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Inverse Analysis to Determine Crack Bridging Stress in Fiber
Composites
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This paper develops a method to determine “bridging law” for continuously aligned
fiber composites to understand damage mechanisms from a maintenance engineering
point of view. Fracture mechanics approach has been employed to form the integral
equation for mathematical simulation of embedded straight cracks and single edge
cracks in specimens of infinite or finite width under tensile and bending stresses.
Closing pressure was assumed between the crack surfaces due to continuous fibers or
aggregates which remain connected to both the crack surfaces. Inverse analysis is
performed on crack opening displacement (COD) data to get magnitude and
distribution of bridging stresses for fiber composites. Synthetic data were created by
forward analysis for certain crack configurations to get exact COD data from a
theoretical point of view. To simulate practical situations, data were made noisy by
inserting noise of known levels. Exact bridging stress distributions were retrieved by
the inverse analysis up to certain level of noisy data which establishes applicability of
the method developed here.

Key Words: fiber composites, fracture mechanics, crack opening
displacement, inverse analysis, crack bridging stress.

cracks developed in the matrix while the fibers
1. Introduction remain intact supplying sufficient closing pressures
' and arresting crack propagation. Bridging stresses
between the crack surfaces develop from
continuous fibers or individual grains which remain
connected with both the crack surfaces after the
crack has been propagated for a sufficient distance
from an initial notch or due to indentation. If the
dimensions of those fibers/grains are small enough
compared with the crack geometry, bridging
stresses can be considered as a uniform closing
pressure between the crack surfaces. These bridging
tractions can be expressed mathematically as a
function of distance along the crack for most of the
brittle-matrix composites. Under monotonic loading,
bridging tractions can also be expressed as a
function of COD. In fatigue analysis, bridging
stresses can be expressed with COD if appropriate
mathematical modeling is done for the processes
involved e.g. interfacial debonding, interfacial
Tensile capacity of low strength brittle materials  sliding, matrix microcracking and  plastic
can be greatly improved with high strength ductile fiber deformations.
inclusion into the brittle matrix. These types of
composites can sustain large strains before failure with

Fiber composites have got extensive role in
maintenance engineering in recent years for repair and
retrofit in concrete structures. Determination of capacity
of those materials at service is an important task to
assess sustainability and durability of maintenance work.
Traditionally, non-destructive testing and evaluation
(NDT&E) methods have been employed for this
purpose where "the techniques incorporate their own
disadvantages and/or limitations. This paper focuses on
that issue from a different point of view. Mechanics of
fiber composites is studied here with a view to
determine the “bridging law” for composites where
ductile fibers are continuously aligned in a brittle matrix.
While estimating necessity and designing the extent of
maintenance work, such bridging law helps engineers to
analyze the structure by fracture mechanics.
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Ductile inclusion into brittle matrix can be done
either by distributing fibers randomly in the matrix
forming discontinuous fiber reinforced composites
(DFRC) or by continuously aligning (CA) the fibers in a
row; each method leading to different bridging laws.
Detailed theoretical prediction and design model for
DFRC’s are available in [1] where mechanics of CA
brittle-matrix composites can be found in [2-5]. Similar
approach (a stepped inverse analysis) was adopted in [8]
where a poly-linear tension softening diagram was
analyzed on the cohesive force model to determine
fracture parameters of plain concrete. This paper
addresses to CA brittle-matrix composites with the
mechanics derived from [2] and [3]. Inverse analysis is
performed here to determine crack bridging stresses
from the COD data. Susceptibility of COD -data to
different noise levels was tested and it is recommended
to reduce noise level as much as possible to get better
results.

Two types of specimens of brittle matrix
composites have been considered in this paper e.g.
embedded straight crack specimen (centrally cracked)
and single edge cracked specimen. Analyses were
performed firstly for infinite width of these specimens
under remotely applied uniform tensile stresses.
Secondly, single edge cracked specimens under bending
stresses are analyzed for finite width to prove the
applicability of the model for bending analysis as well.
Other crack specimens (double edge crack, compact
tension specimens etc.) can also be analyzed similarly
with this method. During the solution process, it is
assumed that bridging is the only active toughening
mechanism and the other sources e.g. stress-strain
hysteresis due to microcracking ahead of the crack tip
and effect of T-stresses are neglected.

