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The effect of pre-stress on the scattering of plane SH-waves from a circular cylindrical cavity in a
compressible isotropic elastic medium, is studied. The complex function method is employed to
analyze the incremental boundary value problem. The spatial variables (x;, x,) are mapped onto
two different complex planes so that the series solution of the incident waves and the scattered
waves are expressed as functions of two different complex variables. The coefficient of each term
in the series solution can be computed numerically from a set of linear simultaneous equations,
which are constructed by satisfying the incremental traction-free boundary condition along the sur-
face of the cavity. Varga material is assumed in the numerical examples. Varying the principal
stretches, the effect of pre-stress on the dynamic stress concentration factor and the scattered energy
is investigated.
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1. Introduction

Analysis of wave scattering in elastic media is very useful in
engineering practice, for example calculation of soil-structure inter-
action due to seismic waves and non-destructive evaluation of
structural components. A comprehensive study of wave scattering
from a cavity or elastic body in a linear isotropic elastic medium can
be found in the monograph by Pao and Mow”. Scattering prob-
lems in linear anisotropic elastic media have been considered by
many authors™,

If in certain situations the elastic medium can be initially
pre-stressed by external static forces before the propagation of inci-
dent waves, then the dynamic analysis in a pre-stressed medium
will be more appropriate, than the classical linear analysis. In the
last two decades, wave propagation problems in pre-stressed elastic
media have been extensively studied but due to the complexity of
the analysis, which comes from the effects of pre-stress, analytical
results of wave reflection and scattering problems, have been lim-
ited t% reflection of waves from a linear plane boundary or interface
only.>®

Recently, SH-wave scattering from a circular cylindrical cavity
in a compressible pre-stressed unbounded elastic medium has been
studied by the authors”. It was the first time that an elastic scatter-
ing problem in a pre-stressed medium has been considered. Since,
the goveming equation for anti-plane deformation of pre-stress
media are mathematically identical with the goveming equation of
linear orthotropic elastic media, the complex function method used
in the solution of dynamic stress concentration around a cavity in an
infinite linear anisotropic elastic medium® can be applied to the
present pre-stress problem. Using the complex function method,
the effect of pre-stress on the speed of incident body waves and the
dynamic stress concentration factor (SCF) along the surface of the
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cavity has been explored. In the present paper, a further study of
is carried out where more details of the SCF, the intensity of scat-
tered energy and the scattering cross-section are included. The
fundamental equations and formulation of the problem are given in
Secs. 2 and 3. Numerical results of two examples when the Varga
strain energy function is assumed have been given in Sec. 4.

2. Basic Equations

Consider a homogeneous compressible isotropic elastic mate-
rial with an initial unstressed state denoted by 2, which after being
subjected to pure homogeneous strains has the new configuration
B, the pre-stressed equilibrium state. A Cartesian co-ordinate
system Ox,x,x,, with axes coincident with the principal axes of
strain, is chosen for the configuration 2. Let u be a small, time
dependent displacement superimposed on 2, The incremental
equations of motion for small time dependent displacements su-
perimposed on the finite quasi-static deformation and the compo-
nent of incremental nominal stress tensor s,, can be written as
(see Ch. 6 of )

‘AOjiklul,jk = pii, Soi = ‘A(!jiltuk,l’ M

where 4, are the components of the fourth-order tensor of
first-order instantaneous elastic moduli which relates the nominal
stress increment tensor and the deformation gradient increment
tensor, p is the material density in the current configuration and
superimposed dot and comma indicate differentiation with respect
totime ¢ and spatial coordinate component in B,, respectively.
The corresponding equations for anti-plane defonmation where
u; = u,(x,,x,,¢) and u, =u, =0 canbe written as

Aomauz,u + -Aozmus,zz = pu,,
Sois = Aot Son = Aganthsz s

@
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since Ay, =0 when i#j (see Eq. 3.6 of V). The instan-
taneous elastic moduli 4,,;; and 4 ,,,, are given in term of
the strain energy function W(A4,,4,,4,) and the principal
stretches 4, 4,,4, as,

