutsumi'?, is re-
viewed briefly.

Assume the following yield condition with the iso-
tropic hardening

f(o)=F(H). m

The second-order tensor ¢ is the Cauchy stress and H
is the isotropic hardening variable.

The elastoplastic constitutive equation will be formu-
lated in the framework of unconventional elastoplasticity
in which the interior of the yield surface is not a purely
elastic domain but a plastic deformation is induced by the
rate of stress inside the yield surface. The subloading sur-
face (see Fig. 1) is described as

f(0)=RF(H). 03]
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Fig. 1. Normal-yield and subloading surface
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The degree of approach to the normal-yield state can be
described by the normal-yield ratio R(0< R <1) which
is the size of the subloading surface to that of the normal-
yield surface.

Let it be assumed that the strain rate D (the symmetric
part of the velocity gradient) is additively decomposed
into the elastic strain rate D® and the inelastic strain rate
D’ which is further decomposed into the plastic strain
rate D’ and the tangential-inelastic strain rate D', i.e.

D=D°+D', 3)
D' =D? + D', (4)
where the elastic strain rate D° is given by

19

D=E'q, ®)

and the plastic strain rate D? due to the associated flow
rule is given as

D? = AN, 6)
_ tr(NG)

y) " @)
_o T _

N‘ao/ = (NI=D. (8)

|| Il indicates the magnitude and (°) is a proper corota-
tional rate with objectivity. The fourth-order tensor E,
the second order tensor N and M, are the elastic
modulus (Hooke’s type), the normalized outward-normal
of the subloading surface and the plastic modulus, respec-
tively. D' in Eq. (4) is called the tangential-inelastic
strain rate and induced by the stress rate component tan-
gential to the subloading surface as illustrated in Fig. 2
for the case of von Mises yield surface, namely the fan-
gential-stress rate (O)';k D' and 8‘,* are formulated as

1 ¢
p'=—_¢&* 9
M[ Gt ) ( )
where
M, =TR®, (10)
8} =6*-6;, G:=t(NG"N). (11)

( )* stands for the deviatoric part, M; is a monotonically
decreasing function of R, called the tangential-inelastic
modulus. 7(>0) and 5(=1) being material constants.

The stress rate-strain rate relation in the present model
for plastically incompressible materials is given as

8= fgp-
M, +2G

tr(NED) (en
M, +tr(NEN)

M 2G
—2G—EN)+ ==L (r(ED)I{.
2N TED (12)

where tr( ), I and G are the trace, the identity tensor
and the shear modulus, respectively. Hereinafter, let the

Zaremba-Jaumann rate be used for the corotational rate of
the stress © , i.e.

G =6+0W-Wo. (13)

W is the spin tensor (the skew-symmetric part of the ve-
locity gradient) and () stands for the material-time de-
rivative.

The positive proportionality factor in the associated
flow rule (6) is expressed in terms of the strain rate D,
rewriting A by A, as follows:

tr(NED)

= e 14
M, +t(NEN) ’ a4

Then, the loading criterion can be given by the positive-
ness of the proportionality factor as follows™:

D” £0: A>0,
} (15)

D =0: A<0.

The plastic strain rate (6) with Eq. (7) are obtained by
substituting the associated flow rule (6) into the consis-
tency condition which is obtained by incorporating the
evolution rule of the normal-yield ratio R into the time-
differentiation of Eq. (2) for the subloading surface. The
plastic loading process develops gradually as the stress
approaches the yield surface, exhibiting a smooth elastic-
plastic transition.

Adopt the simple elastoplastic material possessing the
following von Mises yield condition with linear isotropic

hardening'®.

f©)=32llo* || =RF, N=__”§:”, (16)
F=F +¢H, H=23|D"ll, an
M, =(23)c,R+\23UF, U=-ughR. (18)

where ¢; and u, are the material constants and Fj is the
initial value of function F'.

Subloading surface

Deviatoric stress plane

g,

1

Fig. 2. Tangential stress rate for von Mises yield
surface in the principle stress space
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3. Bifurcation Analysis

The localized and diffuse necking or bulging modes of
the cylindrical specimen subjected to tensile or compres-
sive loading are analyzed by adopting the tangential-
subloading surface model in this section.

