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Log-normal distribution is widely used to approximate probability density distributions of un-
certain parameters in stochastic problems. This paper presents an analytical expression of the
expectation of the product of log-normat stochastic variable and polynomial chaos and it enables
efficient computation of spectral stochastic finite element method in the context of log-normal
uncertainties. Accuracy of the presented method is validated through numerical simulations and

comparison with Monte Carlo Simulation.
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1. Introduction

Stochastic finite element methods are powerful tools
and widely used for the analysis of stochastic problems, as
an efficient alternative of Monte Carlo Simulation (MCS)
which is usually quite expensive in terms of computational
effort. Various types of formulations have been proposed
for stochastic finite element methods, such as those based
on perturbation methods or Neumann expansion etc.!»?
In addition to those methodologies, Ghanem and Spanos®
proposed a spectral stochastic finite element method (SS-
FEM). SSFEM has a variety of advantages such as that it
can estimate probability density function as well as mean
values and variances.

Applicability of SSFEM has been explored in wide
range of problems.*® Most of those applications assume
that uncertain parameters have fluctuations with a Gaus-
sian distribution. SSFEM, however, is also applicable to
problems with non-Gaussian uncertainty.

A log-normal distribution is suitable for approximation
of many uncertain parameters and is used in many stochas-
tic problems. Gaussian distribution ranges from —co to co
and therefore it is not necessarily suitable to represent un-
certain parameters that never takes negative values such
as stiffness coeflicients. For both practical and theoretical
reasons, a log-normal distribution is frequently employed.
Consequently, SSFEM to consider a log-normal distribu-
tion is studied in some research works.!%!? They expand
a stochastic parameter with a log-normal distribution in
terms of polynomial chaos. This paper will present a sim-
pler and more efficient scheme.

In the following, first we summarize the basic formula-
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tion of SSFEM, which is followed by a proposed scheme
to use SSFEM with log-normal distributions. Then we
present numerical examples to illustrate accuracy and ef-
ficiency of the proposed scheme, using a two-dimensional
elastostatic problem where the stiffness is assumed to have
uncertainty. Influences of Gaussian uncertainty and log-
normal uncertainty are compared based on the computa-
tion results obtained by the presented scheme.

2. Spectral Stochastic Finite FElement

Method

Here we briefly derive the formulation of SSFEM. Fur-
ther detail description of SSFEM formulation can be found
in the preceding works.>>!2  First we introduce two
stochastic representations that play important roles in SS-
FEM; Karhunen-Loéve expansion and polynomial chaos
expansion. It is followed by a description of SSFEM for-
mulation.

2.1 Karhunen-Loéve Expansion

SSFEM regards uncertain parameters as stochastic
processes and their spatial distributions are expressed
in the form of truncated Karhunen-Loéve expansion.
The Karhunen-Loéve expansion is a representation of a
stochastic process in terms of uncorrelated random vari-
ables. When applied to a stochastic process whose covari-
ance function is known, Karhunen-Loeve expansion can
provide the optimal representation of the target stochastic
process in the mean-square sense.

Let us consider the domain S and a stochastic process
E(x,8) defined in S where x € S denotes the spatial co-
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ordinate and 6 denotes an event in the probability space.
Let us also assume that covariance function of the value
at arbitrary points xj,x; € S is given as C(xy,x;). Then
Karhunen-Loéve expansion of a stochastic process E(x, 8)
is obtained as

E(x,6) = Eo(x) + Y, &(0) A fi(x) ()
i=]

where Ep(x) is a mean value of E(x,6) at x; £(6)’s are
orthonormal random variables. Scalars 4;’s and functions
fi(x)’s are respectively given as eigenvalues and normal-
ized eigenfunctions of the integral equation

fSC(Xl,Xz)ﬁ(xz)dxz = A filxy). (2

Since it is impossible to expand Eq.(1) to an infinite order
in practice, summation of Eq.(1) is truncated at a finite
order, which is denoted by Ng; .

The truncation order Nx; should be determined depend-
ing on desired accuracy and the eigenvalues 4;’s. As can
be seen in the right-hand side of Eq.(1), terms with small
eigenvalues make small contribution. Those terms can be
truncated for the purpose of computational efficiency.

