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A Post-Seismic Damage Detection Strategy in Time Domain
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A neural-network-based damage detection approach with the direct use of actual incomplete time series of
earthquake response is developed for a suspension bridge. Two neural networks are constructed and trained
using the segment of the time series of seismic responses on several locations of the bridge, when earthquake
is in small level, to identify the transversal and vertical velocities responses at the deck in the middle of the
main span of the suspension bridge. The two neural networks are assumed as nonparametric models for the
bridge in health condition before the earthquake occurred. The performance of the trained emulator neural
network models for the suspension bridge is evaluated by numerical simulation. The RRMS error between the
forecast responses and the measurements in different stages are decided. Results show that the RRMS errors
corresponding to the transversal and vertical velocities in the middle of the main span have a variance in
different segments. This results mean that occurrence of damages in some structural members is possible.
This analysis result is testified by inspection result that broken stay cables have been found after the
earthquake. The proposed approach is a non-parametric damage detection strategy, in which a prior
information about the exact model of the suspension bridge is not needed. The proposed strategy has a
significant advantage when dealing with large-scale structures in real-word.

KEYWORDS: identification; earthquake vibration; health monitoring; neural network; suspension bridge;
incomplete measurement, damage detection

the vicinity of the damage is known a priori and that the
portion of the structure being inspected is readily
accessible. The need for quantitative global damage
detection methods that can be applied to complex

1. Introduction

Infrastructures are generally the most expensive assets
in any country. The major concerns in the operation of

in-service infrastructures are the reliability of the
structures and the cost associated with maintaining
reliability. But the infrastructures such as transportation
systems and civil structures (bridges, highways, railways,
tunnels, etc.) are deteriorating at an alarming rate. In
recent years, structural health monitoring for civil
infrastructures has been accepted as an evolving
technology to maintain operational availability and
productivity, reduce maintenance cost, and prevent
catastrophes. '

Structural health monitoring and damage detection are
extremely important research areas to keep our advanced
society functional and challenging topics that are under
vigorous investigations by numerous researchers using a
variety of analytical and experimental techniques. Most
of the current damage detection methods such as acoustic
or ultrasonic methods, magnetic field methods,
radiography, eddy-current methods and thermal field
methods are’ either’ visual or localized experimental
methods”. These experimental techniques require that

structures has led to research into structural identification
methods that examine changes in the vibration
characteristics of the structure. Some of these research
has been summarized in recent literatures>”. But, the
identification and damage detection for large-scale
suspension bridges with many uncertainties and
complexities in material property, geometry dimension
and boundary conditions, represents a difficult and
unique problem. Furthermore, former structural
identification procedures for damage detection and
structural monitoring have seldom been successfully
applied to civil engineering infrastructures such as
cable-supported bridges subjected to damaging seismic
events.

The dynamic response measurements of existing
civil structure under earthquake excitations provide
useful and economical information for identification or
damage detection. In this paper, a neural-network-based
damage detection approach with the direct use of actual
incomplete dynamic response measurements in time
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domain under earthquake is developed for a suspension
bridge. The incomplete dynamic measurements of the
suspension bridge under an earthquake are directly used
for the purpose of nonparametric identification and
damage detection for real-time damage existence or
occurrence alarm.

As a parallel distributed processing methodology,
neural network has been regarded as a potential method
for large-scale and complex dynamic systems with
adaptability. Neural-network-based identification and
control algorithms have attributes that make them
potentially effective in dealing with most of these
problems. Modeling dynamic systems by using neural
networks has been increasingly recognized as one of the
system identification paradigms. At present, several
neural networks with different structures have been

proposed to solve the identification and control problems.

The most widely used neural network is the feed forward
multi-layer neural network, which is trained by the
back-propagation algorithm. Numerous engineering
applications of neural networks have been reported in the
literature of recent years. The applications of neural
networks in the field of civil engineering were reviewed
by Ghaboussi et al., Chen et al., Smyth et al. and Xu et al
13 In order to deal with the scale problem of large-scale
structures, Wu et al. and Xu et al. explored a localized
and decentralized damage detection and parametric
identification methodology using dynamic response
measurements under small-scale earthquakes or dynamic
excitations, and carried out a feasibility study by
numerical simulations'>'®, Xu et al. proposed a health
monitoring strategy with the direct use of earthquake
responses which can be used to not only give qualitative
information about damage occurrence but also identify
the structural stiffness quantitative]y”). The feasibility
study shows that the proposed parametric identification
strategy using dynamic response in the time domain with
neural networks has the potential of being a practical tool
for health monitoring applied to civil engineering
structures.

