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The tangential-subloading surface model is capable of describing the plastic strain rate due to the rate of stress
inside the yield surface and the inelastic strain rate due to the stress rate component tangential to the subload-
ing surface. The diffuse bifurcation modes of the rectangular specimen subjected to the plane strain loading is
analyzed by adopting the tangential-subloading surface model, exhibiting the characteristic regimes of the
governing equations (elliptic, hyperbolic and parabolic) in this article. In each of these regimes both symmet-
ric and anti-symmetric diffuse bifurcation modes are available. Besides, the tangential strain rate makes the
inception of bifurcation modes easier in not only normal-yield but also subyield states.
Key words: bifurcation, constitutive equation, elastoplasticity, subloading surface mode

1. Introduction

Plastic instability phenomenon is one of the important‘

problems in geomechanics in relation with the progressive
failure of geostructure. It is induced by the material soften-
ing and geometrical nonlinearity and leads to the bifurcation
of deformation such as diffuse geometric modes (bulging
and buckling) and localized modes (shear band).

Various analytical and computational approaches for the
bifurcation of solids have been attempted up to the present””
%), These results suggest the deficiency of the traditional elas-
toplastic constitutive equations in which the plastic strain
rate is independent of the stress rate component tangential to
the yield/loading surface, whilst let the stress rate component
tangential to the yield/loading surface and its influence on
the inelastic strain rate be called the fangential stress rate
and the tangential stress rate effect. The disregard of the
tangential stress rate effect leads to predict unrealistically
stiff response of materials when a loading path deviates from
the proportional loading, whilst the tangential stress rate ef-
fect has been experimentally verified®.

Various elastoplastic constitutive equations extended so as
to describe the tangential stress rate effect have been pro-
posed up to the present” 19 Among them, however, only the
subloading surface model with tangential stress rate effect”
would be applicable to arbitrary loading process including
an unloading and a reloading processes, fulfilling the me-
chanical requirements for constitutive equations' "', i.e. the
continuity condition, the smoothness condition, the Masing
effect and the work rate-stiffness relaxation. It is formulated
by introducing the additional stain rate, named tangential
strain rate, induced by the deviatcric tangential stress rate
into the subloading surface model''”, It is of simple form

of rate-linearity enabling the reciprocal expression, i.e. the
analytical expression of strain rates in terms of stress rate
and its inverse expression, and keeps the symmetry of the
stiffness modulus, and thus leading to the convenience in the
analyses of boundary value problems. Based on the constitu-
tive equation, Hashiguchi and Tsutsumi'® derived the condi-
tion for the inception of the shear band in the undrained
plane strain of soils.

In this article, the constitutive equation of soils will be
first reviewed briefly, in which the material functions of
soils are incorporated into the subloading surface model with
the tangential stress rate effect. It would be applicable to
soils in not only normal-yield but also subyield states for not
only lower but also higher stress ratio than the critical state.
Then, based on the constitutive equation, the diffuse bifurca-
tion modes of the rectangular specimen under the undrained
plane strain condition are analyzed and the characteristic re-
gimes of the governing equations depending on the state of
stress and material parameters are identified as elliptic, hy-
perbolic or parabolic regimes leading to the appropriate ei-
genvalue equations. In each of these regimes both symmetric
and anti-symmetric diffuse bifurcation modes are available.

2. Outline of the Subloading Surface Model with
Tangential Stress Rate Effect

Denoting the current configuration of material particle as
x and the current velocity as v, the velocity gradient is de-
scribed as L = dv/ox, by which the strain rate and the con-
tinuum spin are defined as D(=(L+ L")/2) and
W(E=(L- LT )/2), respectively, ( )' standing for the trans-
pose. '

Now let it be assumed that the strain rate D is additively
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decomposed into the elastic strain rate D®and the inelastic
strain rate D', i.e.

D=D°+D, 0
where the elastic strain rate D° is given by
D°=E'G. V)
O is the Cauchy stress and (°) indicates the proper corota-
tional rate with the objectivity and the fourth-order ten-
sorEis the elastic modulus. Further, let the inelastic strain
rate D' be additively decomposed into the normal-plastic
strain rate DP and the tangential strain rate D', which are
induced by the stress rate components normal and tangential,
respectively, to the subloading surface, called the normal
and the tangential stress rates, respectively, i.e.

