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A discrete method is developed for analyzing the free vibration problem of square plates
resting on non-homogeneous elastic foundations. The fundamental differential equations
are established for the bending problem of the plate on elastic foundations. The Green
function, which is obtained by transforming these differential equations into integral
equations and using numerical integration, is used to get the characteristic equation of
the free vibration. The effects of the modulus of the foundation and the stepped thickness
on the frequency parameters are considered. By comparing the present numerical results
with those previously published, the efficiency and accuracy of the present method are

investigated.
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1. Introduction

Plates on the elastic foundations can be extensively
used in engineering and the free vibration problems of
these plates have been studied for many years. The
fundamental frequency of vibration of circular and
regular polygonal plates on a non-homogeneous foun-
dation was obtained by Laura and Guriérrez [1]. The
Rayleigh-Ritz method was used. By using the same
method, they [2] analyzed the transverse vibration of
rectangular plates on non-homogeneous foundations.
The boundary conditions were elastically restrained.
The fundamental frequency coefficients were given for
various aspect ratios and the moduli of the founda-
tions. Based on Gateaux differential, a mixed finite
element formulation was derived and used to analyze
the static and dynamic problems of thin plate on elas-
tic foundation by Omurtag [3] et al. The numerical re-
sults were obtained for clamped and simply supported
plates with variable thickness on Winkler or Paster-
nak foundations. By the same method, Omurtag and
Kadioglu [4] studied the free vibration of orthotropic

discrete method, elastic foundation, stepped thickness, Green function,

plates resting on Pasternak foundation and presented
some numerical results for plates with simply sup-
ported boundary conditions. Matsunaga [5] used the
method of power series expansion of the displacement
components to investigate the vibration and stabil-
ity of thick plates on elastic foundation. Based on
the higher-order theory of thick plate, the natural
frequency and the buckling stress were given for a
simply supported square plate on a two-parameter
elastic foundation and subjected to in-plane stress.
Huang and Thambiratnam [6] used the finite strip
method to analyze the static and dynamic responses
of plates resting on elastic supports or elastic foun-
dations. A spring system was used to simulate these
elastic supports and foundations. Ju, Lee and Lee [7]
analyzed the free vibration of rectangular and cir-
cular plates with stepped thickness resting on non-
homogeneous elastic foundations by using the finite
element method. Natural frequency parameters and
mode shapes of these plates were presented.

In this paper, early work [8] is extended for ana-
lyzing the free vibration of rectangular plates resting

-225-



L4

f@

hy, k1

k

1 2
IS LSS

A-A

Fig. 1 A square plate with stepped thickness resting
on elastic foundations.

on non-homogeneous elastic foundations. A discrete
method proposed by some of the authors is used. The
fundamental differential equations of a plate on non-
homogeneous foundations are established and satis-
fied exactly throughout the whole plate. By trans-
forming these equations into integral equations and
using numerical integration, the solutions are ob-
The Green function,
which is the solution for deflection, is used to ob-

tain the characteristic equation of the free vibra-

tained at the discrete points.

tion. By applying the characteristic equation , the
behaviour of the free vibration of the plates on foun-
dations can be analyzed efficiently without a calcu-
lation by a trial and error method. The efficiency
and accuracy of the present method for the free vi-
bration of square plates on Winkler foundation are
investigated. The effect of the foundation modulus
on the frequency parameter is considered. Numerical
results are obtained for the plates on homogeneous
foundations, local uniformly distributed supports and
non-homogeneous foundations. As an application of
the proposed method, some numerical results are also
given for plates with stepped thickness in central part
resting on local uniformly distributed supports and
the non-homogeneous foundations.

2. Fundamental Differential Equations

Figure 1 shows a square plate of length a, density p
and stepped thickness h resting on non-homogeneous
foundations of foundation modulus k. The thickness
and the foundation modulus in the central square part
are he and kg, and those for the other part are hy and
k1, respectively. An zyz coordinate system is used in
the present study with its £ — y plane contained in

middle plane of the square plate, the z—axis perpen-
dicular to the middle plane of the plate and the origin
at one of the corners of the plate.