3.1 Constitutive relations

Consider a circular cylindrical specimen subjected to
axial stress o, at the frictionless ends, which yields the
axisymmetric deformations (see Fig. 3). Deformation is
postulated to be homogeneous up to the onset of bifurca-
tion. Let the radius and the height be denoted by ® and
H , respectively. The constitutive relationship, Eg. (12),
can be expressed in the cylindrical coordinate system as
follows:

Q 1,0 0 1
Oy — —2—(O-rr + Ogp ) = zﬂ*(DZZ_ E(Drr_*‘ DGB)) ’
O

Q

O, — Ogg = 21(D,,— Dgg), 19)
8,, =2uD,,,

where
D, +Dgy+D,, =0, D,y=Dy =0. 20)

The instantaneous shear moduli 4* and # are given as
follows:

ﬂ*ZG__A_li’__(<G) 3}
M,+2G 7
M,
=G————(<G). 22
JZ M,+2G( ) (22)

The instantaneous shear modulus #* in Eq. (21) is in-
dependent of the tangential-inelastic strain rate and
gradually decreases from the elastic shear modulus G as
the normal-yield ratio R increases, as shown in Fig. 4.
The instantaneous shear modulus g, in Eq. (22) is inde-
pendent of the plastic strain rate and decreases monotoni-
cally with the increase of R, as shown in Fig. 4.

)
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Shear band

Necking Bulging

Fig. 3. The cylindrical specimen before
and after deformation

A salient feature of the present formulation is that both
plastic and tangential-inelastic strain rate are induced
gradually as the stress approaches the normal-yield sur-
face, i.e. as R—1, fulfilling both the continuity and
smoothness conditions (Fig. 4). On the other hand, in
conventional plasticity models with u, > and T >0,
p#* and g suddenly jump from the purely elastic re-
sponse to the normal-yield response at the moment when
the stress reaches the normal-yield surface.
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Fig. 4. Instantaneous shear moduli ¢* and y vs.
the normal-yield ratio R, (c;=150)

3.2 Governing equations
The equilibrium equation can be written as

divil=o, (23)

I1 is called the nominal (first Piola-Kirchhoff) stress rate
that is related to the Cauchy stress rate as

I1=&+(trD)o —oL. (24)

L' is the transpose of velocity gradient. By substituting
Eq. (13) into Eq. (24), the nominal stress rate Il can be
rewritten as'”:

11=6 +(rD)o — oD + Wa. (25)

For axisymmetric deformations, the strain rate tensor
D and the spin tensor W are described as

Vo, 0 (v,+v,,)2
D= 0 rly, 0 R (26)
(vr’z +v,, Y2 0 V.
0 0 (v, ,-v,,)2
W= 0 0 0 27
-V, =V, )2 0 0
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In addition, using Eq. (13) and Eq. (25), we obtain the
following equations:

&rr 0 0,- O-(Vr 27 Vay )
8 = 0 &03 0 ] (28)
5;#_ o.(vr,z Vor ) 0 O.-zz
o)
o,, 0 o,+to(v,,—-v,,)
L[]
= 0 Coo 0 , (29)
8',,.—0'(1) ,Z + vz,r) 0 0= 0V, ;
where
|
o=1o.. (30)

2

Bifurcation conditions for axisymmetric loading have
been analyzed by Vardoulakis” for dry sands; Miles and
Nuwayhid'” for metals, and Chau'" for rocks. They fol-
lowed the approach of Cheng et al.® for axisymmetric
conditions and Hill and Hutchinson" for plane strain
conditions. In our research, we consider a purely homo-
geneous deformation process and proceeds up to the in-
ception of bifurcation. We choose the cylindrical polar
coordinate system (r,#, z) such that the origin is located
in the center of the cylinder and the z-axis coincides with
the axis of symmetry (Fig. 3). At the ends (z = +%#/2),
the specimen are subjected to tensile or compressive
loading without shear traction. For the axisymmetric con-
ditions, Eq. (23) reduces to

€2)

Differentiating and combining the two relationships in
Eq. (31) to eliminate /7, + /1., , we obtain an expression
in terms of the gradient of velocities using Eq. (29). In-
troducing the stream function ¥(r, z), it results in

v, =¥, v, = —l(r‘l’)’, .

