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Lateral torsional buckling often governs design of I-beams. Although vertical web stiffeners are
extensively used to provide internal stiffening, their effect on lateral torsional buckling behavior is totally
ignored in the design codes. Here, effect of stiffeners on cantilever beams studied under static uniform
moment, uniform load, and end concentrated load. Finite element buckling solver has been used and then
linear regression analysis for output data of finite element was conducted to produce simplified equation
for the critical moment including stiffeners effect. The results show that stiffeners cause significant
magnification in the critical moment than the basic critical moment of the case of beam without stiffeners.
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1. INTRODUCTION

It is well known that beams of thin-walled open
cross sections composed of slender component
plates, such as I-sections, are particularly susceptible
to lateral torsional buckling. This is because the
torsional rigidities of such cross sections are very
low and therefore their resistance to torsional
instability is low. The effects of unbraced length and
end conditions on the elastic lateral torsional
buckling load of the beam are rather evident. The
longer the unbraced length and the less resistant the
support can deliver to the beam, the lower the
critical lateral buckling load will be"®?. Hence, the
optimum method to prevent the lateral torsional
buckling is using lateral bracing to the compression
flange to reduce its unsupported length””. However,
if the lateral bracing is not feasible the internal
stiffening that provided by the vertical web
stiffeners could be used to enhance beam resistance
for the lateral torsional buckling®”.

The main idea behind the expected increase in
lateral torsional buckling resistance of beams
depends on connecting the behavior of the tension
flange with the behavior of the compression flange
by using the vertical web stiffeners. This reduces,
somewhat, the tendency of the beam to buckle out of

plane in other words it will increase the warping
torsion resistance of the beam®'”. Some lateral
torsional buckling problems have closed form
solutions?"? while the others have numerical
solutions for different loading, and boundary
conditions'®. However, on the other band, codes
specifications totally ignored the effect of vertical
web stiffeners on the lateral torsional buckling.

Hereafter, cantilever beams have been studied
using computer model'” that has been used for
linear buckling analysis so that to match the thin-
walled beam theory assumptions in buckling
analysis. Moreover, different sets of static loading
have been considered: Uniform Moment, Uniform
Load, and End Concentrated Load. An equation is
presented to take into consideration the effect of
vertical web stiffeners on the lateral torsional
buckling of cantilever beams for each case of
loading. The equations are proposed using linear
regression analysis'> on the output of finite element
model buckling runs for each set of loading. The
concern in this study is regarding allowable stress
design methodology (ASD); consequently, studied
cases have been adopted for elastic buckling.
Vertical web stiffeners are commonly used at the
two sides of the web to prevent web distortion
through welding processes so in this study stiffeners
have been used at both sides of the web.
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2. THEORETICAL BACKGROUND

The elastic buckling moment for a cantilever beam
under a uniform moment caused by an end moment
M, applied at the free end can be obtained directly
from the solution of the simply supported beam by
imagining the beam to be consisted of two
cantilevers of equal length joined together at the
fixed end. Hence, the critical moment for the
cantilever beam can be obtained " from equation (1)
by replacing L by 2L. Then equation (2) can
represent the desired critical moment.
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"For cantilever beams subjected to end
concentrated load, Q, acting at distance yy below
their centroids; approximate numerical solutions for
the buckling resistance have been reported '>. Fig.1
shows these solutions, in solid lines for top flange
loading, which may be approximated by:
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In this figure I, is equal to C,; however, ¢ is a
dimensionless load height parameter. For a
centroidal loading (£=0), the variation of the
buckling resistance with the torsion parameter K is
approximately linear, as it is for end moments,
which do not rotate ¢;, where ¢, is the beam
twisting angle in radians. Moreover, the effect of
load height yg is demonstrated in Fig.1, and it can
be seen that while bottom flange loading
significantly increase the buckling resistance, top
flange loading may reduce it substantially,
especially for cantilevers with high values of K. The
non-linear effect of load height is suggested by the
approximate formulation of equation (3).
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Fig.1 Buckling of cantilever beams with end loads.
(N.S. TRAHAIR, 2000)

For cantilever beams subjected to uniformly
distributed load ¢ acting at distances y, from their
centroids; approximated numerical solutions for the
buckling resistances have been reported™. Fig.2

shows these solutions which may be approximated
by:
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Fig.2 Buckling of cantilever beams under distributed
loads. (N.S. TRAHAIR, 2000)

The buckling resistance again varies almost
linearly with the torsion parameter K, and is higher
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than the resistance for end load as shown in Fig.1,
because the bending moment is generally lower. For
loading away from the centroid, the resistance
changes non-linearly with the dimensionless load
height &, as suggested by the approximate
formulation of equation (7).

