Journal of Applied Mechanics Vol.7,pp.287-294

(August 2004)

Parallelization of Fast Multipole Accelerated BIEM for
SMP Computers

HAEAERVRI 2 —FICBT 5 EmE%L EmHED S ERXIEOIIHE

Hidenori MUNAKATA*, Naoshi NISHIMURA**
B - HEE

*Graduate Student, Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto

606-8501

**Mem. JSCE, Dr. Eng., Prof., Academic Center for Computing and Media Studies, Kyoto University,

Kyoto 606-8501

A parallel fast multipole accelerated boundary integral algorithm for solving boundary
value problems is presented in this paper. This paper focuses on the downward pass, the
upward pass and the preconditioning process, which are considered to be the expensive
parts in the FMM(Fast Multipole Method) algorithm. All of them are parallelized with
OpenMP. The performance of the parallel fast multipole method is tested with two
numerical examples, namely the crack problem for Laplace’s equation in 2-D and the
elastostatic inclusion problem in 3-D. From those numerical examples, we can say that
the speedup achieved with OpenMP is satisfactory in spite of the relatively small amount
of efforts for programmers and small change in the program structure. Particularly
remarkable is the fact that the effect of this parallelization in the fast multipole method

JSCE

is more pronounced in large scale problems or in 3-D problems.

Key Words :

1. Introduction

Suppose that one introduces N unknowns to dis-
cretize a boundary integral equation. Conventional
BIEMs(Boundary Integral Equation Method) will
produce an N x N dense and nonsymmetric matrix
and this linear system will be solved with either di-
rect or iterative solvers. This process undoubtedly
requires operations of the complexity proportional
to N? with direct solvers and to N? with iterative
solvers. Also, the memory requirement is proportional
to N2, BIEM is therefore considered quite expensive
for large problems, compared to other major numeri-
cal methods such as FDM or FEM, which need only
O(N) operations and memory for an equivalent task,
because their coefficient matrices are banded. This
fact made BIEM a loser for large problems!. How-
ever, recent developments of fast BIEM have brought
BIEM back to large scale problems, showing that
BIEM can solve problems with O(N) operations with
the help of FMM.

FMM was introduced by Rokhlin? for solving
an integral equation for Laplace’s equation in 2-D.
FMM was further developed and made famous by

T Dedicated to the memory of Prof. Michihiro KITA-
HARA

BIEM, fast multipole method, parallelization, SMP

Greengard? as he applied FMM to many body prob-
lems.

The efficiency of the Fast multipole accelerated
BIEM is achieved as one evaluates the contributions
of far elements at once using the multipole expansion.
This is in contrast with the conventional BIEM, in
which we evaluate the contributions of all the elements
one by one. The performance of the Fast multipole
accelerated BIEM

on single CPU machines has been tested by many
investigators (See Nishimura® for references). If one
seeks to further enhance the efficiency and applicabil-
ity of this method in larger problems, one will have
to investigate parallelization of the code.

Parallel computers can be classified into two cate-
gories, i.e. distributed memory and shared memory
machines. A popular architecture of the latter type
is the SMP (Symmetric MultiProcessors). In SMP
computers, the parallelization is usually loop based,
i.e., loops in a serial program is divided into threads
and each processor will execute one thread of each
loop. The task of programmers for SMP type com-
puters is then to write directives with OpenMP*% in
front of the “do loop”. The advantage of this type
of parallelization is that the programmer needs lit-
tle effort to make changes in the program structure

- 287 -

and algorithm to convert serial programs to parallel
On the other hand, distributed memory svs-
tems demand the programmer to specify the distri-
bution of the work load and communication among
nodes with MPI®, etc. On distributed memory sys-
tems, the structure based parallel computation, which
is generally not very easy, is known to be more effi-
cient than the loop based one®.

In spite of such an advantage of SMP comput-
ers, researches on SMP computers have been scarce
compared to those of distributed memory machines,
because large systems of SMP computers have been
rather rare until recently. Actually. the paralleliza-
tion of BIEM and FMM on distributed memory sys-
tems has been well studied and a remarkable speedup
has been achieved 7, but researches on SMP comput-
ers have been limited only to conventional BIEN (see
Nishimura et al® for attempts of a hybrid paralleliza-
tion on SMP computers).