7

(32)

By substituting Eqgs. (29) and (32) into Eq. (31), along
with constitutive relations in Eq. (19), we obtain

(1=~0)O () +Bu* - YO, () .
+Hu+o)¥. .. =0,

LZZZZ

(33)

where the operator O, is defined as follows:

1
Or( ) 2(7(7’ ),r ),r' (34)
Eq. (33) is a fourth-order partial differential equation of
the mixed type that can be the elliptic, hyperbolic or para-
bolic depending on the state of stress and values of inter-
nal variables. The particular linearization described here

yields a governing equation applicable to the subloading
surface model with tangential stress rate effect. Our
analyses of axisymmetric bifurcation modes in elastic-
plastic incompressible cylinders have the similar form as
that obtained by Cheng et al.”, Hutchinson and Miles®,
Vardoulakis”, Miles and Nuwayhid'® and Chau'”. The
similar conclusion was reached from the corresponding
bifurcation analyses under the plane strain conditions
done by Hill and Hutchinson", Youngz), Needleman®,
Vardoulakis®, Chau and Rudnicki®, and Hashiguchi and

Khojastehpour'.

3.3 Localized bifurcation

The shear band formation conditions at the onset of
strain localization are analyzed in this section.

Consider a purely homogeneous deformation process,
progressing to the onset of shear band formation, at
which the principal stress axes coincide with the coordi-
nate axes » and z . The unit vector normal to a shear
band is denoted by n(r,z) with ny, =0 such that the
shear band inclines against the z-axis (Fig. 3). Two condi-
tions must be satisfied for the shear band formation: 1)
geometrical compatibility which requires the velocity in-
crement to be continuous but permits a jump in the veloc-
ity gradient across the shear band, and 2) the incremental
equilibrium across the shear band'”. These conditions
can be expressed as follows:

1

ILn =0,

M G5

Vi =8, (i,j=rz).
g is the jump vector of the velocity gradient and n is the
unit vector normal to the shear band. Substituting Eq.
(29) into (35) with constitutive relations (19) yields the
following fourth-order algebraic equation:

(=0t + (Gt — wymn +(u+ It =0, (36)
The condition for the formation of shear band is given as
a loss of ellipticity of Eq. (36). The solutions of n,/n, in
Eq. (36) are classified as the elliptic complex (EC), ellip-
tic imaginary (EI), parabolic (P) and hyperbolic (H) re-
gimes, according to the existence of zero, two, and four
real roots, respectively for Eq. (36). Regimes with restric-
tions #* >0, >0 and o >0 may be classified as

Elliptic complex regime:

(3Z* +%)2 >%((3Z*)2+ %) )

(37

Elliptic imaginary regime:

Go+3) <3 (GG +3) w0 >0 9)

Parabolic regime:

U<o. 39
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Hyperbolic regime:
(A dy <32y

Let it be assumed that the shear band will be formed at
the instant that the (o/3u*, w/3u*) trajectory passes
through the EC-H boundary. The inclination angle ¢ of
the shear band, i.e. the angle measured in anti-clockwise
direction from the maximum principal stress (o,,) direc-
tion to the direction normal to the shear band can be writ-
ten from Eq. (36) as

@ =tan~' ’3/1/1
tan()t 2(;10')

Here, when the trajectory directly passes though the E-P
boundary (¢ =0, 3u* > y1) with n, =0 produced by Eq.
(36), and the direction of the shear band is unrealistically
predicted to be perpendicular to the maximum principal
stress direction, i.e. @ =7n/2 . Therefore, one is limited to
the EC-H boundary when calculating shear band forma-
tion.

%) H>0, 3ur<u. (40)

(41)

3.4 Diffuse bifurcation modes

Diffuse necking or bulging modes as the axisymmetric
bifurcation appearing in the elliptic, hyperbolic and para-
bolic regimes are considered in this section. Special lim-
its of diffuse modes such as the long wavelength and the
short wavelength limit are emphasized.