3. METHODOLOGY AND NUMERICAL
MODEL

The cantilever beam has been modeled using the
finite elements, thin shell elements (4-nodes Quad
element with 6 degrees of freedom at each node).
The following are the cases of loading that have
been considered in this study as follow:

1. Uniform Moment (Unit Moment): The uniform
bending moment has been modeled as a
concentrated bending moment at the free end of the
cantilever beam, unit bending moment.

2. Uniform Load (Unit Uniform Load): The uniform
load has been modeled as a pressure applied on the
top flange. This pressure value times the flange
width, represents the distributed load value per unit
length, unit uniform load.

3. End Concentrated Load (Unit Concentrated
Load): The end concentrated load for cantilever
beam was modeled as point load applied at the end
central node, unit concentrated load.

(1) Proposed Equation for M.,

The proposed equation for the critical moment
M,,, at which lateral torsional buckling takes place,
which takes into consideration the magnification
factors that represent the increase in beam resistance
for lateral torsional buckling due to effect of vertical
stiffeners will take the following forms:

a) For Cantilever Beam Under Uniform Bending

According to equation (2) the magnification
factors can be added in the following form:

Mcr: 77 Ql to QZ (9)
In which,

Q1 and Q2 are the Beam uniform torsion as well
as warping torsion resistance respectively.

n and a are factors which represent the
magnification in beam uniform torsion as well as
warping torsion resistance respectively that resulted
in using vertical web stiffeners.

b) For Cantilever Beam Under Uniform Load or

End Concentrated Load

It was not available to classify the numerical
equations, equation (3) and equation (7), into
uniform torsion resistance term and warping
torsion resistance term as done in case of
uniform moment, equation (2) and equation (9).
Hence, the proposed equation for M., including
the magnification factor will take the following
form:

M,=B Mcrwithousnﬁ’ener 12
Where,

M; without stigfeners 15 the critical moment that resulted
from the approximate numerical solution for the
case of beam without stiffeners.

B is the factor which represents the magnification
in cantilever beam resistance for lateral torsional
buckling that resulted in using vertical web
stiffeners.

(2) Studied Parameters

Several factors related to the wvertical web
stiffeners and which may affect the lateral torsional
buckling behavior of the steel I-beams have been
studied. These factors are the number of stiffeners,
the beam aspect ratio, and the torsional rigidity as
well as the bending rigidity of the used stiffeners.
These factors were formulated as dimensionless
normalized factors so that each of them represents
effective quantity as stated, hereafter, as follow:
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/i indicates the effect of the number of stiffeners; a
is the spacing between stiffeners; and L is the beam
length.

/2 indicates The beam aspect ratio; d is the beam
depth.

S5 indicates the ratio between stiffener bending
inertia, around the minor axis of the stiffener cross
section, indicated in the term (ts,j.b,) and torsion
rigidity indicated in the term (bf3 Zy). In addition
local buckling index for flange plate has been
included in the term (b,/t;). Moreover rigidity index

Where,
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for stiffener has been included by (d/4;). Finally
(L/y) expresses flange plate aspect ratio; #y is the
thickness of the vertical web stiffener; by is the beam
flange width; # is the beam flange thickness.

It is obvious that factor f; has already been
included in factor f3; however, this has been resulted
due to indication of f; and its normalization; on the
other hand, regression analysis showed that this
factor has no trivial effect.