Even though some identification methods for
large-scale structures, such as model reduction and
conventional approach of substructural method, have
been proposed, a neural network based nonparametric
identification and damage detection strategy with
incomplete dynamic responses in time domain is
introduced in this study.

A neural-network-based damage detection approach
with the direct use of actual incomplete dynamic
response measurements in time-domain under an
earthquake is developed for a suspension bridge is
presented in this paper. The incomplete dynamic
measurements of the suspension bridge under an
earthquake are directly used for the purpose of
nonparametric identification. The purpose of this study is
to construct a neural network model (nonparametric
model) for the bridge in the situation before earthquake
occurred, which can be used for the purpose of health
monitoring (alarm) system when damage exists, and
control system design in which an identification model is
necessary.

The first segment of the measurements before the

2. Problem Description

peak of the earthquake acceleration occurred are used for
the nonparametric identification for the bridge in health
condition, which is treated as a reference state, before
earthquake occurred. Two neural networks are
constructed and trained with the dynamic responses
before the peak of the earthquake acceleration occurred
to identify the transversal and vertical velocity at the
deck in middle of the main span of the Bridge. And the
two neural networks can be treated as nonparametric
models for the bridge in health condition before the
earthquake occurred. The suspension bridge has a very
great deal of degree of freedom and should be treated as
a large-scale and complex system. Part of the time series
of the velocity response at the deck in middle of the main
span, and the earthquake records are used to train the two
emulator neural networks by BP algorithms without the
support of the Finite Element Model of the bridge.

The performance of the trained emulator neural
network model for the suspension bridge is evaluated by
numerical simulation in which the forecast response from
the neural emulator is compared with the measurement
during different segments of the earthquake. The RRMS
error between the forecast responses and the
measurements in different stages are decided. Results
show that the RRMS errors corresponding to the
transversal and vertical velocity in the middle of the
main span have a variance in different segments. This
results means that possible damages occurred in some
structural members. This analysis result agrees with the
inspection results after the earthquake, broken stay
cables were found.

The proposed approach is a non-parametric system
identification method for damage detection, in which a
prior information about the exact model and Finite
Element Model are not needed, so it has significant
advantage when dealing with real-word situations where
the selection of a suitable parametric model for
identification is usually a demanding task. And the
proposed neural networks nonparametric model is can be
treated as a promising method for the design of the
control system for a suspension bridge for which the
modeling and control system design is difficult.

and Neural
Networks

2.1 Bridge Description and Vibration Measurements

Figure 1 gives the side-elevation of the suspension
bridge studied in this study. 1A and 4A anchorage and 2P
tower pier were constructed as spread foundation. 3P
tower pier was constructed as piled foundation. The
characteristics of this bridge are as follows:

(1) Narrow decked bridge: The ratio of span length
and girder width is about 1/40.

(2) Short and unbalanced side span length: side span
length differ each other because location of foundations
were decided by topological conditions. As the
countermeasure, 2 extra strands were placed at the side
span to use cable efficiently, and escape from cable slip
at the top of 3P tower.
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To ensure its structural integrity and operational
safety, the bridge has been equipped with a monitoring
system that includes instruments such as accelerometers,
velocity and displacement transducers, anemometers.
The transducer set-up is described in Table 1. In the table,
“V” means the dynamic response at the position was
measured. The available dynamic responses record in
time domain including velocity response at the deck in
the middle and 1/4 of the main span in longitudinal,
transverse and vertical direction, the acceleration
response at the top and in the middle of the tower in
transverse and longitudinal direction, and the
acceleration response at the basement of 3P pier and 4A
anchor were measured by the existing monitoring system
on the bridge. The sampling period was set to be 0.01
second, and 120 seconds of dynamic responses under an
earthquake was measured. It is clear that just very
limited earthquake responses were used. Part of the
observed dynamic responses are used to identification
the bridge structure.

2.2 Preprocessing of the Measurements

The response measurements were noise polluted, a
digital data preprocessing is carried out first for
identification by the following procedures:

(1) conveying the time-domain responses to
frequency-domain by FFT(Fast Fourier Transform);

(2) filtering the Fourier spectrum by a high-pass filter
of 0.05Hz;

(3) getting the time-domain responses by IFFT(Inverse
Fast Fourier Transform).

Figure 2 gives some of the acceleration response
results in transversal, longitudinal and vertical direction
of the 4A anchor. The peak of the transversal and vertical

component of the acceleration at 4A anchor occurred at
19.42 second, 17.93 second, respectively.