We investigate the possibility of diffuse bifurcations
that precede localization for a cylindrical incompressible
specimen with radius ® and height # at the onset of bi-
furcation (Fig. 3). The specimen is subjected to current
axial compressive or tensile stress o, at the ends with-
out friction. The stream function ¥(r, z), which gives
rise to the diffuse bifurcation modes is given by

¥(r,z)=y(r)cos({z),

where { =mn/H and m=1,2,3,....
Eq. (42) into Eq. (32) results in

V, == yl(r){sm({z) 3 }

42)

The substitution of

(43)
v, == (dw(#)/dr +y(r)iricos({z).

The boundary conditions for axisymmetric deforma-
tions can be written as

v, =0, ].7,z=0, on theends (z = +%#7/2),
. . (44)
I1,=0, II,=0, onthesides(r==R).

The substitution of Eqs. (19), (20), (42) and (44) into Eq.
(31) leads to the boundary conditions on the sides to be
expressed as

O,W)+{*y =0,
(¢ —0)d(rO,(w)rdr -{*(Bu* ~o)dyldr
+@Bu* -2u-o)yir)=0.

(45)

If one substitutes the eigenmode of Eq. (42) into Eq.
(33), the following governing differential equation can be
obtained:

(u-0)Or W) - GBur — w0, (W)

+{ M (u+oyy =0, (46)
Alternatively, Eq. (46) can be written as:
O, +{*17)O0, + {1 (r) =0, (47

Further, it can be written as two Bessel’s differential
equations with respect to 1| and ¥,. Since y(r) should
be finite at » =0, the general solutions of Eq. (46) or Eq.
(47) have the form

w(r)=MJ({Yr)+ NI, ((T,r), (48)

where M and N are constants. J,( ) is the Bessel
function of the first kind and the first order, and 7, and
Y, are the roots of the following characteristic equation.
(L—0)r* +@Bu* — 1)r* +(u+0)=0. (49)
The roots of Eq. (49) are classified into the elliptic com-
plex (EC), the elliptic imaginary (EI), the hyperbolic (H)
and the parabolic (P) regimes, dependenting on the state
of stress and values of internal variables. In each of these
regimes, diffuse bifurcations are possible, and in each re-
gime the analysis leads to the appropriate eigenvalue
equation. The solutions of the eigenvalue equations are
similar to that of equations for plane strain conditions by
Hill and Hutchinson” and for axisymmetric deformations
by Vardoulakis” and Chau'". The results by the subload-
ing surface model with tangential stress rate, which we
incorporate in the present study, are summarized below.

Elliptic complex regime:
The solution (48) in the elliptic complex regime has
the form

w(r)=Re[MJ,({TT)], (50)

Rel ] denotes the real part of [ ]. ¥'= p+ig, (i=-1),
and its conjugate ¥ = p—ig are the roots of Eq. (49).
Substituting Eq. (50) into boundary conditions of Eq. (45)
leads to the following eigenvalue equation:

I -nJy@r) _

(r* -1nJ,(wr)

oY (u—o)r* +(3u* -o)J,(@Y)-2uJ, (@) (51)
ol (-0 +@Bu* —o)J (@) - 2,uJ(a)Y’)

Alternatively, Eq. (51) can be written as
Im[("* -, (@) ){@Y (u-o)X?
+3u* o, (@) -2ud (@)} =0, (52)

where Im[ ] denotes the imaginary part of [ ] and @ =
{R =mnR/H is the wavelength. The quantities p and
g satisfy the following equations:

- 531 -



pr+q? :((ﬂ+0)/(ﬂ—a)) s } (53)

P2 —q* =-Gu* — /(2 -0)).

EHiptic imaginary regime:
The general solutions, Eq. (48), in the elliptic imagi-
nary regime have the form

w(r)=MI({pr)+ NI, ({qr), (54)

where I,( ) is the modified Bessel function of the first
kind and the first order. In the elliptic imaginary regime,
the roots of Eq. (49) are 1, =ip and I, = ig . The substi-
tution of Eq. (54) into the boundary conditions (45) yields
the eigenvalue equation:

(p+ DI (@p) _

(g> + DI, (0g)

op((u~o)p? —Bu*—o)l,(wp)+2ul (wp) i (55)
oq((u—0)g> - GBu* —o)l(wq)+2ul (0g)

where p and g satisfy the following equations:

P g = Gut - (-0, } (56)
P2 —gq2 = (Bu* — p) ~ 4(u* — N2 (u—0).

