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Abstract - Constitutive equation for the large elastoplastic deformation of soils
is formulated based on the corotational logarithmic (Hencky) strain rate tensor

proposed by Naghdabadi and Saidi"”

and its extension to the tangen-

tial-subloading surface mode™™ proposed by Hashiguchi et al.”. Here, the
hyper-elastic constitutive equation of soils is formulated by incorporating the
Inv-Inp linear relation®"'! for the isotropic consolidation and the shear

modulus depending on the pressure modifying the Junbu’s equation

12)
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1. Introduction

A Constitutive equation for the elastoplastic de-
formation has to be formulated so as to fulfill the fol-
lowing requirements.

1) The principle of material-frame indifference" is

fulfilled. It is attained by describing constitutive

equations in terms of tensors possessing the ob-
Jectivity.

2 ) A strain rate measure is derived by the
time-differentiation of an appropriate strain meas-
ure which is a function of the deformation gradi-
ent describing the relation between the reference

and the current configurations of material particles.

On the other hand, a stress measure has to be
work conjugate with a strain rate measure. There-
fore, a stress measure would have to be the one
defined on the base of reference configuration.

3 ) An elastic part of strain rate is formulated as the
hyper-elasticity in which an elastic strain is in-
duced from a strain energy function.

The stretching tensor, i.e. the symmetric part of
the velocity gradient is not apﬁropriate for the strain
rate measure since it cannot be derived from any
strain measure and is difficult to bring about the hy-
perelasticty. On the other hand, the Lee’s multicative

decompositionm) satisfies all the above-mentioned
requirements but falls within the framework of the
conventional plasticity premising that the interior of
yield surface is a purely elastic domain and thus it
cannot describe the plastic deformation due to the rate
of stress inside the yield surface, needless to say, in-
capable of describing a cyclic loading behavior.

The large deformation theory proposed by
Naghdabadi and Saidi" adopts the corotational loga-
rithmic (Hencky) strain rate of the left stretch tensor.
It has the capability to fulfill the afore-mentioned
three requirements. On the other hand, the subloading
surface model™ ¥ is capable of describing the plastic
strain rate due to the change of stress inside the yield
surface falling within the unconventional plasticity”)
and has been extended so as to describe the inelastic
strain rate due to the stress rate component tangential
to the subloading surface, while it is called the fan-
gential stress rate effect 5 The extended constitutive
equation was formulated by Hashiguchi et al. 7 gener-
alizing the large deformation theory of Naghdabadi
and Saidi" for metals to the theory for general mate-
rials and incofporating it into the rangential-
subloading surface model of Hashiguchi®*®.

In this article, the large deformation theory of
Hashiguchi et al.” is first refined such that the.
Cauchy stress is replaced to the Kircchhoff stress
which is the work conjugate with the Hencky strain
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rate and the elastic rotation is not ignored. Based on it,
the constitutive equation for the large elastoplastic
deformation of soils is formulated. Here, the hy-
per-elastic constitutive equation of soils is formulated
by incorporating the isotropic consolidation of
Inv-Inp linear relation®"" and the shear modulus de-
pending on the elastic volumetric strain modifying
the Junbu’s equationm.

The signs of a stress (rate) and a strain rate (a
symmetric part of velocity gradient) components are
chosen to be positive for tension, and the stress for
soils is meant to be the effective stress, i.e. the stress
excluded a pore pressure from the total stress
throughout this article.

2. Constitutive Equation

The deformation gradient F can be led to the po-
lar decomposition:

_Ox _

where x and X are the position vectors of material
particle in the current and the reference configuration,
respectively, and

V:=FF", R=VF, (2)
()7! stands for the inverse tensor, whilst the left

stretch tensor V can be written in the principal direc-
tions as

v=Y’n,®n,, ®)
a=1

denoting the principal values and directions as
Ao and n, , respectively.

Throughout this paper the corotational rate ’i‘
with objectivity for an arbitrary second-order tensor
T is given as

T=T-0"T+TQ", )
where (®) stands for the material-time derivative
and Q7 is the proper spin tensor of mate-
rial-substructure.