A nonparametric identification strategy for generating
the velocity response at the deck in the middle of the
main span by neural network using the incomplete
earthquake responses is proposed, and the proposed
strategy can be used for alarming system to detect
whether damage occurs or not.

Figure 3 gives the results of the observed velocity and
preprocessed measurement with high-pass filter both in
transversal direction and vertical direction at the deck in
the middle of the main span.

2.3 Emulator Neural Network

The emulator neural networks for the purpose of
forecasting the dynamic responses at the deck in the
middle of the main span of the suspension bridge can be
regarded as an identification problem for a complex and
unknown nonlinear system. In this study, two three-layer
neural networks called as emulator neural networks are
constructed and trained to identify the dynamics of the
bridge in the form of forecasting the velocity responses
in transversal and vertical direction at the deck in the
middle of the main span in a nonparametric manner.

The emulator neural networks designed in this study
are two typical three-layer back-propagation neural
networks with [ nodes in the input layer, m neurons
in the hidden layer and n neurons in the output.
Weights wy,; (h=1,m; i=1,1), w,, (0=1,n; h=1,m) are used
to represent the strength of connections of the neurons
between the input layer and the hidden layer, the hidden
layer and output layer respectively.

4A

Figure 1. Side-elevation of the suspension bridge

Table 1 Transducer Set-up

Accelerometer Velocity Transducer
Direction Transversal | Longitudinal |  Vertical Transversal | Longitudinal Vertical
Direction Direction Direction Direction Direction Direction
Deck in Middle of the main v v v
span
Deck in 1/4 of the main v v v
span
Posit- Top of 3P tower v v
ion Middle of the 3P tower v :
Top of the basement of 3P v v v
pier
4A anchor v v v

- 1151 -




—
-

Transversal

o
n

.
4
i

Acceleration(m/s2)
o

-1
-1.5

Time(s)
(a) Acceleration in transversal direction

1.5
g 1 | —Longiludinal_1
g os
o
2 0
S
2 .05 30 <Y
i |

-1.5

Time(s)
(b) Acceleration in longitudinal direction

L5
—_ Vertical
(u 1
£ 05
=]
£ 0
o
3 -0.5 1 ] 30 40 50,
§ .

-1.5

Time(s)

(c) Acceleration in vertical direction
Figure 2. Acceleration measurements at 4A anchor
The first type of operation of a three-layer neural

network is called as “feed forward”. In this operation the
output of a neuron i in layer N can be shown as,

=N
x=fE) 9
J
=N N.N-1_N-1 N
X; =2w,.j x; " —h (2)
1
=— 3
£ix) 1+e™ ©
where f(x) s an activation function, which is

dlfferentlable x, is the output of neuron j of layer
N-1; kY is the bias representing the threshold of the
activatnon function of neuron i of layer N, J is the
number of neurons in Layer N-1.

The second type of operation of the multi-layer neural
network is called as “error back-propagation”. The error
function F is defined as,

E=Ez(d:-xf)2 .

where d; x are the desired output and the output of the
i-th neuron in output layer respectively; i, p are the
number of output neurons of output layer and the total
number of patterns (examples) contained in the training
sets.
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Figure 3. Observed velocity and the pre-processed
measurement with high-pass filter at the deck in the
middle the main span

Usually, the widely used learning algorithm for
training neural networks is delta rule, which is based on
the gradient steepest decent method. In order to increase
the rate of learning and yet avoid the danger of instability,
a modified algorithm called the generalized delta rule is
used in this paper by including a momentum term, which
describe the relationship of the correction of weight
w;*"! between layer N-1 and layer N at iteration k+1
and it at iteration k as follows,

Aw.'.”"N'l (k+1)

=17¢5" M- l+aAwNN'1(k) )
dE
6 = &

: (6)

where Aw;"(k+1) and Aw; " (k) are the correction

applied to weight wy NN-Lat iteration k+1 and k; N is a
positive constant called the learning-rate parameter, and
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a is usually a positive value called the momentum
constant. In any event, care has to be exercised in the
selection of the learning-rate parameter. A small
learning-rate parameter lead to a slower rate of learning,
on the other hand, if we make the learning-rate parameter
too large, the learning procedure may become unstable.
In this paper, let 7 =0.8. Moreover, the momentum
constant must be restricted to the range 0| a|<1,
here let @=06 here.

The updated value of weight w,-jN'N'I at iteration k+1 is
computed as follows: '

wy "k +1)

=w; Y (k) + Awy Mk +1)

The neural network learning process is to adjust the

™

connection weights by repeatedly training thereby -

minimizing the error between the network output and the
desired target in the training set.