In this paper, the elastic foundation is modelled as
a spring system and the intensity of the reaction of
the foundation is assumed to be proportional to the
deflection w of the plate. By considering the reaction
of the foundation as a kind of lateral load, the fun-
damental differential equations of the plate having a
concentrated load P at a point (z4,y.) and resting
on a Winkler foundation of the foundation modulus &
are as follows:
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where Qx, Qy are the shearing forces, My, the twist-
ing moment, M,, M, the bending moments, 6,6,
the rotations of the z- and y-axes, w the deflection,
D = ER?/(12(1—1?)) the bending rigidity, E, G mod-
ulus, shear modulus of elasticity, respectively, v Pois-
son’s ratio, h the thickness of plate, K = 5/6 is the
shear correction factor, §(z — z4), 6(z — z,) Dirac’s
delta functions.

By introducing the non-dimensional expressions,

e
[X1>X2]*m')_[nyQz]v
(X, Xo, Xs] = gy | Mo, My, Me],
[Xs,X7,X3] = [Gy,ez,w/a],

the equation (1) is rewritten as the following non-
dimensional forms:

80X, 88X -
W T 34—1 + P8(n —1g)8(¢ — &) — kX5 =0,
0X;  0X, ~
- 8( — /.LX1 = 0,
0Xs 0X3
23 X =
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where p = b/a, D = p(l —v?)(ho/R)3, H = ((1 +
v)/5)(ho/a)2(ho/h), P = Pa/(Do(1 — 12)), Do =
ER3/(12(1 —v?)) is the standard bending rigidity, ho
is the standard thickness of the plate, 6(n — 74) and
8({—¢.) are Dirac’s delta functions, k = uK/(1~v?),
K is the dimensionless modulus of the foundation, it
is defined as follows:

K = ka*/ Dy,

In the above equation, the variable quantity ho/h
has been separated and expressed only in the quan-
tities D and H so that the equation can be used for
the plate with stepped thickness.

The equation (2) can also be expressed as the fol-
lowing simple form.

8

X, X,

8~ 8 o sXs
;{Fu ac + Fyy an + F3t. X}

+P&(n —ng)é({ — ¢ )01 =0 (t=1~8), (3)

where 61+ is Kronecker’s delta, Fi11 = Fioq4 = Fiaz =
Fis6 = Figr = Fiss = 1, Fuas = v, Fo1z = Fag3 =
Fogs = Faar = Foge = p, Fos7 = uv, Farg = 1, F313 =
~k, Fo1 = Fa3p = —p, Fas = Fysq = —D, Fie3 =
—2ﬁ/(1 — I/), F372 = —_H—, F377 = 1, F381 = —Mﬁ,
F3g6 = u, otherFys = 0. v

3. Discrete Green Function

As given in Ref [8], by dividing a square plate verti-
cally into m equal-length parts and horizontally into
n equal-length parts as shown in Figure 2, the plate
can be considered as a group of discrete points which
are the intersections of the (m+1)-vertical and (n+1)-
horizontal dividing lines. To describe the present
method conveniently, the rectangular area, 0 < n <
1, 0 £ ¢ £ (;, corresponding to the arbitrary inter-
section (¢, 7) as shown in Figure 2 is denoted as the
area (i, 7], the intersection (i, 7) denoted by () is called
the main point of the area [4, 5], the intersections de-
noted by o are called the inner dependent points of the
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Fig. 2 Discrete points on a rectangular plate.

area, and the intersections denoted by e are called the
boundary dependent points of the area.
By integrating the equation (3) over the area i, j],
the following integral equation is obtained:
8

S{ Fue [ 1u0,5) = a0

s=1

¢
+Faes /0 [Xa(m, ¢) — Xa(0,O)]dC

L
s [" 7 X crinec |
+Pu(n — ng)u(¢ — ¢r)d1e =0, (4)

where u(n — n,) and u(¢ — ¢,) are the unit step func-
tions.