2.2 Polynomial Chaos Expansion

Since it is impossible to obtain the information of co-
variance function of the solution in advance, solution pro-
cess can not be represented by Karhunen-Loéve expan-
sion. Therefore, in SSFEM, the solution process is approx-
imated by a stochastic process belonging to the homoge-
neous chaos'® which is truncated after a specified finite
order. Finitely truncated homogeneous chaos is spanned
by a finite number of polynomial chaos ¥,[£], where its
argument € is a vector of orthonormal Gaussian stochastic
variables

£=(L00,60),....)". 3)

Argument 6 will be omitted hereafter for brevity of expres-
sion. Polynomial chaos are given as multivariate Hermite
polynomials. They are orthogonal to each other with re-
spect to a Gaussian measure and they consist an orthogo-
nal basis of homogeneous chaos.!>!¥

In SSFEM, solution u(#) is represented by a square in-
tegrable stochastic process, which is expressed as

Nec
u= u¥E] (4)

i=0

where ‘I‘f)”’)[f] = 1 and the expansion is truncated after
the Npc-th term of polynomial chaos. m denotes the num-
ber of Gaussian random variables that appear in arguments
and in SSFEM usually m = Ng,.

It is not easy to find the best truncation order Npc of the
summation of Eq.(4) for desired accuracy. High trunca-
tion order promises high accuracy but requires large com-
putation efforts. Appropriate order is usually determined

empirically considering the trade-off of accuracy and com-
putation resources.

A mean value, variance and probability density function
(pdf) of the solution expressed in the form of polynomial
chaos expansion can be easily evaluated. Let us take u in
Eq.(4) as an example. The 0-th term u; gives a mean value.
Denote n-th component of u by #”, and »n-th component of
u; by u;. Then the variance of n-th component of u is given
as

Nec
(" = @) = D (EEEDY (5)
=1
where (-) denotes the expectation operator. The orthogo-
nality of polynomial chaos ((\W;[¢]¥;[£]) = O fori # j)is
taken into consideration. Pdf can be evaluated by a Monte
Carlo Simulation-like manner.

2.3 SSFEM formulation

Now we derive an SSFEM formulation by taking a sim-
ple elastostatic problem as an example.

Based on the weak form expression of the equilibrium
equation, considering the boundary conditions, an elasto-
static problem can be discretized using Galerkin’s method.
We obtain the FEM expression of the problem as,

Ku=p 6

where K denotes a stiffness matrix, # and p denote a
nodal displacement vector and a nodal external force vec-
tor, respectively. In the stochastic problem, we assume
that Young’s modulus has uncertainty and its covanance
function is given. Then the stiffness matrix K has uncer-
tainty associated with the uncertainty of Young’s modu-
lus. Assume that Young’s modulus is given in the form of
Karhunen-Loéve expansion as in Eq.(1), then correspond-
ingly stiffness matrix K is expressed in the form as

K = Z&K, (7)

Here K; denotes a stiffness matrix to be obtained by us-
ing Galerkin’s method when Young’s modulus is given as
VA fi(x) in Eq.(1). When i = 0, & = 1 and K is built
from the mean value of Young’s modulus Eo(x). Since
Eq.(1) gives the stiffness as a linear summation of kernel
functions, Eq.(7) is also given as a linear summation of
corresponding stiffness matrices. The external force p can
be also assumed to have uncertainty and it will be simi-
larly treated. The solution vector u is written in the form
of polynomial chaos expansion as Eq.(4).

We substitute Egs.(4) and (7) in Eq.(6) and aim to obtain
the optimal approximation in the finitely truncated homo-
geneous chaos on which displacement u is expanded. This
can be achieved by projecting the equation to each of the
basis of the homogeneous chaos, that is, polynomial chaos.
This procedure yields

Ny Nec

(et (e (3w - pereme)
=0 Jj=0

)

-392 -



for k = 0,1,...,Npc. By changing the order of summa-
tion, Eq.(8) can be simplified as

Nki Nec

D EV V) Ky = pe 9

i=0 j=0

~

where
= {p&) ¥"Lg)). (10)

Solving aset of Eq.(9) fork = 0, 1, ..., Npc withrespect to
u; (j=0,1,..., Npc), gives the solution of our problem.

3. SSFEM for Log-Normal Uncertainty

Let us introduce the formulation of SSFEM analysis for
a stochastic problem with a log-normal uncertainty.

3.1 Karhunen-Loéve Expansion with Log-Normal
Random Variables

In ordinary SSFEM, Karhunen-Loéve expansion plays
an important role in consideration of spatial correlation of
uncertain parameters in SSFEM. It is also the case with
SSFEM for a log-normal uncertainty.