T (G S G N A
P AW - AW+ AW, A=k, G)
(i=1,2)

where W, = W /04, , W, = 0'W [04,04,,(i=1,2 andj = 1,3)
and J = 444"

The incremental nominal stress components s,,, and s,,,
in the cylindrical coordinate system (r,6,z) where
x, =rcosf, x,=rsinf and x,=z canbeexpressedas,

Sor: = ‘A()1313uz,| cosf + -’402323“:,2 siné,

. Q)
Sop: = ~Api313;, SINE + Ay, ; COSE.
Since the complex function method is used, the complex expression
of non-dimensional stresses are obtained from Eq. (4) as,

~ oA 2 . i@
Sore =809, =171, —iu,,1e",

A ) , o (&)
Sore +i84g, =[7 u,,+ ”‘z,z]e s

where y* = -'401313/-'402323 s 8o, = sOn/'AO2323 and
S06: = Soez /-Aomr

3. Scattering of SH-Waves by a Circular Cylindrical Cavity

Consider an infinitely long circular cylindrical cavity in an
unbounded pre-stressed elastic solid as shown in Fig. 1. The ho-
mogeneous principal stretches A, (i =1,2,3) yield the corre-
sponding homogeneous static principal Cauchy stresses
o,,(i=1,2,3) (pg 216 of ' )and are given by,

o, =AW 1J, (i=12,3). 6)

Since the assumed homogeneous principal stretches yield homo-
geneous Cauchy stresses, the internal static traction that should be
applied along the inner surface of the cavity is

t,(8) = —(o, cos’ 8 + o, sin’ O)e, + (0, ~7,)cosfsinbe,,

@)
where e, and e, are unit basis vectors. For the equibiaxially
pro-stressed case o, = 0,, the traction t,(€) in Eq. (7) cor-
responds to an intemal static pressure (ie., p, = —0,). In prac-
tice it is more natural to expect that if there are no tractions applied
along the inner surface that there will be stress concentration in the
pre-stressed state around the cavity.

3.1 Incident Wave

The incremental displacement of the incident time harmonic
plane SH-wave u!’(x,,x,,t) = U e ™ g*=(1°*+5"®) can be
expressed in the polar coordinate system as

uz('i) (r,g,t) - UO e—iwl eik,rws(@-—a) , (8)

where 6 =« is the direction of wave propagation, @ is angular
frequency, k, = @/c, is wavenumber, and ¢, is wave speed
in this direction, i.e., pc2 = Ay, 005" @ + Ay sin’ @ (pg.
474 of ). Here the superscript (i) indicates the incident wave.

incident
SH-waves,

u;"(x,,xz,t)

Fig. 1. Unbounded pre-stressed material with circular cylindrical
cavity and the incident plane SH-wave.
Equation (8) may be expressed in the form of a Fourier series
expansion? as,

ul(r,0,0) =Ue™ Y i"e"* J (k,r) ©

n=—w

where J_ is the Bessel function of order 7.
To use the complex function method introduce the complex

variables,
c=x +ix,=re’, C=x—ix,=re”, l¢|=r, (109
which yields,
DL ) s G) (D)
ul) =ul) +ull, ul) =i -u)), an

where u!) =6u/o¢ and ul) =ou’[6Z, from which Eq.
(9) can be expressed as

W) =Upe™ 3 7 1,k Jee /Y. (12)

From Egs. (5), (11) and (12) the stress components due to the
incident wave can be written as

50,0 = ————{h e’ 67 -ne™]

O
Z l-n e—ma . (ka lgl)(ﬁ)n—l - [(72 B I)ele + (72 . I)e—rﬁ]

n=—x

i i e—ina J"+] (ka lgt)(é)nﬂ }’

n=-w
o) _ MUpkge™ 2 i6 2 =T
So6:(2,1) —"‘_4—‘{[(7 e =o' -ne ]
e J, (K, |§|)(ﬁ)"_1 —[o?-ne? — o7 e ne™]

e,k oD }

i
i

(13)
32 Scattered Wave

When the incident wave #” impinges on the surface of the
cavity, the scattered wave u'" is generated and the total dis-
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placement is the summation of both incident and scattered waves
ie, u, =u!” +u!). For the scattered wave, another set of com-
plex variables is introduced, i.e.,

n=x+iyx, =r(cosé +iysinb),

_ . oo (14
7 =x —iyx, =r(cosf —iysinf),
and hence,
W =y, U = i ),
U = gy, + 2uly Ul (15
Um = =y e, = 20 + ).
Substituting Eq. (15) into Eq. (2a) yields
Acguty g = i, (16)

where ¢, is the SH-wave speed in x, -direction ie, pc} =

-’401313 .