Let the logarithmic (Hencky) strain rate
(InV)° be additively decomposed into the elastic

strain rate ((In'V)°) and the inelastic strain rate
((InV)°)ie.

(InV) =((InV)°)* +(InVyy. )

Further, let the inelastic strain rate ((InV)°)! be
additively decomposed into the plastic strain rate

((In'V)°)? and the tangential strain rate ((In V)°),
i.e.

((nV)°)i = ((InV)°)? +((InV)°)t,  (6)
provided that ((InV)°)? and ((InV)°) are in-
duced by the stress rate component normal and tan-
gential, respectively, to the yield and/or loading sur-
face.

Assume that the elastic logarithmic strain

(In V)¢ is derived from the following strain energy
function ¥ ({(InV)®) ie.

£ = 0% ((nV)°)
(V)

where T is the Kirchhoff stress. The material-time
derivative of Eq. (7) leads to

T =E((InV)°®)", ®
puttihg the elastic modulus E as
g = 027((nV)) -
d{(InV)*}2

Eq. (8) can be transformed to the corotational de-
rivative as follows (see Appendix):

$=E((nV)®)" (10)

The following tensors may be substituted for the
spin tensor " of material-substructure.

)

(W =(L-L")/2: continuum sipn for Jaumann
rate

O=RR": polar spin for Green - Naghdi rate
QEf =},®n, : Eulerian spin for Eulerian rate
QP=W —-W?: continuum-plastic sipn for

L Dafalias rate
' (11)
where ()T denotes the transpose, and
L=FF", (12)
W? =c{T((InV)°)? - ((InV)*)* T}, (13)

¢ is the material parameter. The spin tensor QF
was proposed by Dafalias'® and Eq. (13) for the
plastic spin tensor W* was proposed by Zbib and
Aifantis'".

Let the following yield condition be assumed.

f(x,H) =F(H), (14)

where the scalar H and the second-order tensor H
are the isotropic and the anisotropic hardening vari-
ables, respectively. For soils H is given by the plastic
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Subloading surface
Normal-yield surface

Fig. 1 Normal-yield and subloading surfaces.

volumetric strain and H is given by the rotational.

hardening variable'®'”, The function f is assumed

to be homogeneous of degree one in the stress T.

Then, if H = const., the yield surface keeps a simi-

lar shape. ’ ‘
Drucker'> defined the unconventional plasticity

as the extended plasticity such that the interior of the
yield surface is not a purely elastic domain but a plas-
tic deformation is induced by the rate of stress inside
the yield surface. The most appropriate model falling
within the framework of the unconventional plasticity

would be the subloading surface model®” Y,

In the subloading surface model the conven-
tional yield surface is renamed as the normal-yield
surface, since its interior is not regarded as a purely
elastic domain. Then, let the subloading surface be
introduced, which always passes through the current
stress point T and also keeps the shape similar to
the normal-yield surface and the orientation of simi-
larity. The similarity and the orientation of similarity
of surfaces possess the following geometrical proper-
ties.

i) All lines connecting an arbitrary point on or within
the subloading surface and its conjugate point on
or within the normal-yield surface join at the spe-
cific point called the similarity-center.

ii ) All ratios of the length of an arbitrary line-element
connecting two points on or inside the subloading
surface and that of an arbitrary conjugate
line-element connecting two conjugate points on
or inside the normal-yield surface are identical.
The ratio is called the similarity-ratio which coin-
cides with the ratio of the sizes of these surfaces.

Let the similarity-ratio of the subloading surface

to the normal-yield surface be specifically called the
normal-yield ratio, and let it be denoted by R, where
R=0 corresponds to the null stress state,
0 <R <1 to the subyield state and R=1 to the
normal-yield state in which the stress lies on the
nbrmal-yield surface. Therefore, the normal-yield ra-
tio R plays the role of the three-dimensional meas-
ure for the degree of approach of stress to the nor-
mal-yield surface.
Then, the subloading surface is described as

f(z.H) =RF(H), (15)
The normal-yield and the subloading surfaces are il-
lustrated in Fig. 1, where T, (= T/R) is the conju-
gate stress on the normal-yield surface at which the
normalized outward-normal N is same as that at the
current stress T on the subloading surface.