We can avail the same kemel functions of Karhunen-
Loeve expansion to consider the log-normal stochastic
process. Taking into consideration two equalities

(efy =e'’? (11
() — (e = —¢, (12)

we can introduce a stochastic variable ; (i = 0,1,2,...)

as
1

where each ¢; denotes an independent normal stochastic
variable. Then 7;’s exhibit orthogonality as

(e —e'?) (13)

{m» =0, (14)
i n;) = 6ij. (15)

It allows us to replace the normalized independent Gaus-
sian stochastic variables £;’s in Karhunen-Loeve expan-
sion by 7;’s.  Such substitution in Eq.(1) leads to
Karhunen-Log¢ve representation of the stiffness as

E(x,6) = Eo(x) + ) m VAS(¥) (16)
i=1

This representation gives the optimal approximation of
the stochastic process in the sense of the second moment.
Note that, in order to generate a stochastic process which
provides the approximation in terms of higher order mo-
ments or probability density function, we need to adopt
appropriate random variables in Eq.(16). This issue is not
discussed here.

3.2 Formulation with Log-Normal Random Vari-
ables
We assume Young’s modulus £ as Eq.(16). Discretiza-
tion by the Galerkin’s method yields a stiffness matrix as

K&, 6,..) = ) mik; a7
i=0

where 9 = 1. We truncate the summation in Eq.(17) by
Nk, and also truncate the polynomial chaos expansion of
the displacement vector at Npc-th term as in Eq.(4). Sub-
stitute them in Eq.(6) and project the equation to each of
the orthogonal basis of homogeneous chaos under con-
sideration, W,[€]. This gives equations corresponding to
Eq.(9) as

Nxi Nec N
2 D Ky = e (18)
i=0 j=0

where p;’s are identical with those given in Eq.(10) and
ept = (m ¥ wye1) (19)
Now we estimate the value of Eq.(19). Let us consider

a case that involves a single stochastic variable £, which
means Nk = 1. Then Eq.(19) can be rewritten as

1
L =——— (PP1EY[€])

eijk =
e(e—-1)
- L 1) 1)
ee—1) <\P§ [f]‘{’ﬁ [f]) (20)

This can be evaluated by using an equality
(@D = mls" e L (-5 (21)

where L} (x) denotes Laguerre polynomials and it can be
evaluated as

1 d" - n+a\x™
a e D aXy X Y (X Aty _ _1yn —
Ly = ws dx"(e * )_;( D (n—m)m!
(22)
More description about the derivation of Eq.(21) is pro-

vided in Appendix A.

The formulation presented above is equivalent to the
case where a stochastic parameter with a log-normal dis-
tribution is expanded by polynomial chaos to infinity and
therefore it ensures the higher accuracy than that presented
in the reference.!?

Extension of the above presented scheme to a multivari-
ate case (two or more stochastic variables are involved) is
straightforward, but such cases are not considered in this

paper.

4, Numerical Examples

For the purpose of validation of usability, we apply the
proposed scheme to a two-dimensional elastostatic prob-
fem where Young’s modulus is assumed to have uncer-
tainty. Firstly, accuracy of the proposed SSFEM is dis-
cussed based on the comparison of computation results ob-
tained by the proposed method and by Monte Carlo Sim-
ulation (MCS). Then, influence of the distribution of the
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Fig. 1 Mesh configuration of SSFEM model. Arrows on
the nodes on top and bottom sides denote external
forces applied in the problem.

fluctuation is discussed considering the results evaluated
by assuming a log-normal uncertainty and a Gaussian un-
certainty in Young’s modulus of the media.

4.1 Comparison with MCS

A two-dimensional plane strain elastostatic problem in
the square domain of 1.0 x 1.0 is considered. Young’s
modulus is assumed to have uncertainty and its covariance
function for two points in the domain (x,,y;) and (x2, y2)
is given as

C(x1,y1,%2,2) = (YGY exp {—(‘xl —x ; o _yZD}
(23)
where b is a correlation length and b = 1.0; ¥ is a pa-
rameter to determine the magnitude of uncertainty. Fig. 1
illustrates a mesh configuration and external nodal forces
applied to the model. External force has a magnitude of
1.0 x 1073 and it is applied to three nodes of top and bot-

tom sides. All other nodes on the boundary are set free.
We truncate the Karhunen-Loéve expansion at the first
order (Nx; = 1). y=0.02 is set in Eq.(23), which im-
plies the standard deviation of fluctuation is equal to 2%
of the mean value. Contribution from the higher order ho-
mogeneous chaos is studied by comparing the results ob-
tained by considering the homogeneous chaos up to the
second order (HC=2) and the forth order (HC=4). They

Table 1 Property of the model

Parameters Values
Unit weight 1.0

Young’s Modulus (mean value) 0.025
Poisson Ratio 0.25

Correlation length (b) *! 1.0
Standard deviation (y) *! 2%
Uin Eq.(23) for fluctuation of Young's modulus.