The studied beams and stiffeners configurations
were chosen to cover a wide range within the
practical values; consequently, studied ranges for
the three factors are considered as follows:

Jf1 = Range of change is 0.025 - 1
f> = Range of change is 0.03 - 0.121
Jf3 > Range of change is 0.0009 > 0.35

The aforementioned factors 7, @, and Bthat
represent the increase in beam resistance for lateral
torsional buckling are obviously expected to be
greater than 1.0 since the use of the vertical web
stiffeners should enhance the beam resistance for
lateral torsional buckling. The relation between the
three factors 7, &, and £ and the proposed factors f7,
/2, and f; was arbitrarily chosen in accordance with
the following expression:

n-1=Af" (,°f°
a-1=HfMH" f"
B-1=RA" 1" £

(14)

Linear regression analysis was then performed to
obtain all constants A, B, C, D, H, M...etc. The
chosen cross sections were varied to cover cross-
sections that have larger uniform torsion resistance
and others that have larger warping torsion
resistance, appendix A shows the matrix of the used
cross sections and their parameters.

(3) Linear Buckling Analysis

Linear buckling analysis was conducted using the
finite element method. Four nodes thin shell element
was used in the modeling. Element dimensions are
with minimum of 125 mm for width and 150 mm in
length varying according to the beam dimensions:
beam length, flange width, and web depth.
Boundary conditions have been controlled by
restraining nodes degrees of freedom, translational
degrees of freedom as well as rotational degrees of
freedom, at the fixed end as shown in Fig.3. The
cases of loadings have been modeled as follow:

1.

Uniform moment modeling: the concentrated
moment at both ends of the beam has been
modeled by two groups of concentrated forces.
One group as tension forces on the bottom
flange and the other as compression forces on
the top flange as shown on Fig.4.

End concentrated load modeling: end load has
been modeled just as concentrated point load on
flange mid node as shown in Fig.5.

Uniform load modeling: uniform load has been
modeled as pressure on the shell elements; see
Fig.6, so that this pressure value times the
flange width result in the uniform load per unit
length on the beam.

Fig.3 Modeled boundary conditions.

Fig.4 Modeling of concentrated moment.

End Concentrated
Load ‘
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Fig.6 Modeling of uniform load.

It is obvious that vertical web stiffeners affect the
warping torsional resistance of the beam by
connecting the tension flange to the compression
flange. Consequently pilot runs, almost 50 runs,
were performed on the original case of loading and
boundary conditions for studying the lateral
torsional buckling, simply supported beam under
uniform moment loading, in order to depict the
effect of vertical web stiffeners on the uniform
torsion resistance, St. Venant torsion. This was
conducted by selecting simple beams with
dimensions which have dominating uniform
torsional resistance; the uniform torsional resistance
was from 10 to 15 times the warping torsional
resistance.

A large number of linear buckling analysis runs
have been performed to get the eigen value of the
lateral torsional buckling problem in the two cases:
without using stiffeners and with stiffeners; that is,
for each case of loading and studied parameters. The
program' was controlled to get the first 10 modes
of buckling to spot on the lateral tosional buckling
mode among them, see Fig.7. "Subspace iteration",
as a numerical method, was used to solve the eigen
value problem achieving an accuracy of le-5 for all
the studied cases.

(The Eigen Value)

B_Mode = @Iode Numnber)

Fig.7 Lateral torsional buckling mode.

As a result of using unit value of loading for all
the cases of loading, the resulted eigen value can be
classified as follow:

1. M., for case of uniform moment loading.
2. Q for case of end load loading.
3. qfor case of uniform load loading.

After getting the critical end load value @ and the
critical uniform load value g, the critical moment for
both cases can be computed according to equation
(4) and equation (8) respectively. The resulted
values for the critical moment for the case of
without using stiffeners can be compared with the
aforementioned M., that resulted from the closed
form solution in equation (2) and the numerical
solutions in equations (3) and (7); according to the
case of loading. That comparison has been used as
model verification to make sure that the finite
element model is fitting well. Sample from the
model verification has been introduced in Table 1.
As shown in the table, the error percentage can be
accepted to verify model fitting. Consequently after
model verification the vertical stiffeners have been
added to test their effect on the critical moment
value.

Table 1 Sample for model verification of cantilever

beams.