Following the work of Liu et al.” the solution of Eq. (16),
which satisfies the radiation condition when » — o can be writ-
ten as

W = 3 AHO U | 7D/ 0 a”)

where 4,, n=0,£1,+2,... are arbitrary constants and 7" is
the Hankel function of order n and &, = w/c,.
The comesponding stress components are

8 =2k e™ 3 {40 + -]
HY (k, |77";E%)H [ -ve® + ¢ +ne™]
H o D,
85, (m,0) =L kye ™ i {A,, [ +n€” — ¢ -ne™]
H2 (k {Ui')?%)"" ~[o-ne® = +ne™]
HE (ko ™}

18
The incremental boundary condition along the surface of a cinfula)r
cavity with radius a is expressed as
Son(&:D+ 82 (m0) =0, on [¢|=a. (19)
Substituting Eqgs. (13) and (18) into Eq. (19) yields
‘2 44, =¢, (20)

n=—co

where,

8, =3 {lo+ve” + 6 -0e ™ THS (k[
—[r-ve? + ¢ +ne™] H:.i)l (ko |’7l)(ﬁ)"+x }’

¢ = _[(72 . 1)e'0 + (72 ~ l)e—io] Z (l)n e—ina J,.-l(ka |g|)(.l§]_)n—l

o
+lo” -ve? +0" e ] Y () €™ 0k, D™,
n=-o0

on [¢|=a. @21
Multiplying both sides of Eq. (20) with e and integrating
from —7 to z Yyields a set of simultaneous equations:

> A48 =0, m=0%122,.. 22)
where 4, =& [ gedoand ¢, =L [ ge™ao.
The coefficients 4,, n=0,+1,+£2,... can be determined nu-
merically by replacing the infinite series in Eq. (22) by a finite series
and solving the corresponding system of simultaneous equations.
A convergent solution can be obtained by increasing the number of
terms considered in the finite series.

3.3 Dynamic Stress Concentration Factor

Along the surface of the cavity, the dynamic stress concentra-
tion factor is defined as the ratio of incremental stress amplitude
| $06, | t0 the maximum amplitude of the incident incremental
stress at the same point. For time harmonic incident SH-wave
given in Eq. (8), the maximum amplitude of the incident shear
stress is

max(sy)) = AysskUs |—}'2 cosasing' + sinacosH'l (23)

where @' =arctan(-y*cotar). Therefore the dynamic stress

concentration factor can be expressed as

o) )
SCF _I So5; + Sog, |

= - > - . 24
1k,,U0(smacosﬁ’ -y cosasm&’)|

In the absence of pre-stress A, = Ay = 4, and y> =1,
and Eq. (23) is reduced to max(sy)) = yk, U, which agrees
with linear isotropic case (page 132 of ).

3.4 Scattered Energy
The time average of energy flow can be calculated from either
the real or imaginary part of stress and displacement e.g.,

Ave(E) = 1 f [, Rels,,IRe[a, Jn.dd it

29)
= [ [[ G5+ 550, + 7, ndd d,

where 5, and #, are complex conjugates of s, and i,
respectively, For time harmonic waves (see Eqs. (8) and (17)),
which has period T =27/ since fe‘z"’” dt=0 the above
equation reduced to

Ave(E) = ~ 2 Ao, [[ (8,0, -S,U,)ndd,  (26)
where s, = Apypy,S, €7, u,=U,e™ and S, and U,
are complex conjugate of S,; and U, respectively.

The average of energy flux per unit area normal to the propa-
gation direction of plane incident waves shown in Eq. (8) is

-17-



Ave(e”) = Ave(EY)/ 4,

. @7
=2k, 0 A, Us (77 cos’ a +sin” @).