*

0.8
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Fig. 2 Deformation representing mean values of the
displacements obtained by SSFEM and MCS.
Karhunen-Loéve expansion is truncated at the first
order.

are referred to as SSFEM(HC=2) and SSFEM(HC=4), re-
spectively. Since Ng; = 1, we have Np¢ = 2 in SS-
FEM(HC=2) and Npc = 4 in SSFEM(HC=4).

MCS was conducted with 50,000 realizations, which we
verified is enough to capture the stochastic characteristics
of the solution with an accuracy sufficient for our current
purpose. In MCS, realization of the stiffness distribution is
generated by substituting the random variables in Eq.(16).

Fig. 2 shows deformations representing mean values of
displacements obtained by MCS, SSFEM(HC=2) and SS-
FEM(HC=4). Results of two SSFEM analyses both show
good agreement with that obtained by MCS. Distribution
of variances of x- and y-directional displacements obtained
by SSFEM are plotted with the results by MCS in Fig. 3.
SSFEM(HC=2) gives a good approximation of the MCS
results. Better agreement is observed in the comparison of
the results by MCS and SSFEM(HC=4), where computa-
tion results of SSFEM and MCS are virtually identical.

Pdf of displacements at (-0.5,-0.1) and (-0.1,-0.2)
are plotted in Fig. 4. The results by SSFEM(HC=2)
present a good approximation of the results by MCS, but
the displacement at which pdf has its peak is different for
SSFEM(HC=2) and MCS. Approximation accuracy is im-
proved in the results by SSFEM(HC=4), which show good
agreement with those by MCS. These results illustrate the
performance of SSFEM in the problems with log-normal
uncertainties.

Let us also mention to the comparison of CPU time
required for these computations. MCS with 50,000 real-
izations takes more than 50,000 seconds in CPU time on
Athlon 1700+, while SSFEM takes no more than a few
seconds on the same CPU. It clearly illustrates superiority
of the proposed scheme over MCS in terms of the compu-
tational efficiency.
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Fig. 3 Distribution of variance of the displacements obtained by SSFEM and MCS. Karhunen-Loéve expansion is trun-

cated at the first order.

4.2 Comparison of Gaussian and Log-normal Uncer-
tainties

Let us show the difference of the stochastic characteris-
tics of the solutions we obtain when we assume uncertain
parameters have Gaussian distributions and those we get
when we assume log-normal distributions.

We make a FEM model by discretizing the same area
([-0.50.5]x[-0.5 % 0.5]) with finer (100 x 100) grid mesh.
External load is assumed to have a uniform magnitude of
0.1 per unit length and it is applied to the area [-0.1,0.1]
on the top and bottom sides. Fluctuation of Young’s mod-
ulus is assumed to have a Gaussian distribution in one case
and a log-normal distribution in the other case. Same mean
value and same covariance function (Eq.(23) with b = 1.0
and y = 0.1) are assumed in both cases. Karhunen-Loéve
expansion is truncated at the first order (Nx; = 1) and the
solution is approximated in the homogeneous chaos trun-
cated at the second order. (HC=2)

Fig. 5 plots distributions of variances of x-direction dis-
placements. They exhibit similarity in terms of geome-
try, but magnitude of variance in the Gaussian stochastic
problem is considerably larger than that in the log-normal
uncertainty problem, although the fluctuation of Young’s
modulus is the same in both two problems.

Influence of the distribution of random parameters are
more clearly observed in the comparison of pdf of dis-
placements. Since a log-normal distribution is bounded,
stiffness of this problem is always larger than a certain
value. Therefore in the log-normal uncertainty problem,
displacement is also bounded and it never exceeds a value
obtained for the smallest value of stiffness. In the Gaus-
sian uncertainty problem, on the other hand, displacement
should distribute over a wide range. Such difference is
clearly observed in the pdf of displacements shown in
Fig. 6 which plots pdf of x- and y-directional displace-
ments at (0.1, -0.2) in these two problems.