Beam A (t..m) Mcr' (t..m) Error

Section* equation (Finite %
(7) Element)

150 x 106/

200 x 8 10.95 10.84 0.09
175x 10/

250 x 8 9.84 9.63 0.22
300x 12/
400 x 12 42.52 42.2 0.016
250x8/
300 x 10 16.48 16.4 0.03
275x 12/
350 x 10 48.04 47.93 0.004

* Beam Section: flange (width x thickness) / Web
(depth x thickness) all in mm.

(4) Regression Analysis

After performing the linear buckling analysis for
the models with stiffeners, the results of the eigen
values that obtained from finite element model were
tabulated and all transformed to the form of M,,. At
this step the value of the critical moment, which
include effect of the vertical stiffeners, can be used
to calculate the values of magnification factors
1, &, and B according to the proposed equation for
M., for each case of loading.

By applying the logarithm for equation (14) the
linear regression equation can be formed as follows:
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log(7—1) = log A+ Blog f, +Clog f, + Dlog f,
log(er —1) = log H + M log f, + N log f, + Plog f, a1s)
log(B-1) = logR+ Xlog f, +Y log f, + Zlog f,

By knowing the value of factors 7, @, and B as a
result from output observations resulted from finite
element, regression analysis can be performed.
Consequently, we can get the values of the
constants; A, B, C, D, H, M ...etc, from the results
of the linear regression analysis. The resulted
equation from regression analysis has been
simplified in form of proposed equation so that can
be manipulated by design engineer. Simplification
for each constant has based on its sensitivity which
results in regression analysis. The model of
regression output as described'® was summarized in
appendix B, Fig.Bl. Moreover, summary of
regression statistics was provided in Fig.B2.

4. RESULTS AND DISCUSSION

The General trend for output that resulted from
finite element analysis has been summarized in
Fig.8; however, the behavior for each case of
loading in accordance with the assumed parameters
has been introduced hereafter.
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Fig.8 Trend of stiffeners effect.

Fig.8 has been drawn for sample I-beam with
vertical stiffeners. Beam dimensions have been kept
fixed; however, stiffeners thickness as well as
stiffeners number have been changed in different
values. Number of stiffeners has been indicated in
multiplication of two numbers: the first number
means that at one position two stiffeners have been
used, one for each side of beam web; however, the
second number indicates the number of positions
where those two stiffeners have been located along
the beam length; consequently, the total number of
used stiffeners is the product of the two numbers. It
is obvious from the figure that by increasing
stiffeners thickness magnification factor increase
and also by increasing number of used stiffeners

magnification factor increase. However, it is
obvious that effect of increasing number of
stiffeners is more effective than increasing stiffener
thickness. This issue setback the usual nature of
design processes: Optimization, to achieve high cost
effectiveness.

The aforementioned pilot runs, for simple beams,
were developed under two cases: the first case is in
presence of the two end stiffeners and the second
case without the two end stiffeners. Hence, the pilot
runs findings were as follow:

e In the case of the beams which have high
uniform torsion resistance than the warping
torsion resistance, uniform torsion is
dominant; the effect of vertical stiffeners is
very small, not more than 3%. That is
because in this case the dependency on the
warping torsion resistance to resist the
lateral torsional buckling is small with
respect to the dependency on the uniform
torsion part. As a result of that vertical
stiffener main idea is enhancing the warping

torsion resistance; stiffeners effect in
resisting lateral torsional buckling became
small.

e In the case of using only the two end
stiffeners the magnification in M, is with
percentage not more than 3%; that is the
aforementioned percentage where the two
end stiffeners cause the total effect on the
warping torsion resistance for such beams
with dominant uniform torsion resistance.

e  Consequently the effect of vertical web
stiffeners on the beam uniform torsion
resistance can be neglected (77=1); however,
effect of vertical web stiffeners on the beam
warping torsion resistance is significant
especially if the warping torsion resistance
was dominating.

By returning back to cantilever beams under
uniform moment, equation (9) can be modified to
the following form:

Mcr: Ql ta QZ (16)

As mentioned before that wide range of studied
parameters f;, f>, and f; has been covered in this
study; however, sample has been introduced for
each case of loading. Sample values of the studied
parameters have been intended to be the same for all
cases of loading to make it comparable. Figures
have been drawn for certain value of factor f3, which
means certain beam depth and length (beam aspect
ratio), with changing the both factors f; and f;. The
three factors have affected the value of
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magnification in the critical moment. Each case of
loading has been investigated as follow:

(1) Cantilever beam under uniform moment

Fig.9 and Fig.12 show the change in value of the
magnification factor with respect to the change in
factors f; and f; for certain case of f; for case of
uniform moment loading. For sample cases see
Table 2.