D' =D? + D', 3)
Here, it is assumed that the tangential stress rate component
inducing the tangential strain rate D' is deviatoric stress,
obeying the Rudnicki and Rice’s conclusion® that "no vertex
can result from hydrostatic stress increments" based on the
consideration of the sliding mechanism in the fissure model.
Let D? and D’ be formulated in this section.

2.1 Normal-plastic strain rate due to the subloading sur-
face model
Let it be postulated that the normal-plastic strain rate is
given by the subloading surface model with the smooth elas-
tic-plastic transition'. Then, this model is reviewed briefly.
Assume the yield condition:

f(e) = F(H). , @)
The scalar H is the isotropic hardening/softening variable.
Let it be assumed that the function f is homogeneous of de-
gree one in the tensor O, satisfying f(sG) = sf(G) for any
nonnegative scalar s. Here, assume that the evolution of in-
ternal structure of materials is caused by the normal-plastic
strain rate D? and thus the evolution equation of H is homo-

geneous of degree one in D?. Then, assume that it is linear

function of D?, i.e.

H = tr{f,(c, H)D"}. (5)

where f,, is the second-order tensor, (*) stands for the mate-
rial-time derivative and tr( ) is the trace.

Hereinafter, the elastoplastic constitutive equation will be
formulated in the framework of the unconventional plastic-
ity'” as the extended plasticity theory such that the interior
of the yield surface is not a purely elastic domain but a plas-
tic deformation is induced by the rate of stress inside the
yield surface. Thus, the conventional yield surface is re-
named as the normal-yield surface, since its interior is not
regarded as a purely elastic domain in the present model.

Now, let the subloading surface be introduced, which al-
ways passes through the current stress point ¢ and also
keeps the similar shape to the normal-yield surface and the
positioning of similarity to the normal-yield surface with re-
spect to the origin of stress space, i.e. G = 0. The approach-
ing degree to the normal-yield state can be described by the
ratio of the size of the subloading surface to that of the nor-
mal-yield surface, i.e. the similarity-ratio R of these sur-

faces, while R = 0 corresponds to the most elastic state in
which the stress coincides with the similarity-center and
R =1 to the normal-yield state in which the stress exists on
the normal-yield surface. Hereinafter, let the similarity-ratio
R be called the normal-yield ratio. Then, the subloading
surface is described as
f(0) = RF(H). (6)

The normal-yield and subloading surfaces are illustrated
in Fig. 1, where G, (= G/R) on the normal-yield surface is
the conjugate stress of the current stress O on the subloading
surface.

The time-differentiation of Eq. (6) is given as

tr(af (°)°) —RF+RF, %)
where
1o A
Flsor ®)

It is observed from experiments that the stress asymptoti-
cally approaches to the normal-yield surface in the plastic
loading process D? = (. Thus, let the following evolution
equation of the normal-yield ratio R be assumed.

R=U|D? for D? =0, )
where U is the monotonically decreasing function of the
normal-yield ratio R , satisfying

w forR =0,
~10 forR =1, (10)
U< for R>1).

I || stands for the magnitude. Let the function U satisfying
Eq. (10) be simply given by

U=-~u,nR, an

where uy is a material constant prescribing the approaching
rate of the current stress to the normal-yield surface with a
plastic deformation.

Substitution of Eq. (9) into Eq. (7) leads to the extended
consistency condition for the subloading surface:

tr(af ©) &) = UIDA|F+RF'E. (12)
Assume the assomated flow rule
DP = AN (A >0), 13)
where
)
= L) / V f (")V (INI=1). (14)
N
o/
N
~Jj Gy
Normal-yield
Surface

[ )

O

0 o7 i
Subloading
N\ Surface

Fig. 1. Normal-yield and subloading surfaces
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Substitution of Eq. (13) into Eq. (12) leads to

2= rNo) (15)
MP
where ,
_(F,.U
MP:(F h+R )tr(Nc), . (16)

h is function of the stress, plastic internal variables and N in
degree one, which is related to H as

h=t(fN)=H/A= H/|D?|. (17

since the rates of internal variables include A in degree one.

The plastic strain rate (13) with Egs. (15) and (16) is ob-
tained by substituting the associated flow rule (13) into the
extended consistency condition obtained by incorporating
the evolution rule (9) of the normal-yield ratio R into the
time-differentiation of Eq. (7) for the subloading surface.
Then, the plastic loading process develops gradually as the
stress approaches the normal-yield surface, exhibiting a
smooth elastic-plastic transition. Thus, the subloading sur-
face model fulfills the smoothness condition' ™.