The time-differentiation of Eq. (15) leads to

wf L LBy (T TR gy krer .

(16)
Let the following evolution equation of the nor-
mal-yield ratio R be assumed.

R =U®|@nvy)?| for(nvy)r =0, a7

where U is a monotonically decreasing function of
the normal-yield ratio R (see Fig. 2), fulfilling the
condition

_ | for R=0,
B {0 for R = 1, (18)
U <0 for R>1).
Let the function U satisfying Eq. (18) be simply

}

U

((nV))r =0, (InV)°)F =0

((InV)°)? 20

Fig. 2. The function U in the evolution rule
of the normal-yield ratio R.
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given by
U(R)=-ulnR, 19
where u is the material constant.
The substitution of Eq. (17) into Eq. (16) leads

to the consistency condition extended to the subload-
ing surface:

uf LTy (L) g
=U|(vye)y|F+rE- @O

Assume the plastic flow rule

((InV)°)? = AN, (21)

where A is the positive proportionality factor and

The substitution of Eq. (21) into Eq. (20) leads to

{2 (T H) (g‘; H)$) +ur{ L H) anIH Ah}

= UAF +RF'Ah: (23)

where
F'=dF/dH, (24)
h=H/A, h=H/1, 25)

From Eq. (23) one has
_tr(N%)

A= YR (26)

where

' o (T,H

MPE{%h— (f( )h)+%}tr(N‘r)
(27)

by use of the following relation based on Euler’s
theorem for a homogeneous function.

of (T, H)
of (v, H) _ "af(r,H)” Ne (1) N
ot ot tr(NT)
_Sf(.H) . RF
=T NN N @®)

Eq. (21) with Eq. (26) leads to

(InV)°)? = “](MLP%)N . 29)

Further, modifying the tangential strain rate of
Hashiguchi” or Hashiguchi and Tsutsumi®, the tan-

gential plastic strain rate was given by Hashiguchié)
as

((nVy)' = E" 4], 30)

where
=11, tr=tr*t)n*, G
T'=T—Tul, Tn s§trt, (32)
w =20y | @Sy - 15
_5. (34)

a is a material constant and £ is a material function of
the stress and the plastic internal variables in general.
()* designates a deviatoric component. ¢} is
called the deviatoric tangential stress rate.

The logarithmic strain rate is given from Egs. (5),
6), (8), (29) and (30) as follows:

N N Lgoige g5

o=p-l12
(nVy =E'#+-55 T

from which one has

tr{NE(InV)°} = tt(NT ) + r(NEN)mﬁz

tr(N‘t) .

= {MP” +tr(NEN)} (36)

The positive proportionality factor /1 in the flow
rule (21) is expressed in terms of strain rate, rewriting
A by A, from Eq. (36) as follows:

_ tr{NE(InV)°} ) 37)
M? +tr(NEN)

The loading criterion is given as follows™>?"

(InV)°)? £0: A>0,
((nV)°)P =0: A<0

(38)

It holds from Eqgs. (35) and (37) that

tr{NE(In V)°}
MP +tr(NEN)

Eqgs. (31) and (39) lead to

N-13* 39

% =E(nV)°’—-E =t

3= %*—tr[n*{E(ln vy

_E[ tr{NE(ln V)o} ]N}]n* (40)

MP +t1(NEN)

-524 -



Substituting Eq. (40) into Eq. (39), one has

% — E(an)° -E tr{NE(ln V)O} N
M”+tr(NEN)
1, 1

1, 1.1, .
T+T mI +Ttr[n {E(lnv)

_p( triNE(n V)°} *
E(A/;”Hr(NEN))N}]n '

@41

On the other hand, it holds from Eq. (39) that

° ____1_ N(nV)° _tr{NE(an)o}
tm 3{"( (V) _Mp+tr(NEN)tr(EN)}

_ (42)
The substitution of Eq. (42) into Eq. (41) leads to

> =_1_ o .l o
3 1+T[TE(an) + LN vy

+tr{n*E(In V)°}n* - tr{NE(In V)°}
M? +tt(NEN)

{TEN + %t (EN)I+t r(n‘EN)n*} ] . (43)