Fig. l1a: Schematic representation of a CA
brittle-matrix composite

Bridging stresses in CA brittle-matrix composites
can be simulated considering elongation of fiber against
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its elastic strength and fiber pull-out against friction
between fiber- matrix interfaces (chemical bond
between matrix and fiber has been neglected here).
This can be started with a single-fiber pull-out
analysis. It was shown in [4] that the applied stress
in a single fiber pull-out test is proportional to the
square-root of the fiber pull-out length which can
be depicted as in Fig. 1b, where Fig. la shows a
cracked CA brittle-matrix composite where fibers
are bridging crack extension

A
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u

Fig. 1b: Single fiber pull-out stress (p) vs. pull-
out distance (1).

However, two main regions of behavior have
been identified for CA brittle-matrix composites in
which bridging stresses are determined by frictional
sliding between the fibers and the matrix and the
fibers possess a single valued strength. Firstly,
fibers are sufficiently strong and continue to bridge
the matrix cracks even when it extends completely
through the matrix leading to multiple matrix
cracking and non-catastrophic failure. This
situation is calied fully bridged cracks and they
continue to bridge the cracks until the fiber ultimate
strength is reached. Secondly, if the fibers are not
that much strong compared to the applied load, they
break in the crack-wake leaving only a small
portion of bridged zone just behind the crack tip.
This leads to catastrophic failure, although bridging
zone is an important source of toughening. In this
paper, both catastrophic and non-catastrophic
failure modes are taken into consideration and it is
shown that it can be classified from the inverse
analysis results. In this regard, fiber strengths are
considered to be random in a statistical point of
view and assumed to fall according to a Weibull
distribution of modulus w. It is shown in [5] that
the bridging stress and COD relation can be
approximated by the following equation which is
shown in Fig. 2 for different values of shape
parameter .
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Fig. 2: Fiber bridging stresses (p) vs. pull-out
distance (4) for fibers with strengths given by
Weibull distribution with different values of shape
parameter u.

2. - Crack analysis

Cracks in CA brittle-matrix composites can be
formulated by the following equation [2]

u(x) = %f{{c(r s,wio, (t)- p[ﬁ(t )]dt}}
.G(x,s, wds )

where 2a is the crack length for embedded straight'

cracks and a is the same for single edge cracks, w is one
or ‘more specimen dimension e.g. ‘width, o,(x) is the

stress that would exist on the fracture plane in the -

absence of the crack, E' is a combination of elastic
constants, which depends on whether the crack' is on
plane stress or plain strain and whether the material is
isotropic or orthotropic and G is a weight function
which depends on the crack geometry only. Standard
forms of G for a ldarge number of crack configurations
can be found in the handbooks of crack analysis e.g. [6].
However, this paper dealt with embedded straight
cracks and single edge cracks in an infinite specimen for
- which G has the form [6] '

1 hl(fc/a,a/w)

\/;(l—leaz)m @

G(x,tf,w)=
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where h,(x/ a,a/w)=1 , for straight embedded
cracks and h](x/ a,a/w) for single edge cracks is

given in the appendix. In Eq. (2), ¢, s stand for
coordinates along the crack.

The problem solved here is mathematical
inversion of Eq. (2) for known crack configurations
and known external stresses. Experimental COD
data will be exploited for inverse analysis. However,
as experimental data are always prone to noise,
regularization technique is needed to get good
analytical approximation of bridging stresses. For
the present purpose, Tikhonov method of
regularization [7] ‘has been called upon to treat
noisy - data.  Applicability of  Tikhonov
regularization to this type of composite bridging
stress evaluation has been proven successful in [2].