Parabolic regime:
The general solutions, Eq. (48), in the parabolic re-
gime have the form

y(r)=MJ({pr)+ NI (Lar), (57)

where ¥, =p and 1, =iq are the roots of Eq. (49) for
the parabolic regime. Substitution of Eq. (57) into the
boundary conditions (45) yields the eigenvalue equation:

(P2 —1J,(@p) _

(g2 + D1, (@q9)

wp(p-0o)p* +Bu* —o)d,(wp)-24ud (wp) . (59)
oq((u-0)q? -Gu* —oNl(wq) +2ul,(0g)

where p and ¢ satisfy

P2 +q2 =(Qu* - uy -4y -0 )\ u-ol } (59)
p2—q* =-QBu*—wl(p-o).

Hyperbolic regime:
Solution (48) in the hyperbolic regime has the form
y(r)=MJ({pr)+ NI, (qr), (60)

In the hyperbolic regime, the roots of Eq. (49) are 1, =p
and ¥, = q. The substitution of Eq. (60) into the bound-
ary conditions of Eq. (45) yields the eigenvalue equation:

(p2 —1)J(@p) _

(g% -DJ\(0g)

op((p—0)p + Bur o)y (@p) — 24T (@p) (61
0q((u-0)q? +Qu* —0)d(wg) -2\ (wq)

where p and g are defined as

p2+qr =-Qu* - l(p-o), } 62)
p2—q2 =(Gur - uy -4 —a* ) (u-o).

Since localized bifurcation can be seen in the materials
and diffuse bifurcation modes occur before localization,
the discussion about geometrical diffuse modes is impor-
tant. Fig. 5 represents the bifurcation regimes as a func-
tion of the dimensionless variables o/3u* and u/3u* by
the specified regions. Fig. 5 shows that the bifurcation
domains coincide for compressive and tensile stress. The
geometric diffuse bifurcation modes appear in the elliptic,
hyperbolic and parabolic regimes.

Fig. 6 represents the lowest bifurcation stress as a
function of the wavelength of diffuse modes @ =
mn®R /H obtained for axisymmetric elliptic modes of bi-
furcation in several values of 3x*/u, in which the long
wavelength limit @ — 0 coincides with the ¢/3u* -axis.
The lowest possible bifurcation stress is induced at
@ =0, rising more rapidly when @ is in-between one
and three for tensile loading and two and four for com-
pressive loading, then slowly turns down as a value of @
increases. Here, it should be noted that the eigenvalue
surface has a maximum point that occurs at @ in-
between one and four.

3 \\/a)—mo a)-;o\\f ] (O
4t N | 20 7
H \\ EC i }.!63” H
\ 1 S
L > !
7 3 \\ CI)f4 ' //’
3+ AN 12 W
H 2F \ 10T
P N ! P
\ i
[l R Rt N B A
EAI kN :
S5 4 3 2 -1 0 1 2 3 4 5
o/3u*

Fig. 5. Characteristic regimes and (o/3u*, u/3u*)
trajectories

Fig. 6. Lowest bifurcation stresses with the variation
of 3u*/u
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3.5 Long and short wavelength diffuse modes

We consider here the long wavelength limit (@ — 0)
and the short wavelength limit (@ — ) of the eigen-
value equation in EC, EI, P and H regimes.

In the elliptic complex regime, dividing the numerator
and the denominator for both sides of Eq. (51) to J, (@)
and J, (@) , respectively, and with lim@YJ (0T’)/
J(@I)=2 and limwrJ (a)l” )W, (oY ) 2 yields the
following 51mphﬁed equatlon

o _1
3ur 27

(63)

Alternatively, when J,( ) and J,( ) are written as the
series representationzo), then for small values of @ and
the first two terms, Eq. (51) can be factored as follows:

(R A AT

3u* :E 3u*
(- 252l
1 4 MO
a)4(1 23# 0 ﬂTO') (64)

The substitution of the asymptotic expansions of J,( )
and J,( ) with large arguments™ into Eq. (51), for the
short wavelength limit (@ — «) in the elliptic complex
regime, yields
o _1