2.2 Extension to tangential stress rate effect ,

Noting that the tangential strain rate D' as well as the plas-
tic strain rate D’ would not be induced in the state
R =0 but would be gradually induced as the stress ap-
proaches the normal-yield surface, let the tangential strain
rate D' be formulated as

D =L§s \ (18)

t

'“]

where T is a monotonically decreasing function of R satisfy-
ing the following condition.

o forR =0,
& forR=1. 19

£ being a material function of the stress and the plastic in-
ternal variables in general. The function 7, called the tan-
gential inelastic modulus, satisfying Eq. (19) is simply given
by

T =E&R™® (20)

where b (=1) is a material constant. The second-order ten-
sor G * is given as follows:
o

G*=G6* + G, 1)
6 =tr(n*&*)n* (22)

Q

Q Q
— ¥ *
=G0*- 0%,

§*=6-6,1, om=ltr(o), (23)

oo (L) /[

( )*stands for the deviatoric part,I and n* are the identity
tensor and the normalized deviatoric outward-normal tensor
of the subloading surface, respectively. The stress rate §xis
called the deviatoric tangential stress rate fulfilling

tr(NG*) =0,

] (n*=1. (4

tr§*= 0. (25)

The deviatoric tangential stress rate G * in the principal

stress space is directed toward the tangential line of the
closed curve formed by the intersection of the subloading
surface and deviatoric stress plane as illustrated in Fig. 2. In
addition, let the function T be named the tangential modulus.
The tangential strain rate D’ is related linearly to the devia-
toric-tangential stress rate (07,* through the similarity-
ratio R so as to exhibit the smooth elastic-inelastic transition.
Besides, it can be formulated so as to be hardly induced
when a stress lies inside the normal-yield surface by giving a
large value to the material parameter b . :
"The strain rate D is given as
uNS) N, L, (26)

t

D=E'6+

p
Now, let the elastic modulus tensor E be given by the
Hooke’s type as

=(K - G)a,.jak, +G(6,8,+8,8,), (7

:_/kl ikl i jk

where K and G are the elastic bulk and shear moduli, respec-
tively, which are functions of the stress and internal state
variables in general and &y is the Kronecker's delta, i.e.
O0; =1fori=jandd; = 0fori= j. The inverse expres-
sion of Eq. (26) is given as:

1 pp__ GNED) /o
2G/T M, +tr(NEN)
{1 wr(EN) - (M, + = trNtr(EN))

&:

N ) )
n
Nt
Both the plastic strain rate D? in Eq. (13) with Eq. (15)
and the tangential strain rate D’ in Eq. (18) with Eq. (20) are
formulated so as to be gradually induced as the normal-yield
ratio R approaches closely unity, i.e. as the stress approaches
closely the normal-yield surface, exhibiting the smooth elas-
tic-inelastic transition and fulfilling the smoothness condi-
tion and the continuity condition'” ' defined as “the stress
rate response changes continuously for a continuous change
of the strain rate”, which can be expressed mathematically as
follows:

tr(ED)(— trN——

Jim 6(c,8,,D +8D)=6(0,S,,D). (29)

Hydrostatic axis
7

Loading surface

Deviatoric stress plane

Closed curve formed by
intersection of loading surface
and deviatoric stress plane

Fig. 2. Deviatoric tangential stress rate G illustrated
in the principle stress space
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On the other hand, the extended flow models incorporating
the tangential strain rate within the conventional elastoplas-
ticity, e.g. the models of Rudnicki and Rice® and Papami-
chos and Vardoulakis'® violate this condition for the stress
path along the yield surface. Thus, the constitutive equation
in Egs. (26) or (28) would not be required to be limited to a
monotonic loading process in the normal-yield state but
would be applicable to a general loading process for materi-
als with an arbitrary smooth yield surface.