The plastic strain rate (29) is obtained by sub-
stituting the associated flow rule (21) into the con-
sistency condition (20) which is obtained by incor-
porating the evolution rule (17) of the normal-yield
ratio R into the time-differentiation (16) of Eq. (15)
for the subloading surface with the gradients of in-
ternal variables. Then, the plastic loading process de-
velops gradually as the stress approaches the nor-
mal-yield surface, exhibiting a smooth elastic-plastic
transition. Thus, the subloading surface model fulfills
the smoothness condition™** defined as “the stress
rate-strain rate relation (or the stiffness tensor)
changes continuously for a continuous change of
stress state”. This can be expressed mathematically as
follows: '

dt(6+07T, S, (InV)y)

lim
5T0 a(nVy
_ o%(t, S;, (In VY ), (44)
o(InVy
where S; (=1, 2, 3, ***, m) denotes collectively

scalar- or tensor-valued internal state variables which
describe the alteration of the mechanical response due
to the irreversible deformation. &( ) stands for an
infinitesimal variation and the response of the stress

rate to the strain rate in the current state of stress and

internal variables is designated by ‘%(1', S;, (In'V)°).

Therefore, the subloading surface model has the no-

table advantages as follows:

1 ) A smooth- response (e.g. a smooth axial
stress-axial logarithmic strain relation in the uni-
axial loading) for a smooth monotonic loading is
predicted by the subloading surface model. On
the other hand, a nonsmooth response is pre-
dicted by constitutive models violating the
smoothness condition as in the conventional
plasticity with the yield surface enclosing a
purely elastic domain.

2 ) Only the decision for the sign of the proportional-
ity factor A in terms of strain rate is required in
the loading criterion of the subloading surface
model, since the stress always lies on the
subloading surface, which now plays the role of
the loading surface, whilst the decision as to
whether or not the stress lies on the yield surface
is not required. On the other hand, the judgment
whether. or not the yield condition is fulfilled is
required in the conventional plasticity.

3 ) A stress is automatically drawn back to the nor-
mal-yield surface even if it goes out from that sur-
face since it is formulated that R >0 for R<I
(subyield state) and R <0 for R>1 (over the nor-
mal-yield state) in Eq. (17) with the condition (18)

A R>1:R<0
L
4 e
(P\\/‘«p’ ‘
\\0‘
-
0 o
R =U|(inVy)| for (nV)°)? %0
=w for R =0,
U ?0 for R<1,
=0 for R=1,
<0 for R>1

Fig. 3. The stress controlling function contained in
the subloading surface model: The stress

T is automatically controlled so as to
approach the normal-yield surface in the
plastic-loading process ((InV)°)? = 0.
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(18) (see Fig. 3). Thus, a rough numerical calcula-
tion with large loading steps is allowed in the
subloading surface model.

Further, the tangential strain rate (30) is also
formulated to develop gradually as the stress ap-
proaches the normal-yield surface, fulfilling the con-
tinuity condition ¥ defined as “the stress rate re-
sponse changes continuously for a continuous change
of the strain rate” can be expressed mathematically as
follows:

sl F(@, S, (ln V) +6(l V)°)
=1(1, Si, (InV)°), (45)
whilst the other tangential plasticity models** vio-
late the continuity condition predicting an abrupt
generation of the tangential strain rate when the stress
reaches the yield surface.

3. Constitutive Equation of Soils
Based on the equations formulated in the previ-
ous section, particular forms of material functions for

soils are described in this section.

3.1 Hyper-elastic constitutive equation of soils

It holds generally that
3
tr(nv) = Zln/la Z;lnF Z;lnaXa
(P 0% Oy _ v 46
n(Gx o, ax, )~ )

where V' and v are the initial and the current
volume, respectively. Therefore, the trace of the
Hencky strain tensor is equal to the logarithmic
volumetric strain. Further, tr(InV) can be addi-
tively decomposed into the elastic logarithmic volu-
metric strain tr(InV®) and plastic logarithmic
volumetric strain tr(InV?) as follows:

tr(ny) = m(@zax_s)

aX,8X, X,
S, o
=In 10420 3 1
Gza) " "Graxar)

= tr(InV*) + tr1nV”) = In(Z) +In (-177), 47)

where X and V are the position vector of material
particle and the volume in the intermediate con-
figuration unloaded to the initial pressure p,. Here, it
can be written that

3 3
=)1 =) InFéFP
tr(lnv) ;nFa ; FEF?