3. Formulation

Numerical inversion of Eq. (2) means p[u(x)]
be determined when u(x) is known. For this reason,
p(u) is, at first, expanded in a set of basis functions
as

n

p(u)=2;a,-ﬂ(u) | )

where n should be restricted to finite order. In this
study, n=10, is found to be  adequate for
mathematical approximation or sometimes the
difference becomes negligible after n=8. However,
larger values of n lead to mathematical instability

__and abnormally long time for solution with standard

packages. ~As for basis functions, Legendre

“polynomials have been chosen here. Once basis
- functions are fixed, the solution requires only
‘finding out a’s. S

Let us .assume that we are given with
experimental data as

ij,uj},nj=l, ........ ,m_l ' .(,5)

with which a function & (x) can be formed by
interpolating amongst them. The collected data and
interpolation should be such that errors near the
crack tip are minimized. This can easily be done by

- taking more data points near the crack tip and

interpolating the function as f(xNa? - x? . If Eq.
(4) is substituted into Eq. (2) and appropriate
weight functions are used from Eq. (3), we shall be
left with a system

Aa=b ®



Where

A""=Ei[f Glt,s,w)f;[ult) }it} o

%0
G(x,. »8, w}ls

4
j=E[fGtsw)a )dt} ®

G(x,. ,s,w}ls

If data were noiseless, it would enough to solve Eq.
(6) for a’s. But, as experimental data will always
contain some levels of noise, Tikhonov’s regularization
has been employed here where one seeks to minimize
the following functional

7, =fale,)-w| + ol ©)

where the norms are defined in the following ways.

It 2{4 (10)

“ld* plu)
= (122%),
] deuk

Stationary condition of (9) with respect to the
variation of a’s leads to the following n dimensional
system

(11)

®+pTa=Q (12)

__ where
P=ATA a3)
Q=A" . (14)

T is derived'ftom Eq. (11) by replacing p(u) f;bni Eq. (4)
and it was found that the elements of this n xn matrix are

T- [ffd . G9)

for k = 0. Different values of k& do not largely change
the results which have been checked here. The optimal
choice for the parameter § is such that the correct value
"of B will yield the root mean square deviation of the

model from the data equal to the square of experimental
noise level.
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4, Specimens of infinite width

4.1 Embedded straight cracks

No experiment was performed within this
course of research, so synthetic data were created
by forward analysis of Eq. (2) with an assumption
of p(u) from Eq. (1). Detailed description of the

methods of forward analysis can be found in [3]
and [4] where similar integral equations have been
solved to determine crack opening displacements
with known functions of bridging stresses. The
results from forward analysis for an embedded
straight crack are shown in Fig. 3 for different
external stress levels, normalized as S =0, /fZ,

where f is the volume fraction of ductile fiber in the
composite and X is a parameter related to the

" average stress in the fibers when they break.
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Fig. 3: COD (U) vs. dis}t(ance along the crack
(X) for an embedded straight crack in an
infinite width specimen. The solid curves
show the self-consistent forward analysis
solutions after a sufficient number of
iterations where the dashed curves show the
profile that would exist in absence of
bridging. '

- In Fig. 3, crack opening displacements have
been normalized as U =u /u, with

_ZRQ-fE, 16)
" 4 E

where R is the radius of the fiber, E,, ,E are the
Young’s moduli of the matrix and the fiber, E is
the same for composite and 7 the interfacial shear
strength between the matrix and the fiber. Distance
along the crack has been normalized as X =x/a .



Data points were collected from Fig. 3 'to use as
input into inverse analysis. Random numbers, created
with Gaussian distribution of zero mean and @ width
are added to these data to simulate practical noisy
situation. Inverse analysis was performed on these noisy

data by minimizing the Tikhonov’s functional in Eq. (9).

The results from inverse analyses for the uppermost
solid line in Fig. 3 are shown in Fig. 4a for different
levels of simulated neise indicated in the figure. Here C
stands for normalized crack length'as C =a/c,

nZR(1- f)E,
16;122,11-#)

Compared with Fig. 2 it is noticed that the tail of the
curve is retrieved with acceptable accuracy whereas the
rising limb has been retrieved poorly. For this reason,
this portion has been evaluated independently in Fig. 4b
for load parameter S=1 and same geometry where
bridging stress boundary is up to COD parameter 0.8. It
is noticed that higher noise levels lose accuracy. So it is
recommended to reduce experimental noise level as
much as possible.

where ¢, =

(7
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Fig. 4a: Comparison of estimates of crack
bridging stresses with different levels of noise -
width = 0.001, 0.01, 0.05 for S=2 and C=1 for
embedded cracks in a specimen of infinite width.
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Fig. 4b: Comparison of estimates of crack
bridging stresses with different levels of noise
width w = 0.001, 0.01, 0.05 for S=1 and C=1 for
embedded cracks in a specimen of infinite width.

