Journal of Applied Mechanics Vol. 6, pp. 531-540 (August 2003) JSCE

Extended gradient plasticity
by the subloading surface model with tangential plasticity

Koichi HASHIGUCHI*, Mehdi KHOJASTEHPOUR** and Saichi SAKAJO***

* Dr. Eng and Dr. Agr., Professor, Dept. Prod. Environment. Sci., Kyushu University,

Hakozaki, Higashi-ku, Fukuoka 812-8581
** M. Agr., Dept. Prod. Environment. Sci., Kyushu University,
Hakozaki, Higashi-ku, Fukuoka 812-8581 _
*** Dr. Eng., Appl. Inform. Sci. Dept., Kiso-jiban Consultants Co. Ltd.,
Kudan-kita 1-11-5, Chiyoda-ku, Tokyo 102-8220

Abstract - The most useful non-local constitutive equation for the analysis of
localized plastic deformation would be the gradient plastic constitutive equa-
tion proposed by Aifantis™ ?. However, it involves the gradient of internal
variable and thus the treatment of it at the boundary is difficult. Then, it has
been modified mathematically by Vardoulakis®® transforming it to the rela-
tionship between the stress rate and the strain rate with its gradient, and thus
the analysis of the boundary value problem has been simplified drastically. In
this article the generalized formulation of the gradient plasticity is first given
by incorporating the general gradient terms of internal variables. Then, it is
extended to the unconventional p]asticity6) by incorporating the subloading
surface model”'?. Moreover, it is extended so as to be applicable to the de-
scription of plastic instability phenomena by incorporating the tangential plas-
tic strain rate''"'?). Besides, the equation for the analysis of shear band thick-
ness in the post-localized deformation is given based on the present constitu-
tive model.
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1. Introduction

A non-local constitutive equation involving a
characteristic length has to be adopted in order to pre-
dict the localized deformation appropriately. The most
useful non-local constitutive equation for the analysis
of plastic deformation inducing a localization seems to

be the gradient plasticity advocated by Aifantis™ 2

extending the yield condition so as to depend not only
on the internal variable but also on its gradient in order
to take the state of internal structure in the surrounding
region into account. However, the constitutive equa-
tion involves the gradient of internal variable itself and
thus this fact leads to the difficulty in its treatment at
the boundary of materials. Then, this approach was

modified mathematically by Vardoulakis®® trans-
forming the constitutive equation to the relationship
between the stress rate and the strain rate with its gra-
dient, and thus the analysis of the boundary value
problem has been simplified drastically. However, it
involves only the second-order gradient term of a sin-
gle isotropic hardening variable is incorporated. Fur-
ther, it falls within the conventional plasticityG) prem-
ising that the interior of the yield surface is a purely
elastic domain and thus it cannot predict a plastic de-
formation due to the change of stress inside the yield
surface. In addition, it cannot predict the inelastic
strain rate due to the stress rate component tangential
to the yield surface, which is of importance in the
analysis of plastic instability phenomena.
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In this article the generalized formulation of the
gradient plasticity in the Vardoulakis®™> form is first
given by incorporating the general gradient terms of
internal variables. Then, it is extended to the uncon-
ventional plasticity by incorporating the subloading
surface model™'®. Further, it is extended so as to be
applicable to plastic instability phenomena by incor-
porating the tangential plastic strain rate induced by
the stress rate component tangential to the subloading
surface'V1¥, Besides, the mathematical formulation
for the analysis of shear band thickness in
post-localized deformation for the plane strain biaxial
stretching under a constant volume is given based on
the present constitutive model.

2. Constitutive Equation

In this section the subloading surface model with
tangential stress rate effect will be extended so as to
involve the gradient terms.

Denoting the current position vector and the veloc-
ity of material particle as X and v, the velocity
gradient is described as L = 0v/0Xx by which the
strain rate and the continuum spin are defined as D
(=(L+L")/2)and W (=(L —L")/2), respectively,
O)F standing for the transpose. Let the strain rate D
be additively decomposed into the elasttc strain rate
D® and the inelastic strainrate D',

D=D°+ D" ,
is given by

D°=E"'e @)

6 is the Cauchy stress and (°) indicates the proper
corotational rate with the objectivity and the
fourth-order tensor E is the elastic modulus. Further,
let the inelastic strain rate D’ be additively decom-
posed into the plastnc strain rate D” and the tangential
strainrate D',

Q)]
where D¢

D' =D’ + D'