‘It is important to choose a proper network size for
identification problems, it is not a efficient method to
determine the best network size for a given system.
Usually, the size of a neural network can be decided
through a trial-and-error process. And the input and
output variables should be selected logically with the
consideration of physical meaning. '

3. Numerical Simulations on Nonparametric
Identification and Damage Detection

3.1 Construction of Emulator Neural Networks

In this study, two neural emulators are constructed to
identify the transversal velocity and the vertical velocity
of the deck in the middle of the main span of the
suspension bridge in health condition before the
earthquake occurred, respectively. It is reasonable that
damage did not occur during the first segment when the
earthquake acceleration was not great, therefore, part of
the dynamic responses measurements under the
earthquake before peak acceleration occurred are used to
identify the transversal velocity and the vertical velocity
at the deck in the middle of the main span of the
suspension bridge in health condition. The inputs for the
two emulator neural networks are selected from the
limited available information shown in Table 1. So, only
very limited incomplete earthquake responses on few
location of the suspension bridge are used for the
purpose of nonparametric identification.

The emulator neural network for the identification of
the transversal velocity (called as NN-T) at the deck in
the middle of the main span shown in Figure 4 is
constructed with a ten-neuron input layer, a thirty-neuron
hidden layer and a one-neuron output layer. The input
data of the ten neurons in the input layer are designated
to be the two consecutive transversal component of the
accelerations at the 4A anchor, the top of 3P tower and the
top of the basement of 3P pier, velocities at the deck in the
middle of the main span and the 1/4 main span, the
output of the network is the transversal component of the

" velocity of the deck in the middle of the main span the

bridge at the next time step.

A in
direction at 4A anchor, top of
the 3P tower and the top of the
basement of 3p pier at time
step Kand K+1 .

Velocities  in
transversal
direction at the
deck in  the
middle span at
time step K42

Velocities in  transversal
direction at the deck in the
middle span at time step K
and K+1

Velocities in  transversal
direction at the deck in 1/4 of
the span at time step K and
K+1

Figure 4. Architecture of emulator neural network for the
identification of the transversal velocity at the deck in the
middle of the main span

Neural emulator for the identification of the vertical
velocity (called as NN-V) at the deck in the middle of the
main span shown in Figure 5 is constructed with an
eight-neuron input layer, a twenty-four-neuron hidden
layer and a one-node output layer. The input data of the
eight neurons in the input layer are designated to be the
two consecutive vertical component of the accelerations
at the 4A anchor and the top of the basement of 3P pier,
velocities at the deck in the middle of the main span and
the 1/4 main span, the output of the network is the
vertical component of the velocity of the deck in the
middle of the main span the bridge at the next time step.

Accelerations  in  vertical
direction at 4A anchor and the
top of the basement of 3p pier

at time step K and K+1 Velocities  in

vertical
) direction  at
Velocities in vertical the deck in the

middle span at
time step K+2

direction at the deck in the
middle span at time step K
and K+1

Velocities in vertical direction
at the deck in 1/4 of the span
at time step K and K+1

8-24-1

Figure 5. Architecture of emulator neural network for the
identification of the vertical velocity at the deck in the
middle of the main span
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3.2 Training, Performance Evaluation of Emulator
Neural Networks and Damage Detection

Form the time series of acceleration measurements, it
is clear that the peak of the earthquake record in
transversal direction occurred at time of 19.42 second. In
order to train emulator neural network of NN-T, 1000
pairs of data sets taken from the dynamic responses from
8 second to 18 second are used. The NN-T neural
network is trained by the method of back-propagation
algorithm. The error function is calculated from the
difference between the outputs of the neural emulator
and the observed measurement. At the beginning of
training the emulator neural network, the weights are
initialized with small random values. The whole off-line
training process takes 10,000 cycles. Figure 6 gives the
result of comparison between the observed velocity
responses in transversal direction and those forecast by
the trained neural emulator from 8 second to 18 second.
It can be seen that the proposed neural network based
nonparametric identification can be carried out with high
accuracy. So this neural network model can be regarded
as a nonparametric mode] of the suspension bridge
before the earthquake occurred. And Figure 7 (a)-(f) give
the results of the comparison between the observed
velocity responses and those forecast by the trained
emulator neural emulator in different segments from 18
second to 78 second. It can be found that the error
between the observed velocity responses in transversal
direction and those forecast by the trained neural
emulator from 18 second to 78 second becomes greater.