For a circular cavity, the total scattered energy per unit length of
cylindrical surface at radius » is

AVe(B) = ~Li Ay, [ [SST 50U 1rd6, (28)
where the average energy flux across a cylindrical surface is,

Ave(é(s)) _ __lw~’4{)2323 [S(J)U(S) S(:)u(x)] (29)

The ratio Ave(E*))/Ave(é"’) has the dimension of area per
unit length of cylinder and is referred as scattering cross-section
when k., — o (page 138 of V)ie.,

Z= lim [Ave(E)]/ Ave(e™), (30

where ‘%ierozm[S,(:)U:” —E,(:)Uis)] is the scattered energy
flux per unit area(page 138 of " ) and its intensity ratio A is
given by

A= lim [r Ave(e“)]/ Ave(e™). (31
4. Numerical Results

As mentioned in Sec. 2 the instantaneous elastic moduli
Agas and Aj,,,, depend on the strain energy function of the
material and the principal stretches. In this section compressible
Varga material is assumed and the strain energy function is given by
1y

’

W =2l + &+ & =3- (A4 (2)

From the definition of 4;,;,;, 4,5, and y (see Sec. 2), Eq.
(32) yields

J A =2/10112/(11 +4),
33
J-A02323=2/10’1'22/(ﬂ'z+/13), =% ,2:2 (33)

For the pre-stressed material which is equibiaxially deformed
in (xx,)-plane (ie, 4 =4, = A1), Eq. (33) yields A, =
App =4 and y =1, where u=2uA[J(A+ 1) is the
shear stiffhess of the material in the equilibrium configuration.
From the orthogonal properties of € ™, m=0,+1,%2,... the
linear-isotropic-like solution (pg. 121 of " )is recovered and the
coefficient 4, inEq. (22) can be expressed as

. nJ (ka)~kal,, (ka)
A =- L il , (n=0,£1,%2,.), (34
n = HO (k) —ka HO Gy » G9

where

ka=wa\plu, p=p,/J, a=ai, (35)
are non-dimensional wavenumber, material density and radius of

cavity in equilibrium configuration, respectively. In Eq. (35) p,
is material density and a, is radius of cavity in the natural un-

stressed configuration. Since y =1, it can be seen from Egs.
(13), (18), (24) and (34) that the dynamic stress concentration
factor does not explicitly depend on stretches 4, =4, and 4,
i.e, for the same value of ka. In addition, the scattered energy
intensity and scattering cross-section depend implicitly on ka.

The prescribed parameters of Examples 1 and 2 are the same
with”, but here the additional results e.g., scattered energy intensity
and scattering cross-section have been included and discussed in
detail,

Example 1:

Figure 2 shows the geometry of this example when the com-
pressible Varga material is equibiavially deformed in (x,x,)
-plane (e, A4 =4 =4 ) and the intemal pressure
po =24,(1-A)/J is applied inside the cavity. The internal
pressure is necessary since homogeneous stretches are assumed.
The incident wave is assumed to propagate in the x, -direction.
The non-dimensional phase speed of the SH- wave
€ =\ up,/ pyp which depends on the values of principal
stretches is shown in Fig. 3.

incident
SH-waves

17(x,0)

Fig. 2. Geometry of Example 1.

It can be seen in Fig. 3 that for A, < A <1.0 which simulates the
pre-stressed earth when the (x,x,) -plane is parallel to the hori-
zontal ground surface, the speed of SH-waves is slower than that of
the non pre-stressed material i.e, ¢ <1.0.

The plot of dynamic stress concentration factors when
ka=0.1,1 and 2 isshown in Fig 4. Since the (x,x,) -plane
is a plane of symmetry, SCF is plotted for 0° <8 <180°. ltis
seen from Figs. 4 and 5 that the dynamic stress concentration factor
and max(SCF) obtained in this example is equivalent to the
linear isotropic case (pg. 134 of " ) when ka is replaced by

koga, = @ag py/ ty -

1.5 7 T
1.25F /
A4 10} /
1.
075+ 12 13

0.5 L
05 125 15

ﬂq /%

Fig. 3. Contour plot of non-dimensional phase speed
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Fig, 4. Dynamic stress concentration factor SCF of Example 1.
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Fig. 5. Maximum value of stress concentration factor SCF and the
angle of its position &, .