But, recently, the situation has changed. For exam-
ple, the Academic Center for Computing and Media
Studies (ACCMS) of Kyoto University has replaced
its vector parallel computer Fujitsu VPP800 with a
scalar parallel computer HPC2500. The HPC2500 of
ACCMS consists of 11 SMP nodes. each of which has
128 CPUs and 512 GB of shared memory. This trend
may continue, considering the fact that large scalar
SMP computers are usually made of less expensive
components than vector parallel machines, and the
importance of parallel algorithms for SMP comput-
ers may increase. This paper, therefore. focuses on
the parallelization of FMM on SMP computers and
tests the performances of the parallel codes via nu-
merical examples in two dimensional crack problems
for Laplace’s equation and in three dimensional elas-
tostatic inclusion problems.

ones.

2. Formulation

In this section we shall briefly describe the FAM
formulation for two dimensional crack problems for
Laplace’s equation for simplicity. See Nishimura 1)
for the FMM formulations in three dimensional elas-
tostatics.

2.1 Crack Problems for Laplace’s Equation in
2-D
(1) Integral representation
Let S be a set of cracks in R? and D be R?\S.
The governing equations for the crack problem for two
dimensional Laplace’s equation are given as:

U4 = 0 in D (1)
@ =0 on S (2)
on
w(T) — Uoo () as |z — x (3)
dlxy=ut —u" =0 on IS (4)

where 1y is a harmonic function in R? (the solution
when no cracks are considered), n denotes the unit
normal to S and ¢ denotes the crack opening displace-
ment obtained from the following integral equation:

"~ 92GH(x —
ﬁéﬁ(_ﬂ(p(y) a8, — 2

e€S.
On,0ny on :r

()
In (5), G denotes the fundamental solution of the 2
dimensional Laplace’s equation given by

Uoo (T)

G(x) = 5 -logle (6)

and 74 denotes the finite part of a divergent integral.

(2) Multipole expansion

Evaluation of the L.H.S.(Left Hand Side) of the hy-
persingular equation is possible if one can calculate
the following integral:

(i B ._ OG(x —y)
ox1 8332 5 ony

¢(y)dS, (7)

Putting z = z1 + ize and ¢ = y; + iya, one further
simplifies the integral into the following form:

1 80

271 Jg (2 = ()?
This integral is evaluated in terms of the multipole
expansion. To see this, we set:

— 34 (8)

Op(2) = plz™177 (9)

—1)94(z — 20 Zop+1 20 — Go) Mp—q{o)
q=0 p=q
(10)
where zg is a point near z, {p is a point near S and
M, (¢o) is the multipole moment centered at (o defined
byv:
M) = 55 [L= @eac ()

The center of the multipole moment is shifted with
the M2M formula given by:

My (G1) qu (G — C)Mr(Go) (12)

The integral in (8) can be rewritten in terms of the
local expansion as follows:

S Lyl -) Ly(20) (13)

where L,(zo) is the coefficient of the local expansion
centered at zy given by:

(1’*0 §

pP=q

1)90p11(20 — Co)Mp—q(Co) (14)

- 288 -

which we call the M2L formula. Finally, the center
of the local expansion is shifted with the L2L formula
given by:

Lo(21) = Y Ly(z0)Ipr(z1 — z0) (15)

p2r

3. Fast Multipole Algorithm

3.1 A Hierarchical Structure

The tree structure in 2-D is described here. The 3-
D counterpart is given just by replacing the expression
“quad-tree” with “oct-tree”.

level 0

level 1
level2

parent
level3 child

Fig. 1 The quad tree structure.