Table 2 gives the errors between the observed and
the forecast velocity of transversal component, as
described by Wu et al. and Xu et al.'**?, a Relative Root
Mean Square(RRMS) error can be used as a useful index
for damage detection, it is clear that the light damage on
the stay rods of the bridge affect the velocity response in
transversal direction of the deck in the middle of the
main span. The maximum variance of RRMS error
reaches 9.4%. The variance of the RRMS error can be
treated as a symbol of the occurrence of damage.
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Figure 6. Comparison of velocity in transversal direction
at the deck in the middle of the main span

In order to train emulator neural network of NN-V,
1000 pairs of data sets taken from the dynamic responses
from 8 second to 18 second are used. Based on the error
back-propagation algorithm, the NN-V neural network is
off-line trained. Figure 8 gives the result of the
comparison between the observed velocity responses in
vertical direction and those forecast by the trained neural
emulator at the deck in the middle of the main span from
8 second to 18 second. It can be seen that proposed iden-
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tification strategy can be carried out with high accuracy.
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And Figure 9 (a)-(f) give the results of the comparison
between the observed velocities responses and those
forecast by the trained neural emulator at the deck in the
middle of the main span from 18 second to 28 second,
from 28 second to 38 second, from 38 second to 48
second, from 48 second to 58 second, from 58 second to
68 second, and 68 second to 78 second, respectively. It is
clear that the trained neural emulator cannot forecast the
velocity responses accurately during the period after 18
second. It can be explained the damage in the stay rods
affect the dynamic responses in vertical direction of the
deck greatly.

Table 2 Errors Between the Observed and Forecast
Velocity of Transversal Component

Durations | RMS Error RRMS Change of
(mm/s) Error(%) RRMS Error
8s-18s 0.76 18.1 -
18s-28s 4.24 19.8 9.4%
28s-38s 2.05 16.8 -7.2%
38s-48s 2.26 17.9 -1.1%
48s-58s 1.52 19.0 5.0%
58s-68s 1.38 17.4 3.9%
68s-78s 1.44 17.9 -1.1%
0.04
o002 — Observed Response
IO SRR Forecast Response
g o . _
> 0.04
-0.06

Time(s)

Figure 8. Comparison of velocity in vertical direction at
the deck in the middle of the main span

Table 3 gives the RRMS errors between the observed
measurements and the forecast velocities of vertical
component during different segments, it is clear that the
RRMS errors become greater. The RRMS error gives a
quantitative instruction that damage in the suspension
bridge is possible. The inspection after the earthquake
shows that damage in stay rods had been found. The
results of this study meet the inspection resulits.

On the other hand, light damage on the stay rods of the
bridge greatly affected the velocity response in vertical
direction of the deck in the middle of the main span. The
light damage in stay rods gives a maximum of 32.8% of
change in RRMS error corresponding to the velocity
responses in vertical direction. The damages in stay rods
affect the stiffness in vertical direction of the suspension
bridge greater that it affect the stiffness in transversal
direction. It is clear that the RRMS error corresponding
to suitably selected dynamic responses can be a sensitive
index for health monitoring of structure-unknown large
structure system.

4. Conclusions
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Figure 9. Comparison of velocity in vertical direction at
the deck in the middle of the main span
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Table 3 Errors Between the Observed and Forecast
Velocity of Vertical Component

Duration | RMS Error RRMS Change of
(mm/s) Error (%) | RRMS Error
8s-18s 1.32 13.4 -
18s-28s 4.03 14.9 11.2%
28s-38s 4.66 16.8 25.4%
38s-48s 3.67 16.8 25.4%
48s-58s 2.32 16.1 15.7%
585-68s 1.81 16.9 26.1%
68s-78s 1.72 17.8 32.8%

In this paper, a neural network based nonparametric
identification strategy with the direct use of incomplete
earthquake measurements for the health monitoring and
damage detection of a suspension bridge was proposed.
Two emulator neural networks were constructed to
identify the transversal and vertical component of the
velocity responses of the deck in the middle of the main
span under an ecarthquake excitation. Numerical
simulation results show that neural-network-based
nonparametric model can be used to forecast the velocity
responses with high accuracy even though very limited
responses are used. On the other hand, the proposed
strategy is not a mathematical model based method.
Simulations verify that the proposed method can be used
to detect the damage occurrence based on the evaluation
index of RRMS corresponding to suitably selected
dynamic responses. These characteristics of the neural
network model make it a potential strategy for damage
detection for health monitoring and control system
design for large-scale structures, for example, suspension
bridges. ‘

The proposed strategy can decide whether damage
occurred or not, and can be used for alarm system for
large-scale and structure unknown structures, but it
cannot give the answer of the position of the damaged
elements and the extent of the damage.
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