(3)
provided that D? and D’ are induced by the stress

rate component normal and tangential, respectively, to

the yield and/or loading surface.
Let the following yield condition be assumed.

f(o,H) =F(H), O

where the scalar H and the second-order tensor H
are the isotropic and the anisotropic hardening vari-
ables, respectively. The function f is assumed to be

homogeneous of degree one in the stress & . Then, if

H = const., the yield surface keeps a similar shape.
Drucker' defined the unconventional plasticity as

the extended plasticity such that the interior of the
yield surface is not a purely elastic domain but a plas-
tic deformation is induced by the rate of stress inside
the yield surface. The most appropriate model falling
within the framework of the unconventional plasticity
would be the subloading surface model™"?,

In the subloading surface model the conventional
yield surface is renamed as the normal-yield surface,
since its interior is not regarded as a purely elastic
domain. Then, let the subloading surface be intro-
duced, which always passes through the current stress
point @ and also keeps the shape similar to the nor-
mal-yield surface and the orientation of similarity. The
similarity and the orientation of similarity of surfaces
possess the following geometrical properties.

i) All lines conneéting an arbitrary point on or within
the subloading surface and its conjugate point on
or within the normal-yield surface join at the spe-
cific point called the similarity-center.

ii ) All ratios of the length of an arbitrary line-element
connecting two points on or inside the subloading
surface and that of an arbitrary conjugate
line-element connecting two conjugate points on or
inside the normal-yield surface are identical. The
ratio is called the similarity-ratio which coincides
with the ratio of the sizes of these surfaces.

Let the similarity-ratio of the subloading surface

" to the normal-yield surface be specifically called the

normal-yield ratio, and let it be denoted by R, where
R=0 corresponds to the null stress state,
0 < R<1 to the subyield state, R =1 to the nor-
mal-yield state in which the stress lies on the nor-
mal-yield surface. Therefore, the normal-yield ratio
R plays the role of the three-dimensional measure of

L N

Subloading surface
Nommal-yield surface

Fig. 1. Normal-yield and subloading surfaces.
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the degree of approach to the normal-yield state.
Then, the subloading surface is described as

f(e,H) =RF(H), )

The normal-yield and the subloading surfaces are il-
lustrated in Fig. 1, where 6, (= 6/R) is the conju-
gate stress on the normal-yield surface at which the
normalized outward-normal N is same as that at the
current stress 6 on the subloading surface.

Eq. (5) is extended to the non-local subloading
surface assuming that the variables evolving by the
plastic deformation are non-local depending not only
on the current point but also on a certain neighboring
region as follows:

f(o,(HY) =(RF(H)), )

where () designates the averaging value in an ap-
propriate surrounding region. The averaging can be
given by

(>=Vell, ™

where ‘
Ve =1+ gV4+d Vit (8)

C,, C4, »++ are the material constants depending on
the characteristic (internal) length. Then, Eq. (6) can
be written as

f(o, Vg[H]) =Vg [RF(H)].
The material-time derivative of Eq. (9) is given as

r { of (6, Vg[H]) &} tr { &f (6,Vg [H])
o6 Vg [H]

€))

v, [H]}

Fig. 2. The function U in the evolution rule
of the normal-yield ratio R.

=Vg[1.€F+Rl.7], (10)

where (°) stands for the material-time derivative.

As observed in experiments, the stress asymptoti-
cally approaches the normal-yield surface in the plas-
tic loading process D” # 0. Thus, the following
evolution equation of the normal-yield ratio R is as-
sumed.

R =U|p?| forp? 20, (D

where U is a monotonically decreasing function of
the normal-yield ratio R, fulfilling (see Fig. 2)

_ oo for R =0,
0 for R=1,
U<0 for R>1).

(12)

Let the function U satisfying Eq. (12) be simply
given by B

U=-ulnR, (13)

where u is the material constant.