Fig. 6. Scattering energy of Example 1; (a}e) scattered energy
intensity ratio A/a; (f) non-dimensional scattering
cross-section X/a.

Figure 5 shows the maximum values of stress concentration
factor max(SCF) and its location 6__. It can be seen that
when ka gradually increases from 0, max(SCF) increase from
20 untl it reaches the peak a ka=04 when
max(SCF) =2.1. This was also discussed in " for the linear
isotropic case. For small ka, 6, <90°while 8_, >90°
when ka is high enough.

In Fig, 6 the scattered energy intensity ratio A and the scat-
tering cross-section % are plotted. It can be seen when ka is
small, A is almost uniformly distributed in all the backward di-
rections and, when ka ishigh A is mostly in the forward direc-
tion with a concentrated peak at & = 0°. The behavior of T is
clearly shown in Fig, 6(f).

Example 2:

The compressible Varga material is equibiaxially deformed in
the (x,x,) -plane with principal stretches 4, =4, =1=0.9
and A4,=08  where the intemal static traction
t,(6) =3.527y, [(3cos’@+sin’H)e, —sin28e,] is ap-

plied along the inner surface of the cavity since uniform stretches
are assumed. It is noted here that A, was emoneously given as
2,=0.7 in ®. The incident SH-wave has an incident angle
a =45° (see Fig. 1). Using the method presented in Sec. 2 and
truncating the series in Eq. (22) at n=+n,_, yields a set of si-
multaneous 2n,,. +1 equations. The coefficient 4,, n=0,
+1L,+2,...,tn,,, can be obtained by solving the resulting system
of equations. In this example it is found that a convergent solution
is obtained when the series is truncated at 7, = 8.

The scattering cross-section, max(SCF) and its location are
plotted for 0 <k,a <5.0 in Fig. 7. The behavior of £ and

max(SCF) are similar to Example 1 while 9, is different
since the problem is not symmetric like Example 1.

The real and imaginary parts of the amplitude of the displace-
ment and shear stresses along the surface of the cavity, the distribu-
tion of SCF and scattered energy intensity A are plotted in Fig. 8.

Figures 8(a) and (c) can be used to calculate the displacement
and shear stresses at any time in the period of vibration, while Fig.
8 (b) shows that the results agree with the boundary condition at the
surface of the cavity. It is seen from Fig. 8(d) and (e) that the dis-
tribution of SCF and A are not symmetric with respect to any
plane or axis, this effect cannot be seen for the in-plane equibiaxial
pre-stress case (Example 1) and for linear isotropic case.

3.0

2.5-2/[1

2.0}

15}

1.0f

0.5¢

0‘001‘55350'00%5:‘1:150
k,a k,a

Fig. 7. Non-dimensional scattering cross-section and the maxi-
mum value of stress concentration factor of Example 2.
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Fig. 8. Results of Example 2 when k,a=0.5 and 2.0; (a)
displacement, (b)}{c) stresses, (d) stress concentration
factor SCF and (e) scattered energy intensity ratio A/a .

5. Conclusions

Using the complex function method the scattering of plane
SH-waves from a circular cylindrical cavity in a pre-stressed elastic
medium is analyzed. The effect of pre-stress on the speed of plane
SH-waves, the dynamic stress concentration factor, scattered energy
intensity and scattering cross-section can be clearly seen from the
numerical results.  Long SH-waves will have a higher stress

concentration than short SH-waves. The scattered energy intensity
is less and mostly uniform in the backward direction for long
SH-waves while for short SH-waves the higher energy intensity is
scattered and it has a concentrated peak in the forward direction.
The distribution of stress concentration factor and scattered energy
intensity for pre-stressed media is not always symmetric, except for
the in-plane equibiaxially deformed case. Scattering problems for
non-circular cavities and inclusions in pre-stressed elastic un-
bounded media or in a half-space and the scattering of in-plane
waves (P and SV waves) should also be studied.
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