These comparisons intelligibly illustrate that difference
of stochastic characteristics of the problem can lead to sig-
nificant difference of the stochastic behavior of the solu-
tions. Poor modeling of stochastic problems can lead to
a considerably inaccurate interpretation of results. The
difference is clearly observable in the comparison of pdf,
but may not be obvious in the comparison of mean values
or variances, which are of main interest in numerous con-
ventional stochastic finite element methods. These results
would stress the importance of methodologies such as a
spectral stochastic finite element method.
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Fig. 4 Pdf of the displacements obtained by SSFEM and MCS. Karhunen-Loeve expansion is truncated at the first order.

5. Conclusion

We have presented a practical scheme to apply a spectral
stochastic finite element method (SSFEM) to stochastic
problems in which uncertain parameters have log-normal
distributions.

The presented scheme does not require substantial mod-
ification of the program code of the original SSFEM where
Gaussian uncertainty is of main interest. Required are
(a) replacement of Gaussian stochastic variables &;’s in
Karhunen-Loéve expansion by log-normal stochastic vari-
ables 7,’s, and (b) replacement of an expectation of the
product of a Gaussian stochastic variable £; and polyno-
mial chaos ((¢;¥;'¥)) by an expectation of the product of
a log-normal stochastic variable 7; and polynomial chaos
((n:'¥;¥p)). The expectation values can be easily evalu-
ated by an analytical expression and they are provided in
this paper (See Table 2).

Validation of the proposed scheme is conducted through
the numerical examples using a two-dimensional elasto-
static problem where stiffness has a log-normal uncer-
tainty. Computation results obtained by the proposed
scheme are compared with the results obtained by Monte
Carlo Simulation (MCS) with 50,000 realizations. Resul-
tant good agreement illustrates the usability of the pro-
posed scheme. Efficiency of the proposed scheme is also
portrayed by the fact that its computation time is much
smaller than that by MCS.

The scheme is also utilized to study the effect of the dif-

ference of probability distribution of the fluctuation. Two
problems are considered assuming different distributions
for the fluctuation of Young’s modulus. A Gaussian dis-
tribution is assumed in one case and it was analyzed by a
conventional SSFEM. In the other case, a log-normal dis-
tribution is adopted and this case was treated by the pro-
posed formulation.

Although the same standard deviation is assumed for the
fluctuation of Young’s modulus in the two cases, probabil-
ity characteristics of the solutions exhibit significant dif-
ference in the variances and the probability density func-
tions. This indicates importance of appropriate modeling
of stochastic problems. Now with a help of the proposed
scheme, we can consider a log-normal distribution as an
available option. It would be of great help when consid-
ered are more realistic and practical problems than those
treated in this paper.
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Appendix A Derivation of Eq.(21)

Here we derive the equality Eq.(21).
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Fig. 6 Pdf of the displacements at (-0.1, -0.2) in the problem obtained by assuming the fluctuation of Young’s modulus
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Integration tables (e.g. 7.374.7 in the reference!®) The left-hand side of Eq.(21) can be written as

shows us an equality .
i LD = [l (a2
f e Hyy(x) Hy(x)dx = 2" Pty L (- 2y7)
—o where
(A1) o] 1, 55
where H,(x) denotes Hermite polynomial. T \2r xp _E‘f dé .3
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Table 2 Values of eg.z

i3 [ k[ @
0 0 0 1.0
0 1 1 1.0
0 2 2 2.0
0 3 3 6.0
0 4 4 240
1 0 1 0.7629
1 0 2 0.7629
1 0 3 0.7629
1 0 4 0.7629
1 1 1 0.7629
1 1 2 2.2886
1 1 3 3.0515
1 1 4 3.8144
1 2 2 3.8144
1 2 3 99174
1 2 4 16.0204
1 3 3 21.3605
1 3 4 55.6898
1 4 4 141.1317
Substitute in Eq.(A.1)
x=¢/V2 (A.4)
y=s/V2, (A.5)
and multiply
LI et (A.6)
Var Vi v |

Then we have

e[ () e

Using the relationship of polynomial chaos function
¥ [¢] and Hermite Polynomial H,,(£)

1 ¢ )_ 0
Hy, | =] =90
- (\/3 [£]

we obtain Eq.(21)

(A.8)

EEPDENYD[ED = mls™e3 [1m(—sh) (1)

Values of ;3 with a single stochastic variable are listed
in Table 2. Values of terms whose subscripts satisfies j < k
are omitted in the table because they have the identical
values with ey (j < k).
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