The substitution of Eq. (11) into Eq. (10) leads to
the consistency condition extended to the subloading
surface:

tr{ﬂ%@g}m{w

Ve [H] Vg [H]}

=VelU|p?|F+RF f], (9
where
dF
F'=—. 15
T (15)
Adopt the associated flow rule
D? =N, (16)

where A is the positive proportionality factor and

- 3f(o, H) /|of (o, H) o
N= Y /" &) (Nj=. q7)

The substitution of Eq. (16) into Eq. (14) leads to

9f (0, Vg[H]) o & (o, Vg [H])
tr{————-.ac ‘ o}ftr{—————avg = Velih]}
=Vg[UAF+RF'2R],  (18)

where 4 and -h are functions of stress, plastic in-
ternal state variables and N of homogeneous degree

® o
one, while these functions are related to H and H
as

(19)

=

i
i

=

il
-3
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In the enough approximation Eq. (18) reduces to

tr{af%H—)&} +tr{ QL%“I’I—H) hve [A]}

=(UF+RF'W)Vg[A] (20
from which one has
1o [tr(Nc)] 1)
g
where
' a O, H U
M2 ={ Gh-gpte( f( )“)J’f}“(N")
(22)

by use of the following relation based on Euler’s
theorem for a homogeneous function.

o (6,H)
¥ (©.H) 1 (@H). tf(———a(, ©) N
66 | oe | tr(No)
_Jf(o,H) RF
"~ tr(No) N= tr(Nc)N (23)

The positive proportionality factor A in Eq. (21)
can be approximated as

1=5 [tr(No)] _tr(Nvge) )
MP
where
Ve =1-gVi-gVi-..., (25)

Then, the plastic strain rate is given from Egs. (16)
and (24) as

__[tr(No)] tr(NVgc)

(26)

Further, modifying the tangential strain rate pro-
posed by Hashiguchi'or Hashiguchi and Tsutsumi'?,

the tangential plastic strain rate was given by Hashi-
13)

guchi™ as follows:
t 1 -l°*
D' = TE @7
where
é; =0¢"-6,, &, =tr(n'é)n’, (28
v ()Y /” .=
=3¢ ) ( ||N‘|| (Io*f=1)
(29)
T=2_

Ra (30)

a is a material constant and £ is a material function of

n*\

Deviatoric
stress plane

2p)

Subloading surface

Fig. 3. The deviatoric tangential stress rate é:'
illustrated in the principal stress space.

stress and plastic internal variables in general. ( )*
designates a deviatoric component. n* is the nor-
malized-deviatoric outward-normal tensor of the
subloading surface, respectively. The stress rate G is
called the deviatoric-tangential stress rate fulfilling
tr(NG67)=0, tré; =0. (1)
The deviatoric-tangential stress rate 67 is directed
toward the tangential line of the closed curve formed
by the intersection of the subloading surface and the
deviatoric stress plane as illustrated in Fig, 3.

The tangential strain rate would not influence on
the hardening of materials and thus it is assumed that
the tangential strain rate is the local variable inde-
pendent of the neighboring region. Then, the strain
rate is given from Eqgs. (1), (2), (3), (26) and (27) as

D-g"¢+ L [ENO|N, Lg-ig:
Vet MP 4T

tr(NVg 8\

=E'o+ E—l 5; (2
T
From Eq. (32) one has
tr(N G)
tr(NED) = tr(Nc)+tr(NEN) [ ]
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= {M"Vg +t(NEN)} o~ ! [tr(N “)]
from which one has

1 [tr(N 6)] 1
MPVg +tr(NEN)
1

CAETAMNTD)

[tr(NED)]

MP
+
MP? +tr(NEN)

[ tr(NED) ]
M? +tr(NEN)

AL TAMTEDY:
[ tr(NED) ]
M? +t1(NEN)"’

Then, the positive proportionality factor A, rewriting
it in terms of strain rate as A, is expressed as

~

={- MP +t (NEN)

=1 tr(NED) ]= ti(NEV g D)
Vig “M? +tr(NEN)"  M?” +tr(NEN)
(33)
where
va ~
_ =11V, (34)
va
V=9(EV?+3Vis..y), (35)
M . (36)
M? +1r(NEN)
The loadmg criterion is given as follows' '
D? # 0 A>0,
(37
D?=0: A<0

in terms of the strain rate.
It holds from Egs. (32) and (33) that

tr(NED) ]N_lg;.@s)
M? +tr(NEN) T -
On the other hand, it is obtained from Egs. (28) and

(38) that
[ {ED

1 [ tr(NED)
e M”+tr(NEN)]N}]

The substitution of Eq. (39) into Eq. (38) leads to

EDEI[

* O

n*. (39)

1 r(NED)

=ED-E_ 1 [ IN
M? +tx(NEN)" .