4.2 Single edge cracks

Analyses for a single edge cracked specimen of
infinite width under uniform tensile stresses are
‘almost identical to those of embedded cracks solved
earlier. Only different weight function given is the
appendix is needed to use in the integral equation
witha /w — 0 for infinite width. Forward analyses
results for this case are shown in Fig. 5 for different
external load levels.

0 02 04 0.6 08 1 12

X

Fig. 5: COD (U) vs. distance along the crack
(X) for single edge cracked specimens of
infinite width. The solid curves show the
self-consistent forward analysis solutions
where the dashed curves show the profile
that would exist in absence of bridging.

Data points, collected from Fig. 5, have been
made noisy in a similar way. The inverse analyses
results for external load parameter S=2 are shown
in Fig. 6a and for S = 1 in Fig. 6b to get better
estimation of the rising part before peak.

0.6

. \ ""’

1 2y 3 4
Fig. 6a: Comparison of estimates of crack -
bridging stresses with different levels of
_noise width w = 0.001, 0.01, 0.05 for §=2
and C=1 for single edge cracks in a
specimen of infinite width.
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Fig. 6b: Comparison of estimates of crack
bridging stresses with different levels of noise
width w = 0.001, 0.01, 0.05 for S=1 and C=1 for
single edge cracks in a specimen of infinite width

5.  Specimens of finite width

Single edge cracked specimens of finite width
under bending stresses are of practical interest from a
civil engineering point of view. Such a specimen under
bending stress at the edges of width w with a crack at
the middle on its bottom face is shown in Fig. 7, which
practically can be either under pure bending or under
four-point loading. Modeling of such specimen is also
possible with similar integral equation and similar
procedure can be followed to solve forward and inverse
problems described in the previous sections. The only
difference will be in the applied tensile stresses which is
now a function of the distance along the crack. This
specimen can also be modeled with the same weight
functions for single edge cracked specimen given in the
appendix, with the exception that it will be a function of
crack length .(a), distance along the crack (x) and
specimen width (w) as well. However, this weight
function and- linear distribution of stresses along the
edges of the specimen make the integration scheme
more complicated and.time consuming.

A

o o

Fig. 7: Single edge cracked specimen of finite
width w acted upon by bending stresses at the
edges. ’

In a similar way, synthetic data were created by
solving the forward problem to perform inverse analysis.
Data were made noisy as usual. The results of the
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inverse analyses are shown in Fig. 8a and Fig. 8b.
The profile of Eq. (1) is retrieved satisfactorily
again.
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Fig. 8a: Comparison of estimates of crack
bridging stresses with different levels of
noise width w = 0.001, 0.01, 0.05 for S$=2
and C=1 for single edge cracks in a
specimen of finite width under bending
stresses.
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Fig. 8b: Comparison of estimates of crack
bridging stresses with different levels of
noise width w = 0.001, 0.01, 0.05 for S=1
and C=1 for single edge cracks in a
specimen of finite width under bending
stresses.

‘6. Fully bridged and partially

bridged cracks

One of the interesting features of the inverse
analysis is that one can perform the same procedure
to determine bridging stress as a function of the
distance along the crack (x) in Fig. 7. To do this,
one has just to expand the bridging stress with the

basis functions (Legendre polynomials in Eq. (4) as

functions of distance along the crack. If bridging
stresses are supposed to be discontinuous like what
in reinforced concrete or fiber composites with
discrete bridging ligaments, f; (x)can be chosen as

a piecewise constant or piecewise linear
approximation. Inverse analysis can be performed
in a same way. The results of such analyses are
shown in Fig. 9a for single edge cracked specimen



under tensile stress and in Fig. 9b for the same specimen
under bending stresses but under different magnitude of
load level. '

It is clearly noticed in Fig. 9b that bridging is
significant only near the crack tip and almost equal to
zero elsewhere, which indicates that this crack is
partially bridged. These types of cracks propagate in a
catastrophic way with fibers broken in most parts of the
crack only except a small portion behind the crack tip.
But, this situation generally does not occur at service
condition for most of structures. Structural damage is
initiated with the failure of brittle matrix with cracks
propagating in a fully bridged situation in which case,
the variations of bridging stresses along the distance of
the crack are shown Fig. 9a. It is clearly noticed that
bridging is more or less uniform along the entire crack

“length and significant everywhere, which obviously
indicates a fully bridged situation. So, it can be
concluded from these analyses that catastrophic and
non-catastrophic  failure modes can. be easily
characterized if inverse analysis is done on the crack
opening profile with applied stress. Using fully-bridged
cracks’ solutions for structures in service, allowable
service load can be determined.