The whole boundary is divided into many cells as
shown in Fig.2. Also shown in Fig.1 is the hierarchi-
cal quad-tree structure. As shown in these figures,

cell of level 3

e

cell of level 2

\\ - cell of level 4
7
cell of level 1
L

\

boundary

N

cell of level O

Fig. 2 Cells on the boundary.

each cell is divided to four subcells (children) until
the maximum number of elements in the cell becomes
less than a preset value Ng, or the level of the cell
reaches a preset maximum level. The parameter Ny
is set empirically between 50 and 500 so as to best

save the memory and computational cost. A child-
less cell is termed “leaf”. The relationships among
cells are shown in Fig.3. For the cell painted in black,
those cells which are next to it are termed “neighbor-
ing cells”, those cells whose parents are next to its
parent are termed “cells in the interaction list’ and
other cells are termed “far cells”.

M= _far cells

\
cells in the interaction list

NI

i
AN H
~ i

neighboring cells parent cell

Fig. 3 Relationship among cells.

3.2 Main Parts of the Fast Multipole Algo-
rithm

(1) Upward pass

The fast multipole algorithm is described here. For
every leaf, the multipole moments around the cell cen-
ter are calculated. The center of the multipole mo-
ment is then shifted to that of the parent cell (M2M).
The multipole moments of the parent are obtained
as the sum of the moments of its children. In this
way, from the bottom level to level 2, the multipole
moments around the center of each cell are obtained.
(2) Downward pass

On level 2, the coefficients of the local expansion are
obtained from the multipole moments of cells in the
interaction list (M2L). Children get the coefficients of
the local expansions from their parents with the shift
of the centers (L2L) and get the coeflicients of the
local expansions from the cells in the interaction lists
{M2L) whose contributions are not included in the co-
efficients of the local expansions of their parents. On
every leaf, Az (the discretized L.H.S. of eq.(5)) is ob-
tained with the direct calculation of the contributions
of the elements in neigboring cells and the leaf itself as
in the conventional BIEMs and from the coeflicients
of the local expansion of the leaf.

Fortran-like pseudocodes for the upward and down-
ward passes go as follows:

C UPWARD PASS

- 289 -

DO level=maxlevel, 2, —1
DO cell = all the cells of the current level

if (cell is a leaf) then
calculate M (cell)
endif

if (level # 2) then
add M (cell) to M (parent cell) after
the shift of the center (M2M)

endif
ENDDO

ENDDO

C DOWNWARD PASS
DO level=2, maxlevel
DO icell = all the cells of the current level

if (level # 2) then
get L(icell) from L(parent_icell)
after the shift of the center (L2L)
endif

DO jeell = all the cells in the interaction
list of icell

add M (jeell) to L(icell) with M2L
ENDDO

DO jeell = all the cells in the neighborhood
of icell

if (either icell or jeell is a leaf) then

evaluate Az with the direct

method
endif

ENDDO
if (icell is a leaf) then
evaluate Az from L(icell)
endif
ENDDO

ENDDO

4. Parallel Fast Multipole Algorithm

4.1 Parallelization Strategy

It is seen that the sum of the elapsed times for
the upward pass, downward pass and precondition-
ing gives almost all the elapsed time for solving the
boundary value problem. Indeed, a numerical exper-
iment of a three dimensional elastostatic problem is
carried out to check this and the result is shown in
Table 1. See section 5.2 for the detail of the analysis.

Table 1 The elapsed time for
(175104DOF)
D(s) U(s) P(s) total time(s)
6711.21 211.68 33.84 6962.13

CNT analysis

D: downward process
U: upward process
P: preconditioning process

In this example 0.486% of the elapsed time is con-
sumed in the preconditioning process, 3.040% is in the
upward pass and 96.3960% is in the downward pass,
the sum of which gives 99.9% of the whole time. Other
processes such as making tree structure or normal-
ization of the Krylov bases in GMRES (generalized
minimal residual method) are negligible compared to
those three processes. Therefore it is considered sat-
isfactory to parallelize only these three processes.

4.2 Automatic Parallelization

The HPC2500 in ACCMS is implemented with the
automatic parallelization as a compiler option. Auto-
matic parallelization is tried first, because if it works
well we do not need to make efforts for paralleliza-
tion manually. With the automatic parallelization,
however, we found that the calculations in GMRES
are parallelized, but none of the three processes men-
tioned above are parallelized, because of the fact that
automatic parallelization does not work when algo-
rithms in loops are complicated including subroutine
calls. etc. As a consequence, the speedup resulting
from the automatic parallelization is unrecognizable.
For conventional BIEM algorithms, however, auto-
matic parallelization has been found to be useful, giv-
ing the speedup that is not much different from the
one achieved with OpenMP. See Nishimura et al® for
more details.