Table 2 Sample points from Fig.9

Table 4 Sample points from Fig.11

Case | No. of Stiff. | Stiff. Thickness (mm) | S (%)
1 [ 6(,=033) 12 (f; =0.0731) 26
2 4(f,=0.5) 15 (f; =0.1429) 24

Case | No. of Stiff. | Stiff. Thickness (mm) | S (%)
1 |6(;=033) 12 (f; =0.0731) 20
2 4 (f;,=0.5) 15 (f;=0.1429) 22

The regression analysis yielded an equation in the
following form:

a_l — 23.605 fi—0A7944f~21.009f;0.715 (17)

Then the resulted equation from the regression
analysis has been simplified to be the proposed
equation in the following form:

a-1=236 £ f, £, (18)
(2) Cantilever beam under uniform load

Fig.10 and Fig.13 show the change in value of the
magnification factor with respect to the change in
factors f; and f; for certain case of f; for case of
uniform load loading. For sample cases see Table 3.

Table 3 Sample points from Fig.10

Case | No. of Stiff, | Stiff. Thickness (mm) | S (%)
1 | 6(=0.33) 12 (f;=0.0731) 21
2 4 (f;=0.5) 15 (f; =0.1429) 17.5

The regression analysis yielded an equation in the
following form:

ﬁ_l — 156.7789 fi—0.9018f~22.9441f<30.4431 (19)

Then the resulted equation from the regression
analysis has been simplified to be the proposed
equation in the following form:

B=1=150 77 17 £ (20)

(3) Cantilever beam under end concentrated
load
Fig.11 and Fig.14 show the change in value of the
magnification factor with respect to the change in
factors f; and f; for certain case of f; for case of end
concentrated load. For sample cases see Table 4.

The regression analysis yielded an equation in the
following form:

ﬂ_l - 723232 ﬁ4.6811A2.3525£0.4439 (21)

Then the resulted equation from the regression
analysis has been simplified to be the proposed
equation in the following form:

ﬂ—l - 77 ﬂ—0.7 f~22,4 f«30.44 (22)

By comparing Fig.9, 10, and 11 or on the other
hand by comparing the values of magnification
factor in Table 2, 3, and 4 it can be concluded that
effectiveness of using vertical web stiffeners is
higher in case of concentrated end load than other
studied cases of loading. Moreover effectiveness of
vertical web stiffeners is nearly the same for the two
other cases of loading, uniform moment and uniform
load. Also from figures it can be inferred that
optimization between the effective parameters f; and
f; for certain beam dimension; f2, is the key point to
achieve high cost effectiveness in beam design.

The aforementioned proposed Simplification for
each constant has based on its sensitivity which
results in regression analysis and it can be proposed
in any other forms with respect to its error
percentage. Regarding power constants, they have
been rounded to the proper digits; however, the
common constant has been justified so that to make
the error in equation within 7% from the regression
value.
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Fig.9 Percentage increase of critical moment, M,,, for /,=0.105. (Uniform moment)
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Fig.10 Percentage increase of critical moment, M,,, for £7=0.105. (Uniform load)
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Fig. 11 Percentage increase of critical moment, M,,, for £,~0.105. (End concentrated load)
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Fig. 12 Percentage increase of critical moment, M,,, for £,=0.087. (Uniform Moment)
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Fig. 13 Percentage increase of critical moment, M,,, for /;=0.121. (Uniform Load)
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Fig. 14 Percentage increase of critical moment, M,,, for £,=0.087. (End concentrated Load)
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S. CONCLUSION

The following paragraphs highlight the main
conclusions of this study:

1.

Effect of vertical web stiffeners on the
beam uniform torsion resistance is nearly
negligible as resulted from the pilot run;
because the basic idea for effect of
vertical stiffeners depend on connecting
the tension and the compression flange
which deeply affect the warping torsion
resistance.