0.2 -0.4 0.6 0.8 1

Fig.- 9a: Comparison of estimates of crack
bridging stresses (P(U)) along the distance of the
crack (X) with different levels of noise width w =
0.001, 0.01, 0.05 for §=0.75 and. C=1 for fully-
bridged, single edge cracked specimen:of infinite
width under tensile stress. »
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Fig. 9b: Compariséh of estimates of crack
bridging stresses (P(U)) along distance of the
crack (X) for different levels of noise width
w = 0.001, 0.01, 0.05 for S=2 and C=1 for
-partially-bridged, single edge cracks of finite
width specimen under bending stress.

7. .Data from ngeral fully bridged
cracks

It has been noticed in the inverse analyses
solutions that the bridging profiles become more
and more approximate if the noise level increases.
So, it may be quite difficult to get exact bridging
law with practical COD data. However, data from
several cracks can be utilized to minimize the errors
from individual crack profiles. Several cracks under
different stresses can be analyzed simultaneously.to
get the bridging stresses with respect to crack
opening displacements. Cracks under different
magnitude of stresses should not generally be of
same length, so different lengths are used under
different loadings. The relation between crack
lengths. with different loadings’ has been
demonstrated in [3]. In this study, an embedded
crack under uniform remote tensile stress was
analyzed with external load parameters § =1, 0.75
and 0.5 with crack length parameter'C = 1,.0.9 and
0.4. The results are shown in Fig. 10 for different
noise levels. It is found that the bridging profile is .
quite improved with such analyses. In Fig. 10, only
the rising limb is shown for two reasons. Firstly, it
was found in single crack analysis that falling limb
can be more dccurately retrieved than the rising
limb and secondly, we are interested about the
rising portion of bridging law where the cracks
sustain fully-bridged conditions because, the
ultimate goal of the current project is to work on
existing structures which does not generally go
through catastrophic failures. ‘
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Fig. 10: Utili[z]ing data from several fully
bridged cracks of § = 1, 0.75 and 0.5 with
different levels of noise width @ = 0.001, 0.01,
0.05 for an embedded crack specimen under
uniform tensile stress.

8. Conclusions

Inverse analyses have been performed on COD data
to get bridging laws of brittle-matrix composites. The
same procedure has been successfully followed to get
variation of crack bridging stresses with distance along
the crack. If collected data are within sufficient levels of
noise, the accurate bridging profile can be estimated
with the procedure described in this paper. However,
estimating bridging stress for small COD is quite
difficult as the rising portion of the retrieved bridging
law is more sensitive than the other part. Again,
measuring COD near the crack tip is complicated task
from an experimental point of view. So, data from
several cracks with different cracks lengths and
different applied loads should be utilized to get bridging
stresses for those values of COD. It is proven in this
paper that this method works very well for embedded
cracks and single edge cracks with tensile and bending
stresses. However, it should work identically for other
cases, e.g. double edge cracked and compact tension
specimens with finite or infinite width and under tensile
or bending stresses.
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Appendix
Weight function for single edged cracked specimen

is expressed with the help of following
h, (x/a,a /w) function as

g(x/a,a/w)

h,(x/a,a/w)= (1_a/w)3/2

(A1)

where g(x/a,a/w) = g(r,s) is given by

glr.s)=8,(s)+ re,(s)+ rig;(s)+ re.(s) (A-2)

8 (s) =0.46+3.065 +0.84(1-5)° +0.66s* (1- s)Z
(A-3)

(A-4)
g,(s)=6.17-28.225 +34.54s> -14.395* - (1-s)*"

-5.88(1-s) -2.6452(1-5s)
(A-5)

gals) = -6.63+25.165 -31.04s* +14.415> + 21 - s}
-5.04(1-5) +1.98s*(1-s)

(A-6)
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