4.3 Parallelization with OpenMP
We next try a parallelization with OpenMP. As
we shall see the OpenMP parallelization is performed

successfully with minimum changes in the structure
of the FNM.

- 290 -

In the upward pass, the loop structure is changed
from a children based one to a parents based one in
order to prevent the multipole moments from being
overwritten at once by more than one thread. For the
preconditioning, the block diagonal preconditioning
is used here. No change of structure is needed in the
downward pass and in the preconditioning process.

Parallel pseudocodes for the upward pass, down-
ward pass and block diagonal preconditioning may be
given as follows:

C UPWARD PASS
DO level=maxlevel—1 ,1, —1

!1SOMP PARALLEL DO
DO cell = all the cells of the current level

DO child_cell = all the children of cell

if (child_cell is a leaf) then
evaluate M (child cell)
endif

if (level # 1) then
add M (child_cell) to M(cell)
after the shift of the center
(M2M)

endif

ENDDO

ENDDO
1$OMP END PARALLEL DO

ENDDO

C DOWNWARD PASS
DO level=2, maxlevel

!3SOMP PARALLEL DO
DO icell = all the cells of the current level

if (level # 2) then
get L(icell) from L(parent_icell)

after the shift of the center (L2L)
endif

DO jeell = all the cells in the interaction
list of icell

add M (jeell) to L(icell) with M2L
ENDDO

DO jeell = all the cells in the neighborhood
of icell

if (either icell or jcell is a leaf) then
evaluate Az with the direct

method
endif

ENDDO

if (icell is a leaf) then
evaluate Az from L(icell)
endif

ENDDO
1$SOMP END PARALLEL DO

ENDDO

C BLOCK DIAGONAL PRECONDITIONING

ISOMP PARALLEL DO

DO j=1, num_of_blocks
evaluate the influence matrix A{;IOCk,
caleulate (A, ,)7! and use it
as the preconditioner

ENDDO
1SOMP END PARALLEL DO

where A{;lock denots the jth block diagonal of the ma-
trix A.

As shown in the pseudocodes, the parallelization
is the parent based one in the upward pass and the
child based one in the downward pass. The block
diagonal preconditioning is parallelized for each block.
In this parallel algorithm, different threads will never
overwrite the same memory for M, L or 4], and
because the memory accesses by different threads are
kept well-separated, little false sharing will occur.

5. Numerical Examples

In this section we test the performance of the par-
allel FMM codes by solving two dimensional Laplace
crack problems and three dimensional elastostatic in-
clusion problems. An HPC2500 of ACCMS of Kyoto
University which has 96 CPUs (1.3GHz) and 384GB
of memory is used for the crack problem. The numer-
ical examples of the inclusion analysis are obtained
with another HPC2500 of ACCMS with 128 CPUs
(1.56GHz) and 512 GB of memory. Double preci-
sion arithmetics is used in all the numerical examples
shown here, and GMRES (generalized minimal resid-
ual method) with no restarts is used for solving the
nonsymmetric and dense linear system of equations.

-291 -

The tolerance in the solution for GMRES is set equal
to 1075.

5.1 Crack Problem for Laplace’s Equation in
2-D
Many cracks are distributed uniformly in the infi-
nite two dimensional space as shown in Fig. 4.

-« b
-y

Fig. 4 Crack distribution.

We consider a 70 x 70 array of cracks, whose ge-
ometric size in Fig.4 is set as a:b:.c = 2:5:5. Each
crack is discretized into 200 constant elements, with
graded meshes near its edges; Therefore the number
of unknowns is 70 x 70 x 200 = 980.000. All the in-
tegrals are evaluated analytically. The infinite series
in the multipole and local expansions are truncated
at 10 terms. The maximum number of elements in
each leaf is set equal to 100. The block diagonal pre-
conditioning corresponding to leaves is applied from
the right (See Nishida and Hayami ? for related at-
tempts). Convergence is achieved after 18 iterations.
For the crack problem, GMRES is parallelized with
OpenMP. The total elapsed time vs the number of
threads is shown in Fig. 5 and the The speedup with
the number of threads is shown in Fig.6.