3 3
= InFZ + ) InF?
= tr(InV*) + tr(InV?) | (48)

where FP =a%;/0X;, Ff=0x/3% (no sum
for i). That is to say, the additive decomposition holds
in the volumetric strain for the Lee’s multicative de-
composition'® of the deformation gradient.

The linear relation between both logarithms of
the volume v and the pressure p, i.e. the Inv-lnp
linear relation which would be physically pertinent
and applicable to the description of the finite defor-
mation was proposed by Hashiguchis)'"). From this
relation the volumetric strain tr(InV), the elastic
volumetric strain tr(InV®) and the plastic volu-
metric strain tr(InV?) in the definition of loga-
rithmic strain are given as follows (see Fig. 4):

tr(nV) = tr(lnV°) + tr(InV?) = In L + m%
=in(%) +{in() +In(32) + 1n(3) }

=—7In(L-
==7In(%

+{_71n(py°) pin( 2

~7in(3)}

=—YIn(EN_(o_ l’z_
7In(-)-(p }’)1n(py0 , 49)
where
pE—TVns (50)
"
vO-—-'}.‘
| 4
1
P
v Ly
V \~-">'\\
vy =~
-
0 P P, P Py Inp

Fig. 4. The Inv-Inp linear relation for -
isotropic consolidation of soils.
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p and y are the slopes of normal-consolidation and
swelling lines, respectively, in the (Inv, Inp) plane. p,
is the initial value of p, and p, and pyy are the nor-
mal-consolidation pressure and its initial value, re-
spectively. ’

Now, assume the following strain energy function

' e
¥ =y Py exp(- @) +Gtr((InV)**)?
. (51

where the elastic shear modulus G is a function of the
elastic  volumetric  strain  tr(InV)¢ , ie.
G({r(InV)¢). Eq. (51) is the generalization of the
function proposed by Borja and Tamagnini30) adopting
the Lee's multicative decopmposition”) of the d_efor-
mation gradient and the limited form of the shear
modulus. The stress is derived from Eq. (51) as

= {7, xp(- 10V

+ 4G
dtr(lnV

where I is the second-order identity tensor. Eq. (52)
coincides with Eq. (49) in the isotropic elastic de-
formation process. The stress rate is given from Eq.
(52) as follows:

t={-Zexp(- 2V )y

d’G
Tl (1 V)9)?

+2 W tr{(InV)**((Inv)°)*}
- 2G((mv)*))) T

2 (V) {4 {(nV)°)} + 261V}
(33)

{tr((InV)**)*}{tr(InV)*)°}

Then, the elastic modulus tensor is given as

£ = {- 2 exp(- 1YY

P
d(tr(InV)®)?

4G o

dG -
2—90 1 v)*F®T+20Gi.
dir(nv)e V)

where

(a7 - 22T

(34

Liu =0,0y, Tju = 5,k5 (55)

)etr((an)e*)z'}I‘*‘zG(an)e* (52)

Transformmg the Junbu’s elastic shear modulus
equatlon ) as the function of pressure

Gp=¢(£)".
to the function of the elastic volumetric strain due to Eq.
(49), let the following function be assumed.

G(tr(InV)®) = é’exp(—%tr(an)e) ;

(56)

()
where ¢ and 7 are material constants. It holds for Eq.
(57) that
dG
dtr(InV)®
d*G ny2
¢y ____=(s") g
v~ 7

| n,
= —;’—},G,
(58)

3.2 Material functions for melastlc constitutive
equations

In accordance with the previous articles
1831.32) material function are described below.