Next, by applying the numerical integration
method, the simultaneous equation for the unknown
quantities X,; = Xs(ns,¢;) at the main point (3, j)
of the area [i, j] is obtained as follows:

8 i
Z {Flts Z Bir(Xskj — Xsko)

s=1 k=0

J
+F2ts E ﬂjl(Xsil - XsOl)

=0
i J
+Fas Y ﬂikﬂleskz}
k=0 1=0
+Puiqujr51t =0, (5)

where B = au/m, B = aji/n, oz = 1 — (Sor +
5,‘];)/2, o5 =1~ (601 + 5]'1)/2, t=1~8 i=1~m,
J=1rmn, uyg =u(n —ng), ujr = w(G — Gr)-

By retaining the quantities at main point (¢,7) on
the left hand side of the equation and putting other
quantities on the right hand side, and using the matrix
transition, the solution X, of the above equation (5)
is obtained as follows:

8 i
KXpij = Z {Z/BikApt[thO — Xeki (1 — 6ix)]

t=1 k=0
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—Ap1 Puqur, (6)

where p = 1 ~ 8, Ay, Bpt and Cpipg are given in
Ref [8].

In the equation (6), the quantity X,,;; is not only
related to the quantities Xixo and Xyo; at the bound-
ary dependent points but also the quantities Xi;,
The
maximal number of the unknown quantities is 6(m —
1In—1)+3(m+n+1). In order to reduce the un-
known quantities, the area [3, ] is spread according
to the regular order as [1,1], {1,2], ---, [L,n], [2,1],
(2,2),---,12,n], - -, [m, 1], [m, 2], - - -, [m, n]. With the
spread of the area according to the above mentioned

X and Xy at the inner dependent points.

order, the quantities X¢z;, Xe and Xy at the in-
ner dependent points can be eliminated by substitut-
ing the obtained results into the corresponding terms
of the right hand side of equation (6). By repeat-
ing this process, the quantity X,;; at the main point
is only related to the quantities X,z (r=1,3,4,6,7,8)
and X0 (5=2,3,5,6,7,8) at the boundary dependent
points. The maximal number of the unknown quan-
tities is reduced to 3(m + n + 1). It can be noted
the number of the unknown quantities of the present
method is fewer than that of the finite element method
for the same divisional number m(> 3) and n(> 3).
Based on the above consideration, the equation (6) is
rewritten as follows.

6 [ J
Xpij = Z{Z OpijrdXro + Z bpijngsOg} + Gpii B

d=1 *f=0 g=0
(7)

where ap;j7d, bpijga and p;; are given in Appendix A.

The equation (7) gives the discrete solution of the
fundamental differential equation (3) of the bending
problem of a plate resting on an elastic foundation and
having a concentrated load, and the discrete Green
function is chosen as Xg;ja?/[PDo(1 — v?)], that is
w(zo, Yo, T,y)/P.

The integral constants X,r, and X4 involved in
the discrete solution (7) are all quantities at the dis-
crete points along the edges ( =0 (y =0) and n =0
(z = 0) of the rectangular plate. There are six in-
tegral constants at each discrete point. Half of them
are self-evident according to the boundary conditions
along the edges ¢ = 0 and 7 = 0 and half of them

are needed to determine by the boundary conditions
along the edges ( = 1 and n = 1.
The simply supported boundary conditions are as
follows.
My=0,=w=0
M,=6,=w=0

for the edges( =0and ( =1
for the edgesp=0and n=1

4. Characteristic equation

In this paper, the analysis is carried out for the thin
plates and the effect of the rotary inertia is not taken
into account.

By applying the Green function w{xo,yo,,y)/P
which is the displacement at a point (zo, yo) of a plate
with a concentrated load P at a point (z,y), the dis-
placement amplitude w(zo,yo) at a point (xg, yo) of
the square plate during the free vibration is given as
follows:

b pa
(0, yo) = /0 /0 ph®is(z,y)[w(z0, yo, 7, )/ Fldady,
(8)

where p is the mass density of the plate material and
w is the circular frequency.