The vertical web stiffeners were found to
have significant effect in the cantilever
beams resistance to the lateral torsional
buckling by the method of connecting the
tension flange to the compression flange.

The proposed equation for M,, that takes
into consideration effect of vertical
stiffeners for the case of cantilever beam
subjected to uniform bending can take the
following form using beam length equal
to double the actual beam length:

Mcr = Ql +a(Q2) (23)
Where, Q1 and Q2 are beam uniform
torsion resistance and warping torsion
resistance respectively; ais the warping
torsion resistance magnification factor.

The proposed equation for M., that takes
into consideration effect of vertical
stiffeners for the case of cantilever beam
subjected to uniform load or end
concentrated load can take the following
form:

Mcr = ﬂ(Mcr)withoutsti feners (24)

Where £ is the moment magnification factor

5.

The resulted equations for magnification
factors for the studied cases of cantilever
beams are summarized in Table 5.

Effectiveness of wusing vertical web
stiffeners is higher in case of concentrated
end load than other studied cases of
loading. Moreover effectiveness of
vertical web stiffeners is nearly the same
for the two other cases of loading,
uniform moment and uniform load.

7. The over all, average, magnification
percentage in the critical moment M., for
the case of cantilever beams is about 25%.
This value may increase up to 60%
according to the number of stiffeners and
stiffeners  torsional rigidity, stiffener
thickness.
Table 5 Magnification factors equations.
Case of Magnification Factor
Loading Proposed Equation
Uniform _
_ a—1=236 1,7 £, £,
bending
|| Uniform Load

||| ﬂ-—] — 150 f1—0.9f22.9f30.44

|| End Load |I|| ﬂ_l =77 f‘l—0.7 f22.4 f.3044

10.
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APPENDIX A

Table A.1 Cross-Sections data for cantilever beams under uniform bending.

Section b tr h tw J C. I, Lu L W

150x10/200x8 15.0( 1.0 { 20.0 | 0.8 {1.3 E+1| 0.6 E+5 |5.6 E+2(200.01420.0} 0.8

175x10/250x8 1751 1.0 { 25.0 | 0.8 |1.6 E+1| 1.5 E+5 {0.9 E+3|300.0|630.0| 0.9

300x12/400x12 300 1.2 140.0] 1.2 |S.8 E+1} 2.3 E+6 {5.4 E+3|400.0|840.0| 1.2

250X8/300X10 2501 0.8 {30.0 1.0 {19 E+1] 5.0 E+5 (2.1 E+3{350.0|735.0] 1.1

275X12/350X10 | 27.5] 1.2 1350 1.0 43 E+1/13.6 E+5|4.2 E+3|300.0|630.0| 1.4

Table A.1 (Cont.) Cross-Sections data for cantilever beams under uniform bending.

Section Q1 Q2 Cy Mecr(t.m)
150x10/200x8 7.20 E+5 4.80 E+5 1.00 10.95
175x10/250x8 6.00 E+5 3.60 E+5 1.00 9.84

300x12/400x12 74.00 E+5 110.00 E+5 1.00 42.50
250X8/300X10 12.00 E+5 15.00 E+5 1.00 16.50
275X12/350X10 76.00 E+5 150.00 E+5 1.00 48.00

Table A.2 Cross-Sections data for cantilever beams under uniform load.

Section b t h tw J C. I, Lu
150x10/200x8 15.0 | 1.0 | 20.0| 0.8 |1.3E+I 0.6 E+5 5.6 E+2 |200.0
175x10/250x8 1751 1.0 | 25.0 | 0.8 |1.6 E+Il 1.5 E+5 0.9 E+3 [300.0

300x12/400x12 3001 1.2 | 40.0| 1.2 |S.8E+] 23 E+6 5.4 E+3 |400.0

275X14/350X10 2751 1.4 | 350] 1.0 |6.2E+] 1.6 E+6 4.8 E+3 [300.0

200X10/300X10 200 ) 1.0 |30.0| 1.0 |23 E+] 32 E+5 1.3 E+3 (300.0

Table A.2 (Cont.) Cross-Sections data for cantilever beams under uniform load.