+ ltr[n’“{ED
T

[ tr(NED) ] }] o*
MP +tr(NEN)

(40)
On the other hand, it holds from Eq. (38) that

tr(NED)
{tr(ED) Y NEN)]tr(EN)
(41)

The substitution of Eq. (41) into Eq. (40) leads to

G = 7 {TED + —t r(ED)I+ tr(n ED)n*

1 tr(NED)
Vg ~“M? +tr(NEN)

JizeN + L@

Hr(WEN)n} | 42)

which is approximated as

=117 [TED +—-t r(ED)I+ tr(n*ED)n*

_ tx(NE¥yD) »
M? + tr(NEN) TEN + 3 trEN) 1

+tr(n"EN) n*}] . 43)

" Eq. (43) can be rewritten as
6=C¥D,

where the fourth-order tensor C%* is the elastoplas-
tic-tangential modulus given by

éept = Cept + Cpt@

(44)

@5)
with
TE+I®E+0*® @'E)
1+T
{TEN + S tr®N) I + tr("EN)n*} ® (NE)
(1+T){M” +tr(NEN)} '

Cepl _ C pt

(46)

Cr =

47
where Ekl = Errkl .
Further, let the Zaremba-Jaumann rate be used for
the corotational rate of the stress 6 and the sec-
ond-order tensor variable H, i.e.

O=.—W +
6=6-Wo+oW, 48)

H=H-WH+HW|

The plastic strain rate (26) is obtained by substi-
tuting the associated flow rule (16) into the consis-
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tency condition (14) which is obtained by incorpo-
rating the evolution rule (11) of the normal-yield ratio
R into the time-differentiation (10) of Eq. (6) for the
subloading surface with the gradients of internal vari-
ables. Then, the plastic loading process develops
gradually as the stress approaches the normal-yield

surface, exhibiting a smooth elastic-plastic transition.

Thus, the subloading surface model fulfills the
smoothness condition™'® defined as “the stress
rate-strain rate relation (or the stiffness tensor)
changes continuously for a continuous change of stress
state”. This can be expressed mathematically as fol-
lows:

d6(c +90, S;, D) _ 36(a, S;, D)
oD oD

where S; (i=1, 2, 3, ***, m) denotes collectively
scalar- or tensor-valued internal state variables which
describe the alteration of the mechanical response due
to the irreversible deformation. 6( ) stands for an
infinitesimal variation and the response of the stress
rate to the strain rate in the current state of stress and

internal variables is designated by 6(c, S;, D).

Therefore, the subloading surface model has the nota-

ble advantages as follows:

1) A smooth response (e.g. a smooth axial stress-axial
logarithmic strain relation in the uniaxial loading)
for a smooth monotonic loading is predicted by
the subloading surface model. On the other hand,
a nonsmooth response is predicted by constitutive

lim
660

, (49)

R>1: R<0

R =U[p?| for D #0
=ow for R =0,
>0 for R<]1,

U
=0 for R =1,
<0 for R>1

Fig 4. The stress controlling function contained in
the subloading surface model: The stress

¢ is automatically controlled so as to
approach the normalyield surface in the
plastic- loading process D”.

models violating the smoothness condition as in

the conventional plasticity with the yield surface

enclosing a purely elastic domain.

2) Only the decision for the sign of the proportionality
factor A in terms of strain rate is required in the
loading criterion of the subloading surface model,
since the stress always lies on the subloading sur-
face, which plays the role of the loading surface,
whilst the decision as to whether or not the stress
lies on the yield surface is not required. On the
other hand, the judgment whether or not the yield
condition is fulfilled is required in the conven-
tional plasticity.

3 ) A stress is automatically drawn back to the nor-
mal-yield surface even if it goes out from that sur-
face since it is formulated that R >0 for R<1

(subyield state) and R <0 for R>1 (over the nor-
mal-yield state) in Eq. (11) with the condition (12)
(see Fig. 4). Thus, a rough numerical calculation
with large loading steps is allowed in the subload-
ing surface model.

Further, the tangential strain rate (27) is also
formulated to develop gradually as the stress ap-
proaches the normal-yield surface, fulfilling the con-
tinuity condition®'® defined as “the stress rate re-
sponse changes continuously for a continuous change
of the strain rate” can be expressed mathematically as
follows:

lim g Q.
51)—»06(6’ Si,

whilst the other tangential plasticity models'*® vio-
late the continuity condition predicting an abrupt gen-
eration of the tangential strain rate when the stress
reaches the yield surface.