By using the numerical integration method and the
following non-dimensional expressions,

4 _ _pohow’a’ PRy
)‘ _Do(l——llz)’ A""l/(/“l‘)‘ )7
_ plz,y) h(z,y) _ (=)
H(T/: C) - 20 hO ’ W(77» C) - a ’
. ’LU(Q?(),’yO, :v,y) Do(l — V2)
G(ﬂo,(oﬂ%C) - a —P-a )

where po is the standard mass density , the charac-
teristic equation is obtained from the equation (8) as

Soo  So1  Soz Som
S0 Si1  Si2 Sim
S20 S21 S22 S2m | =0 9)
SmO Sml Sm2 Smm
where
BroH;j0Gi050 — Adij BrnHjnGiojn
BroHjoGi1j0 gnngjngilj‘n
BnoHjoGi2j0 nnHjnGizjn
Suzﬁm]
BrnoHjoCinjo © BrnHjinGipjn — Adyj

5. Numerical results

To investigate the validity of the proposed method,
the frequency parameters are given for the plate
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20 I Convergency of natural kequency of -3
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Fig. 3 The natural frequency parameter A versus
the divisional number m(= n) for the SSSS
square plate with uniform thickness on the
elastic foundation (K = 100).

shown in Figure 1. The standard thickness hg is cho-
sen as hy and ho/a = 1/1000 is used. Simply sup-
ported boundary conditions are considered and de-
noted by four symbols SSSS. All the convergent val-
ues of the frequency parameters are obtained for sim-
ply supported square plates (x = b/a = 1) by using
Richardson’s extrapolation formula for two cases of
divisional numbers m (=n). Some of the results are
compared with those reported previously.

5.1 A square plate on homogeneous founda-
tions

In order to examine the convergency, numerical cal-
culation is carried out by varying the number of divi-
sions m and n for a square plate with uniform thick-
ness on homogeneous foundations. The plate is spe-
cial case of the plate shown in Figure 1 with ¢/a = 0.0.
The lowest 6 natural frequency parameters of this
plate with the dimensionless modulus of the founda-
tion K = K = 100 are shown in Figure 3. It shows
a good convergency of the numerical results obtained
by the present method. After studying the figure, it is
decided to obtain the convergent results of frequency
parameter by using Richardson’s extrapolation for-
mula for two cases of divisional numbers m (=n) of
12 and 16. By the same method, the suitable number
of divisions m(= n) can be determined for the other
plates.

Table 1 shows the numerical values for the low-
est 4 natural frequency parameter A of square
plates on homogeneous foundation with K =
0, 10, 100, 1000, 10000. The results obtained by Mat-

Table 1 Natural frequency parameter A for a SSSS
square plate on homogeneous foundations

Mode sequence number

K  References 1st 2nd 3rd 4th

0 Present
12 x 12 4.575 7.336 7.336  9.311
16 x 16 4.564 7.272 7.272 9.216
20 x 20 4.553 7.261 7.261 9.126
Ex. 4549 7.190 7.190 9.094
Ref. [5] 4.549 - — -
Exact [9] 4.549 7.192 7.192  9.098
10 Present
12 x 12 4603 7.343 7.343 9.315
16 x 16 4.592 7.279 7.279 9.220
20 x 20 4582 7.266 7.267  9.133
Ex. 4578 7.198 T7.198  9.098
Ref. (5] 4.578 — — -
10>  Present
12 x 12 4.838 7.405 7.405 9.345
16 x 16 4.829 7.343 7.343  9.251
20 x 20 4.824 7314 7.314 9.210
Ex. 4816 7.263 7.263 9.131
Ref. {5] 4.816 — - -
108 Present
12 x 12 6261 7.950 7.950 9.635
16 x 16 6.257 7.900 7.900 9.549
20 x 20 6.254 7.879 7.880 9.506
Ex. 6.251 7.836 7.836  9.439
Ref. [5] 6.251 — - -
10¢  Present
12 x 12 10.339 10.855 10.855 11.664
16 x 16 10.338 10.836 10.836 11.616
20 x 20 10.338 10.827 10.827 11.595
Ex. 10.337 10.811 10.811 11.554
Ref. [5] 10.337 - - -

Ex.:The values obtained by using Richardson'’s
extrapolation formula.

sunaga [5] and the exact values of the plate with
K =0 [9] are also shown in the table. It can be seen
that the numerical results of the present method have
satisfactory accuracy. From this table, it can be also
seen that the effect of the constant K on the funda-
mental frequency parameter is much more significant
than that on higher frequency parameters, the fre-
quency parameters increase with increase of the con-
stant K, and they increase quickly when K is larger
than 100.
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Table 2 Natural frequency parameter A for a SSSS
square plate with the central part on local
uniform supports (¢/a = 0.6)