Let the function f'in the subloading surface (15)
be given for soils as

4),5),

@@= pfi+ My, (59)
where
= % . (60)

m is a material function of Lode’s angle or b-value
and internal variables, representing the stress ratio in
the critical state, whilst the simplest function for m
was given by Hashiguchi®", | || stands for the mag-
nitude. ‘ '

The isotropic hardening/softening function F
is given from Eq. (49) as

F=F, exp(FI_iy), (61)

where Fj is the initial value of F'. Here, the evolu-
tion rule of isotropic hardening/softening variable H
is simply given by the plastic volumetric strain rate,
ie.

=—tr(InvV)°)?. (62)
Let the function § in equation (34) for the tangen-
tial-inelastic modulus 7" be glven as” -

é“bz,c

where b and ¢ are material constants.

; : (63)

4. Concluding Remarks

The unconventional elastoplastic constitutive
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equation with the tangential stress rate effect for large

elastoplastic deformation of soils is formulated in this

article, extending the large deformation theory of

Naghdabadi and Saidi"” and Hashiguchi et al.” as

follows: .

1 ) The corotational rate is adopted even for the elas-
tic constitutive equation, while it has been ig-
nored in the former formulation.

2 ) The Kirchhoff stress is adopted in stead of the
Cauchy stress.

3 ) The hyper elastic constitutive equation is adopted
in stead of the Cauchy elasticity.
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Appendix:

Proof for the transformation of the material-time de-
rivative to the corotational derivative of constitutive
equation in rate form

Consider two different coordinate systems with
bases {e;} and {e;} (i=1, 2, 3), whilst let the or-
thogonal tensor between these coordinate systems be
denoted as Q, i.e. O;=¢€¢, fulfiling QQ' =1
(see Fig. 1). The notation ( )T stands for the trans-
pose and I is the second-order identity tensor. The
bases {e;}, {e;} and thus the orthogonal tensor Q
depend on time in general. Let the position vector of
material point observed by the coordinate systems
with bases {e;} and {e;} be denoted x(X,#) and

x'(X,1), respectively, where X is position vector of
material point in the reference configuration and ¢ is a
time. Then, it hold that

X' (X,0) = Q)x(X,) +¢(),

where ¢(f) is the position vector of the origin of the
coordinate system with bases {e;} observed in the
coordinate system with bases {e!}.

The spin of material-substructure " is gener-

(A.1)

ally related to the rotation tensor R™ of mate-
rial-substructure as follows:
Q" =R"R"", (A2)

provided that R™ is related to the motion x(X,?)
of material-substructure and fulfills the following
transformation rule

R™ =QR", (A3)
and thus Q™ obeys the transformation rule
Q™ =QQ"Q" +Q, (A.4)

where Q is the spin of bases {e;} observed from
bases {e;} as known from

Q E(ér®er)y i ®ej = Qtr er i ®eJ QQT
(A.5)

noting & =Qe; (&;Re; =Qe; ®e; =0Q) and
that the magnitudes of €; are constant as unit.

Consider the constitutive equation relating the
second-order tensors T and S, which is described in
the coordinated system with the bases {e;} as fol-
lows.

T=£(S). (A.6)
The time-differentiation of Eq. (A.1) leads to
S) e
SHORKLR A7)

which has to be written in the coordinate system with
the bases {e;} as follows:

o, o _ Of(S)
T =18)=5g Z278, (A8)
with
T=QTQ"+QTQ"+QTQ" (A9
and
of(S ) _ af(QsQ") T L AcAT
s 30507 (25Q7+QsQ

+QsQ)  (a.10)

from which one has

Q' 1'Q=Q"(QTQ" +QTQ" +QTQ")Q
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=t+Q"QTQ"+TQ"Q (A1) af(S)(S*LQ Qs+sQ Q). (A.12)

and The selection of Q=R"" in Egs. (A.11) and
T =pPmpPmT - OM
o af(S’)s,Q (A.12) leadsto OTQ=R"R"T =Q" and
%8 'i‘=§fa_(_SS_)§. (A.13)

T ° ]
=Q' Qf@Q—)‘(QsQT +Q8Q" +QS QT)Q That is to say, the constitutive equation (A.7) in the

S T
Q8Q form of material-time derivative can be transformed
of(QS to that in the form of corotational derivative.
- Q59 oo ($q" + Q"
oQSQ
(Received April 18,2003)
+QsQ’ )Q
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