D+6D)=a6(s, S;, D), (50)

3. Basic Formulation for Post-localization
Analysis

Based on the formulations described in the pre-
ceding section, the equations for the prediction of
shear band thickness is formulated in this section by
extending the approach of Vardoulakis and Aifantis®.

3.1 Field equations

The outline of the field equations formulated by
Yatomi et al.” is described below briefly.

At the current time ¢, let the body be bounded by
closed surface a and let t denote the surface trac-
tion vector. Then, it is required to satisfy

jatda=0 1)

-536 -



for the equilibrium ignoring a body force.

Using the divergence theorem and the relation
t=on (n:the outward unit normal to the surface a),
we obtain the equilibrium equation:

dive =0, (52)

Noting the basic relation (da)® = t(trtD
—n+Dn)da, the differentiation of Eq. (52) with re-
spect to time is given by

Iaida=0,

where i =t+t(trD-ne*Dn) is called the total
nominal traction rate. Further, the total nominal (first
Piola-Kirchhoff) stress rate Il defined by :: fln
is related to the fotal Cauchy stress rate & by

M1=6+(trD)o —oL’. (54)

Substituting Eq. (48) to Eq. (54), the total nominal
stress rate can be rewritten as

fI =g +(trD)6—oD+ Wo, (55)

Applying the divergence theorem to Eq. (53), the
equilibrium equation is obtained as

divii=0. (56)

3.2 Equations for the analysis of shear band thick-
ness in the plane strain biaxial stretching
Hereinafter, consider the deformation process of

the rectanguiar block subject to continuing homoge-

neous biaxial loading under the constant volume plane
strain condition fulfilling D; =0 and D;3=0

which starts from an isotropic stress state. Here, as-
sume the material isotropy and thus 07, =( leading
to N, =1, =0 choosing the coordinaté system (x1,

x,) where the axes x; and x, are chosen to the

directions of prmmpal stresses oy and o», re-

spectively.
Now, let the elastic modulus tensor E be given by
the Hooke’s type as :

By = (K ~2G)6;6y +G(646+8:61), (5T)

K and G are the elastic bulk and shear
moduli, respectively, which are functions of the stress
and internal state variables in general and Oy is the
Kronecker's delta, ie. 05 =1 for i=j and
0j =0 for i# j.Itholds for i, j=1,2 that

where

2 "
(K -5G)N,»6; +2GN;; for i=j
0 fori=j

(33)

(58

E;yDy = 2GDy, (59)

b

N E. ]de, 2G(N Dy +nyDs), (60)

3 Eg Dy = 2G(n\Dyy + ny; D).

Then, it holds for Eq. (44) that

(61)

ept
CnnD 1122D22
Pt
+C1111VD11 + C1122VD22 s
_ ept
2= C2§11D11 + C2222D
+C2€11VD11 + C2222VD22 ’

6, = 2GD,,

< (62)
with which Eq. (55) becomes

H =C\Dy + CiLDy,

t pt v
+CiL, VD, + C1122VD22 -0y Dy

17 = C351\ Dy, + CH5, Dy

+C§,, VD, + C21322VD22 ~0yn Dy

I1, =2GD, — 0 D), +W,; G ;. (63)

The substitution of Eq. (63) into the equilibrium
equation (56) leadsto .

lean"n + Cuzzazlvz
+Cf} lllval mt C1122va21.v2
~0, 0} + G(05,v, +05,7,)

1 —
507 (622"1 + a12"2) +—0'22(5§2V1 - a122"2) =0
2 ] 2

CE1105m + C555,05,v,

+CH Vo + Chyp Voo,

— 0y 832 + G(B3 v, + 05 pny)

"'1_0-1 1(6§1v1 + 5121"2) +%°’22 CA a121"2) =0

2
(64)
A new coordinate system (x, ¥) with the axes par-
allel and perpendicular to the shear band is introduced.

XEXN, =X, Y= X0+ Xoh, (65)

where .
n =-sinf, n, =cosb. (66)
Noting the relation 0/0x, =0/0y+0dy/ox,,
=m0/, 0/0x, = 0/0y+0y/dx, =m0d/0y, Eq.
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(64) reduces to the following system of ordinary dif-

ferential equations.
Cept 2 H+Cept "
1MV 1122 MV

t v
+ CRyndvY + Clhom nyvs

a=2
=7

(73)

0 =930 +¢{0" g0 +¢50% « ).