Table 3 Natural frequency parameter A for a SSSS
square plate with the central part on non-
homogeneous foundations (c/a = 0.6)

Mode sequence number

Mode sequence number

K, K; References 1st 2nd (3rd)  4th K K; References 1st 2nd (3rd) 4th
0 320 Present 320 800 Present
10 x 10 5.156 7.552 9.465 10 x 10 5.878 7.798 9.591
15 x 15 5.157 7.434 9.290 15 x 15 5.883 7.695 9.424
Ex. 5.158 7.341 9.151 Ex. 5.887 7.613 9.290
Ref. [2] 5.168 - - Ref. [2] 5.895 - -
Ref. {7] 5.123 - - Ref. {7]  5.862 - -
0 800 Present 320 1600  Present
10 x 10 5.766 7.736 9.542 10 x 10 6.571 8.063 9.710
15 x 15 5.782 7.627 9.371 15 x 15 6.588 7.974 9.549
Ex. 5.794 7.540 9.235 Ex. 6.602 7.902 9.421
Ref. [2] 5.813 - - Ref. [2]  6.620 - -
Ref. [7] 5.774 - - Ref. [7]  6.584 - -
0 1600  Present 800 320 Present
10 x 10 6.491 8.000 9.662 15 x 15  5.476 7.602 9.420
15 x 15 6.514 7.907 9.498 20 x 20 5.456 7.596 9.349
Ex. 6.533 7.833 9.367 Ex. 5.430 7.589 9.257
Ref. [2] 6.563 - - Ref. [2]  5.446 - -
Ref. [7] 6.517 - - Ref. [7]  5.402 - -
320 0 Present 1600 320 Present
15 x 15 4.757 7.346 9.286 15 x 15 5.729 7.767 9.547
20 x 20 4.747 7.296 9.275 20 x 20 5.710 7.731 9.518
Ex. 4.733 7.232 9.262 Ex. 5.685 7.684 9.481
Ref. 2] 4.715 - - Ref. [2] 5.685 - -
Ref. [7]  4.656 - - Ref. [7] 5.627 - -
800 0 Present
15 x 15 4.998 7.447 9.364
20 x 20 4.971 7.425 9.292  the thickness ratio hy/hy = 1.0 are adopted. The con-
Ex. 4.936 7.397 9.200  vergent results of frequency parameter are obtained
Ref. 2] 4.937 - — by using Richardson’s extrapolation formula for two
Ref. [7]  4.871 - ~  cases of divisional numbers m (=n) pointed in Ta-
1600 0 Present ble 2. The present results are compared with those
15 x 15  5.316 7.618 9.491 obtained by Laura and Gutiérrez [2] and Ju, Lee and
20 x 20 5.281 7.595 9433  Lee [7]. They are in good agreement.
Ex. 5.235 7.566 9.357 Table 3 shows the numerical values for the lowest
Ref. [2] 5.250 - ~ 4 natural frequency parameter A of the plate on non-
Ref. [7] 5.161 - -

5.2 A square plate with uniform thickness on
non-homogenous foundations
Table 2 shows the numerical values for the lowest 4
natural frequency parameter A of the plate shown in
Figure 1 with Ky = 0 or K2 = 0, which is the case of
the local uniformly distributed support. The side ra-
tio of the local square part and the plate c/a = 0.6 and

homogeneous foundations with k1 /he = 1.0,¢/a = 0.6
and four kinds of combination of K1 and K5. The con-
vergent results of frequency parameter are obtained
by using Richardson’s extrapolation formula for two
cases of divisional numbers m (=n) pointed in Ta-
ble 3. The present results are also in good agree-
ment with those obtained by Laura and Gutiérrez [2]
and Ju, Lee and Lee [7]. From Tables 1 ~ 3, it can
be seen the present method can be used to solve the
problem of plates on homogeneous foundations, local
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Table 4 Natural frequency parameter A for SSSS
square plates with stepped thickness in the
central part

Mode sequence number

Table 6 Natural frequency parameter A for a SSSS
square plate with stepped thickness in the
central square part on non-homogeneous
foundations (hy/hs = 0.8,¢c/a = 0.5)

hi/ha  c¢/a References 1st 2nd (3rd)
0.7 0.5 Ex. 4.829 7.498
Ref. (7] 4.831 —
0.8 0.5 Ex. 4.726 7.404
Ref. [T] 4.721 7.439
1.5 0.5 Ex. 4.308 6.708
Ref. [7] 4.280 6.757