900 T T T T
elapsed time -———

800 +

(s
o
o
S

T

elapsed time
IS
f=1
o
L

L

0 L s) L L
0 10 20 30 40 50 60 70

the number of threads

Fig. 5 Elapsed time(s) vs number of threads.

70 T T T T T

T
ideal ——

speed up

) 10 20 30 40 50 60 70

trne mumpber of threads

Fig. 6 speedup vs number of threads.

5.2 [Elastostatic Inclusion Problem in 3-D

An analysis of an elastic full space with embed-
ded rigid inclusions is carried out. This analysis
is intended as a model of carbon nanotube (CNT)
based composite materials, taking into consideration
the fact that the stiffness of CNT is usually more
than an order of magnitude higher than that of the
matrix. This problem is formulated as a three di-
mensional elastostatic bounary value problem with a
Dirichlet type boundary condition including unknown
rigid-body displacements given as follows:

v+ (w

Z/g I‘;i)(r~y)tj(y)d5y+uf° on ST (16)
J 75

IX.Z‘>Z‘:

/t{dszo on S (17)
S

/(xxtl)idS:O on ST (18)
S1

where S denotes the surface of the inclusions, Fg-i) de-
notes the fundamental solution of elastostatics in 3-D,
t; is the traction, u$° is the solution when no inclu-
sions are considered and 1/{; and w! are constants. For
simplicity, all the inclusions are considered to be the
same in shape, the ratio of the height and the diam-
eter of which are set to 5:1. In case 1 (case 2) 32
(128) inclusions are embedded along the z; direction
in an infinite elastic medium as shown in Fig.7. For
the far-field stress, a constant stress o,, is applied
(0., = 0x, =0). Each inclusion is discretized to 456
pilecewise constant plane triangle elements; therefore
the total DOF is 3 x 456 x 32 = 43776 in case 1 and
3x456x 128 = 175104 in case 2. Also, the integrals in
the multipole moments are evaluated with the Gaus-
sian integration and the integrals in the direct calcu-
lation are evaluated analytically. The infinite series
which appear in the multipole and local expansions
are truncated at 20 terms. The maximum number of

-292 -

Table 2 Elapsed time vs number of threads in inclusion analysis in case 1(32 inclusions)

No. threads 1 2 4 8 16 32 64
D(s)(per iteration) || 221.80 112.44 57.271 29.692 15.610 8.7048 5.456
U(s)(per iteration) || 6.8012 3.5375 1.7672 0.9857 0.5259 0.3396 0.2666
P(s)(per iteration) || 1.0749 0.6792 0.2792 0.1986 0.1826 0.1720 0.1679
Total time (s) 2070 1054 539 283 153 89 60.4

Fig. 7 The embbeded carbon nanotubes in the elas-
tic medium.

elements in the leaf is set equal to 100. For the pre-
conditioning we use the right preconditioning with the
block diagonal corresponding to the influence matrix
of the inclusion. The preconditioning process is par-
allelized for each inclusion with OpenMP. GMRES is
parallelized with the automatic parallelization.

70

T
ideal
preconditioning -

60 -

50 r

40

30 -

20 -

10 r

Fig. 8 speedup vs number of threads in case 1.

Convergence is achieved after 7 iterations for both

70

T
ideal
preconditioning -

Fig. 9 speedup vs number of threads in case 2.

case 1 and case 2. First, from Table 2 and Table 3
we can say that the elapsed times basically follow the
O(N) estimate of the computational complexity of the
fast multipole method.