1 U o (H—ON\i2
3ur 2 5ﬁf+§ﬁ: ,u+0') : (63)

The (o/3u*, 1/31*) trajectories of the EC regime for
the typical wavelength @ ranging from 1.0 to 2.0 are de-
picted in Fig. 5. Taking into account that diffuse bifurca-
tion modes are observed for @ in-between 1.0 and 2.0, it
can be shown that the wavelength @ is near the peak of
the eigenstress by the numerical results (see Fig. 6). The
(o/3u*, 4/3u*) trajectories for the long wavelength
limit (@ — 0) (Eq. (63)) and the short wavelength limit
{@w — ») (Eq. (65)) are shown in Fig. 5 by the dashed
line and curves, respectively.

Considering the elliptic imaginary regime in the long
wavelength limit (@ — 0), dividing the numerator and
the denominator in both sides of Eq. (55) to I,(wp) and
I(wq) , respectively, and noting that lim wpI,(wp)/
I(wp)=2 and lim wql (wq)/I,(@q) =2, again leads to
Eq. (63). The substitution of the first two terms in the se-
ries representation of the modified Bessel functions
I,( ) and I,( )* into Eq. (55) for small values of @,
again yields Eq. (64). In the short wavelength limit
(w — ), the substitution of the asymptotic expansions
of I,( ) and I,( ) for large arguments”™ into Eq. (55),
again produces Eq. (65). Therefore, the long wavelength
and the short wavelength bifurcation modes continue to
appear across the EC-EI boundary.

In the parabolic regime, using the same argument used
by Chau'", bifurcation of diffuse modes becomes possi-
ble as soon as the parabolic regime is entered considering
Eq. (58). This relation is found to be similar to that for

the parabolic eigenvalue equation for a rectangular
specimen under plane strain deformations. Consequently,
the arguments employed by Hill and Hutchison" and
Needleman® for the eigenvalue equation on the tensile el-
liptic-parabolic boundary in the plane strain condition can
be also applied here. Therefore, the same argument ap-
plies identically for the compressive elliptic-parabolic
boundary. In particular, there is an infinite sequence of
eigenvalues available in the vicinities of both the tensile
and compressive E-P boundaries for some sufficiently
large @ . Therefore, short wavelength diffuse modes and
shear band modes are always available simultaneously
once the parabolic regime is entered.

In the hyperbolic regime, expansion of (61) for small
@ leads again to Eq. (63). Hence, the long wavelength
necking and bulging modes continue through the elliptic-
hyperbolic boundary. In the short wavelength limit
(@ — ), the substitution of the asymptotic expansions
of J,( ) and J,( ) for large argurnentszo) into Eq. (61),
again produces Eq. (65). Consequently, the bifurcation
into some sufficiently short wavelength mode is possible
as soon as the hyperbolic region is entered.

Although geometric diffuse modes in both hyperbolic
and parabolic regimes are found to be mathematically
admissible, they are of less interest and elliptic diffuse
modes may play a significant role in the development of
subsequent localization.

4. Concluding Remarks

Instantaneous shear moduli, shear band formation and
diffuse bifurcation modes of a cylindrical incompressible
specimen subjected to axisymmetric compression and
tension were analyzed incorporating the tangential-
subloading surface model. The main results are summa-
rized here.

1) Analytical solutions for the inception of localized bi-
furcation and diffuse bifurcation modes were derived
and classified into the elliptic complex, elliptic imagi-
nary, hyperbolic and the parabolic regimes.

2) The localized and diffuse bifurcation of deformation
can simulated well by the tangential-subloading sur-
face mode, and thus is revealed that pre-peak bifurca-
tion of diffuse modes is always possible and can occur
preceding the formation of localization mode.

3) Incorporation of the tangential-inelastic strain rate has
no influence on the instantaneous shear moduli x*,
but lowers the instantaneous shear moduli # .

4) The tangential-inelastic strain rate term satisfies condi-
tions necessary for bifurcations for both normal-yield
and subyield states.

5) The formation of shear band and diffuse bulging or
necking modes is affected markedly by the normal-
yield ratio describing the approach of stress to the
normal-yield state.
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