Table 5 Natural frequency parameter A for a SSSS
square plate with stepped thickness in the
central square part on local uniformly dis-
tributed supports (h1/he = 0.8, ¢/a = 0.5)

Mode sequence number

K Ky  Reference  1st 2nd (3rd)
100 0 Ex. 4.805 7.443
1000 0 Ex. 5.364 7.771
0 100 Ex. 4.863 7.426
0 1000 Ex. 5.753 7.613

uniformly distributed supports and non-homogeneous
foundations.

5.3 Square plates with stepped thickness in
central square part

The numerical calculation is carried out for the
plate shown in Figure 1 with K7 = K, = 0, which is
the case without foundations. The numerical values
for the lowest 3 natural frequency parameter A of the
square plate with c¢/a = 0.5 and hy /he = 0.7,0.8,1.5
are presented in Table 4. The convergent results of
frequency parameter are obtained by using Richard-
sont’s extrapolation formula for two cases of divisional
numbers m (=n) of 12 and 16. The present results
are compared with those obtained by Ju, Lee and
Lee [7]. It shows the present results have satisfac-
tory accuracy. From Table 4, it can be noted that
the frequency parameters decrease with the increase
of the ratio hy/ho.

5.4 Square plates with stepped thickness on
non-homogeneous elastic foundations

As an application of the present method, some

numerical results are presented for the plate with

stepped thickness in the central square part rest-

Mode sequence number

K, K, Reference  1st 2nd (3rd)
10 100 Ex. 4.870 7.430
10 1000 Ex. 5.758 7.617
100 10 Ex. 4.818 7.445
100 1000 Ex. 5.799 7.653
1000 10 Ex. 5.374 7.773
1000 100 Ex. 5.462 7.791
A T T T T T
B T

e ; K1=1000, K2=100

o N{g-

_____ ——
st .
St
1 1 1 1 I
4
04 06 08 1.0 1.2

hi/hs

Fig. 4 The natural frequency parameter A versus the
thickness ratio m(= n) for the SSSS square
plate on the elastic foundation .

ing on local uniformly distributed supports or non-
homogeneous foundations. The ratios of hy/he = 0.8
and ¢/a = 0.5 are considered. The convergent re-
sults of frequency parameter of these plates are ob-
tained by using Richardson’s extrapolation formula
for two cases of divisional numbers 12 and 16 in Ta-
bles 5 and 6. From these two tables, it can be noted
for the specific modulus of the foundation K and the
ratios of ¢/a and hi/he, the fundamental frequency
parameters of the plate with the central part having
higher foundation modulus are higher than those of
the plate with the central part having lower founda-
tion modulus and it can also be seen that the modu-
lus of the foundation affects the frequency parameters
greatly.

Figure 4 shows the effects of the thickness ratio and
the dimensionless modulus of the foundation on the
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frequency parameter. It can be noted with increase
of the thickness ratio, the first and the second fre-
quency parameters decrease for the plates with the
specific modulus of the foundation. With increase of
the value of the modulus of the foundation, the fre-
quency parameters increase. The nodal lines of the
first, second and third mode shapes of the plate with
hi/he = 1.2 are also shown in the figure.

6. Conclusions

A discrete method is extended for analyzing the free
vibration problem of square plates with stepped thick-
ness on the elastic foundations. No prior assumption
of shape of deflection, such as shape functions used
in the Finite Element Method, is employed in this
method. The spring system is used to simulate the
foundations. The characteristic equation of the free
vibration is gotten by using the Green function. The
effects of the elastic constant of the foundations and
the stepped thickness on the frequencies are consid-
ered. The results by the present method have been
compared with those previously reported. It shows
that the present results have a good convergence and
satisfactory accuracy.
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Appendix A
015061 = Q3i0i2 = 44043 = 1, G6:0i4 = 74045 = A8i0i6 = 1

baojj1 = bsojj2 = bsojjz = 1, beojja = brojjs = bsojze = 1,
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