As shown in Table 2 and Table 3 the elapsed time
needed for solving the problem is always reduced as
the number of threads is increased, but because of
the nature of loop based parallelization, the increase
of the speedup with the number of threads slows down
from around 32 threads. From Fig.8 and Fig.9 it can
be seen that for larger systems or for more expen-
sive parts (downward process here) the effect of par-
allelization becomes even more pronounced. Having
reached as high as 50 in speedup with 64 CPUs, we
can say that the efficiency of this parallel algorithm
is satisfactory considering Amdahl’s law given by:

1

1-P)+ P/N (19)

speedup =

where N is the number of threads and P is the ratio of
the parallel program in time. Further, by comparing
Fig.6 with Fig.9, we can say that the speedup with
the number of threads is more remarkable in the 3-
D elastostatic problem than in 2-D problems. This
difference occurs because of the nature of the tree
structure; namely, the oct-tree structure is more suit-
able for parallelization than the quad-tree because the
more the number of branches is the larger the grain
size becomes.

-293 -

Table 3 Elapsed time vs number of threads in inclusion analysis in case 2(128 inclusions)

No. threads 1 2 4 8 16 32 64

D(s)(per iteration) || 745.69 381.52 196.03 100.19 50.163 25.8056 13.714

U(s)(per iteration) || 23.52 12.00 6.098 3.170 1.601 0.867 0.529

P(s)(per iteration) || 4.230 3.016 1.593 0.809 0.673 0.656 0.529

Total time (s) 6962 3073 1840 944.5 478.2 252.1 140.3
6. Conclusion REFERENCES

Through the development, implementation and nu-
merical experiments of parallel fast multipole method,
the following conclusions are obtained: the fast mul-
tipole accelerated boundary integral equation method
can be parallelized on SMP computers. without ex-
traordinary efforts. In spite of the relatively small
amount of efforts for programmers and the small
change in the program structure, the performance
achieved here is not inferior to that obtained with the
distributed memory machines '?7. The excellence of
the parallel method lies not only in the ease of the par-
allelization but also in the fact that this parallel fast
multipole algorithm is more powerful for larger prob-
lems or in three dimensional problems. A limitation
of this parallelization method in solving much larger
problems is that the number of CPUs cannot exceed
the number of CPUs in one node (128 in ACCMS).
We shall therefore investigate hvbrid parallelization
with MPI and OpenMP to use more than one node
so that one can solve much larger problems, having,
say, hundreds of millions of unknowns.

7. Acknowledgment

The authors would like to express their gratitude to
Prof. Yijun Liu of Department of Mechanical, Nuclear
and Industrial Engineering of University of Cincinnati
for directing our attention to CNT researches.

1) N. Nishimura: Fast multipole accelerated bound-
ary integral equation methods, Appl. Mech. Rev.,
Vol.55, pp.299-324, 2002.

2} V.Rokhlin: Rapid solution of integral equations
of classical potential theory, J.Comp. Phys., 60,
pp.187-207, 1985.

3) L. Greengard: The Rapid Evaluation of Poten-
tial Fields in Particle System, The MIT Press,
Cambridge, MA., 1987.

4) http://www.openmp.org/

5) http://www-unix.mcs.anl.gov/mpi/

6) S. W. Song and R. E. Baddour: Parallel pro-
cessing for boundary element computations on
distributed systems, Engineering Analysis with
Boundary Flements, Vol.19, pp.73-84, 1997.

7) N. Inoue, K. Yoshida, N. Nishimura and S.
Kobayashi: A parallel implementation of fast
multipole boundary integral equation method, -
Proc. Conf. Comp.Eng. Sci. JSCES, Vol.6-1,
pp-211-214, 2001 (in Japanese).

8) N. Nishimura and Y. Otani: On the paralleli-
sation of BIEM for shared memory computers,
Journal of Boundary FElement Methods, JAS-
COM, Vol.20, pp.83-86, 2003 (in Japanese).

9) T. Nishida and K. Hayami: Application of the
panel clustering method to the three-dimensional
elastostatic problem, Boundary Flements XIX
(Eds. M.Marchetti et al.), pp.613-622, Comp.
Mech. Publ., Southhampton, 1997.

10) K. Yoshida and N. Nishimura: On fast method
computing potentials, Trans ACCMS, Kyoto
Univ, Vol.2, pp.123-128, 2003 (in Japanese).

(Received April 16, 2004)

=294 -