Eq. (72) is expressed in the matrix form:

2. 2. n "
—onnvy Gy +nmvy) t 2 ept pt ept |- -
1 2. 1" 1 2. " Clpi“a Q+ C“” a anzaQ+ Cll22
FOn(mW +mmvy)+50n(mv —mmy;) —o,at+G +Ga il 1o
" =O ___!_0' +lo‘ ___1_0' a—lO-ZZ a
CEim myv, + C35aniv, 2 T2 2711772
+ Chym mvy + Chhnivy =
2. " 2. ¢ ~ ¢ ¢ 5 ¢
— Oy vy + G(nmyv +1v,) CHeQ+CHa Ch,0+Cohy
1 " 2. 1 S 2 + Go - 2
=0, (67) —'2'0'\\05‘*‘50-22 "'50-1\ az-Eo'n a? I L]
where L i
"_ (75)
The following equation has to hold in order that
)V = > (cz o+ cﬁ 644 +o e .) (68) non-zero solution for §; and ¢&; exists in Eq. (75).
oy 1014

¢
We search for periodic solutions of the system of (lea 2Q+C]e -0 ”a2+G——O', l+ 4 22)

Eq. (67), which have the form

v ==¢,sin(Qy) (=1,2)

(69)

and fulfill the following boundary conditions

v, =%¢; at y=Fd, withv,=0 at y=0, (70)

(C20222Q+C§§£2—022+Ga *%Gllaz—lzazzaz)

pt ept 1
(CuzzaQ"'anza*' Ga—aa“ a—-—=0n a)

2

(Cﬁtl la”Q +C2€1 ]a-}- Ga_%o-l la+%o-22 a) = O

(76)
where 2d} is the shear band thickness. Thus, the wave Noting
number Q) in Eq. (69) is inversely proportional to the oo MP
shear-band thickness, i.e. (4 T){MP + tr(NEN)}?
= -2%;. (71) {TE, ;N + t{@*EN) N, E

Further, the system of ordinary differential equation Cz’;tz , = MP
(67) reduces to the following algebraic system of A+T)HMP +1 T(NEN)}Z
equations. {TEy,N,s +t1(@*EN)n3 N E o)

1111“24'1 1122“52 cr, = M? ;

+Ciha2 Q¢ + CRy,a Q¢ (1+T){M? +tr(NEN)}

1+ Gty {TE, ,sN,; + ti@*EN)R3IN, E 5.,
—onatg) +G(¢ +ag,) MP
1 1 P

—701,(§1+a§2)f50'22(§,—aé’z)=0, Cany (1+T)H{M? + tr(NEN)}?

CHnas+ Cné 2 TEyNys + tr(*ENYRIN o E
. ~ - (1N
+Ch Q¢ + Cﬁtzzgg 2 and thus
—0n &, + G(ad) +ady) ChChy —ChnCh = 0.
—%Ull(aé’l +a?d,) +%O’22 (ag,—a?{,)=0 Eq. (76) is rewritten as
(72) A, ()0 + A(a)=0, (78)

where

where
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4, =Cpt (C, - 0+ Ga? - ota?)a?
t -
+Cp,(Cha? —0na?+G-07)
! ¢ =
_Cﬁzz (C‘fgll +G-oMa?

—'(:fqu((:f?;;'+ (; - CT+)C¥25

A =(CHa2-0y02+G~-07)
(C%y, —On+Ga? - ota?)
—(C% + G- o*)(CH 1+ G- 0)a?,

1122
79
where

+

}E%(O’“iazz). (80)

o-
The orientation of shear band is given by the usual
condition of shear band inception

A4,=0 @81
as follows:
2
o= ~b+b* —4ac 82)

2a ’
as (Clelp,tl ~ou NG - o),
b=—{C¥ gyn+Ch, Oy

1111

+CP (G- 07)+ CH (G~ 0% + 0,02},

¢=(C#h-on)G- o) 1

(83)
For this @, the values of Q fulfilling Eq. (78) with Eq.
(71) give the shear band thickness d.

4. Concluding Remarks

The rational formulation of the gradient theory for
the analysis of localized deformation is given and ex-
tended to the conventional plasticity incorporating the
subloading surface model with the tangential stress
rate effect. Besides, the basic formulation for
post-localization analysis is given showing the equa-
tion for the shear band thickness, Hereinafter, it will be
extended further so as to be applicable to the analysis
of large deformation by incorporating the large elasto-
plastic deformation theory of Hashiguchi et al.*®
based on the corotational logarithmic (Hencky) strain
theory of Naghdabadi and Saidi®.
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