Section K € Wer (t/m) M, (t.m)
150x10/200x8 1.70 -0.55 22.30 44.50
175x10/250x8 1.60 -0.52 9.10 41.10

300x12/400x12 2.50 -0.80 16.10 128.40
275X14/350X10 2.70 -0.87 36.30 163.40
200X10/300X19 1.90 -0.63 13.00 58.50

Notes:
All units are ton-cm unless other wise noted.
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Table A.3 Cross-Sections data for cantilever beams under end concentrated load.

Section bt te h ty J Cw I, Lu
150x10/200x8 15.0 1.0 [ 200 | 0.8 [13E+] 0.6 E+5 5.6 E+2 | 200.0
175x10/250x8 17.5 1.0 [ 250 0.8 [1.6E+1 1.5 E+5 0.9 E+3 [300.0

300x12/400x12 30.0 1.2 1400 1.2 |58E+] 23 E+6 5.4 E+3 | 400.0
275X14/350X10 27.5 14 | 35.0 1.0 | 6.2 E+1 1.6 E+6 4.8 E+3 1300.0
200X10/300X10 20.0 1.0 | 30.0 1.0 |2.3 E+1 3.2 E+5 1.3 E+3 {300.0

Table A.3 (Cont.) Cross-Sections data for cantilever beams under end concentrated load.
Section K € P.. (t) M, (t.m)
150x10/200x8 1.70 -0.55 12.80 25.60
175x10/250x8 1.60 -0.52 7.90 23.70
300x12/400x12 2.50 -0.80 17.80 71.20
275X14/350X10 2.70 -0.87 30.00 89.90
200X10/300X10 1.90 -0.63 11.10 33.30
Notes:
All units are ton-cm unless other wise noted.
APPENDIX B
Regression Statistics
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
ANOVA
df SS MS F Significance F
Regression
Residual
Total
Coefficients | Standard Error t Stat P-value Lower 95% Upper 95% | Lower 85.0% |Upper 95.0%
F vt i
X Variable 2
X Variable 3
Fig.B1 Model of regression analysis output.

Regression Statistics Regression Statistics Regression Statistics
Multiple R 097 Multiple R 0.97 Multiple R 0.98
R Square 0.94 R Square 0.94 R Square 0.95
Adusted R Square 0.94 Adjusted R Square 0.94 Adjusted R Square 0.95
Standard Error 0.12 Standard Error 0.10 Standard Eror 0.07
Observations 115 Observations 120.00 Observations 120.00

Fig.B2 Regression statistics for uniform moment, uniform load, and end concentrated load respectively.
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SYMBOLS

a Stiffeners spacing, (cm).

Ay Area of compression flange (cm?).

by Compression flange width, (cm).

Gy

CW :IW
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Coefficient depending on the type of
load and support conditions.
Warping torsion constant, (cm®).
Beam total depth, (cm).

Modulus of elasticity, 2100 t/em?
Inverse of stiffeners number.
Beam aspect ratio.

Ratio between stiffener torsion and
bending rigidity.

Shear modulus, (t/cm?)

Web height, (cm).

Moment of inertia of the cross
section about the minor axis of

the beam, (cm*).

Uniform torsion constant, (cm®).
Beam span, (cm).

Critical moment for the case of beam
without stiffeners, (t.m).

Critical moment, (t.m).

Critical concentrated load, (ton).

Term that represents the uniform Torsion
resistance, (£.cm?).
Term that represents the non uniform
(warping) torsion resistance, (t%.cm?).
end concentrated load, (ton).

uniformly distributed load, (t/m).

The magnification in the critical Moment.

M

S . crwithstiffeners

crwithout stiffeners
Flange thickness, (cm).
Stiffener thickness, (cm).
Web thickness, (cm).

Critical uniform load, (ton).

Load height, (cm).

A dimensionless load height parameter.
Beam twisting angle, (radian).

Factor which represents the magnification
in beam uniform torsion resistance that
resulted in using vertical web stiffeners.
Factor which represents the magnification
in cantilever beam resistance for lateral
torsional buckling that resulted in using
vertical web stiffeners.

Factor, which represents the
magnification in beam non uniform
(warping) torsion resistance that resuited
in using vertical web stiffeners.
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