The positive proportionality factor in the associated flow
rule is expressed in terms of the strain rate D, rewriting A
by A, as follows:

__ u(NED)
M, +tr(NEN)

because of tr(NEG * ) = 0 for Eq. (27). Then, let the loading

criterion be given by the positiveness of the proportionality

factor A as follows':

DP¢O:A>O,]

(30)

D” =0 : A <0. Gh

2.3 Material functions for soils

Let the particular forms of the material functions for soils
be given in this section. The subloading surface for simple
isotropic soils is given as follows:

floy=P(+2"), (32)

where
P= —%tro, x =mn/m (33)
n=o*p, 0*=0-PL (34)

m, is the material constant describing the stress ratio|[n|| in
the critical state line.
The isotropic hardening/softening function'® F is given by

H
F = Fyexp(——), (35)
P-Y

where F; is the initial value of F. pandy are material con-
stants describing the slope of the normal consolidated curve
and the swelling curve, respectively, in the (Inv, InP) plane
(v : volume, P: pressure). The evolution equation of the
isotropic hardening variable H is given by

H =-trD” (36)
Let the function U for the evolution rule (9) of the normal-
yield ratio R be given by Eq. (11) itself.
Further, we assume the function £ in the tangential
modulus T of Eq. (20) as

P :

é a xc * (3 7)

a and ¢ are material constants. Then, the tangential inelastic
modulus 7" in Eq. (18) with Egs. (20) and (37) is formulated
to induce the tangential stress rate effect gradually with the
increase of ¥ and/or R , whilst the effect decreases with the
increase of pressure. On the other hand, the equation of Ya-
tomi et al” for the tangential inelastic modulus, i.e.
T = C(m~—|m|)P (C: material constant) is applicable only

to the normal-yield state R =1 under the lower stress ratio
than that in the critical state, i.e. X <1 .
The bulk and shear moduli are given as
1-2
k=L ¢-= 30A-2v) (38)
Y 2(1+v)
where v is Poisson’s ratio.
The concrete form of the plastic modulus in Eq. (16) for
isotropic soils is described from Egs. (32)-(35) as follows:
R 1-x° ) F
P-v s /s’ (39)

A=(1-1H

M,

= (—uRlnR+

_1 X)?
g = §' A+ (ZW) N
Hereafter, the material constants be chosen as p = 0.0924,
Y =00168, m, =117, b=10, ¢=3.0 and v = 0.333.

%

1

Fig 3. Ceometric configuration and the boundary
stresses of the sample

(@) (b

Fig. 4. Bifurcation modes: (a) Symmetric mode (bulging),
(b) Anti-symmetric mode (buckling)

3. Bifurcation Analysis

The diffuse bifurcation modes are analyzed by the subload-
ing surface model with tangential stress rate effect reviewed in
the preceding section.

3.1 Constitutive relations

Consider the deformation of rectangular, homogeneous
block subject to continuing biaxial loading of homogeneous
normal stress under the undrained plane strain condition in
the (x,, x;) plane (see Fig. 3) which starts from an isotropi-
cally consolidated state. The symmetric and the anti-
symmetric modes may be induced as shown in Fig. 4. It
holds that

811 _833 =2#*(D1|_D33), (40)
00'31 = 2“D31,
with
D,+D; =0, D,=D,=D,=0. 41)

p*and p which are the instantaneous shear moduli for the

normal effective stress difference 0, — 0533, and for shear

stress Oy, , respectively are derived as follows'®:

G

Tr2gir &9 @

w=64 <6), p=
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where
_ A _ 2 4
Mr=M,,+K?, Me=Mp+(K—§G)E+2G. 43)

Here, it should be noted that the incorporation of the tan-
gential strain rate term has no influence on tt* but lowers
involving the functionT . The present formulation fulfilling
both the continuity and the smoothness conditions is mani-
fested in Fig. 5. On the other hands, in conventional plastic-
ity models witha =0, u*and g suddenly jump from the
purely elastic response to the normal-yield response at the
moment when the stress reaches the normal-yield surface.

1.0

=0
—_H/ 03 a0,
/G 06 a=8. ........
., a=0.1 .
"u* a=015 .
é 04} o
02}
0.0
0.5 1 1.5 2 25 3
0.2
'R

Fig. 5. Instantaneous shear moduli vs. X

3.2 Field equations

Let diffuse bifurcation condition in the biaxial compres-
sion under the undrained plane strain condition be analyzed
based on the approach of Hill and Hutchinson" that has been
done for plastically-incompressible materials in the conven-
tional plasticity. We focus our attention on the behavior of
the saturated soils under the undrained condition, and then
let the Cauchy stress tensor G be meant the effective Cauchy
stress excluded a pore pressure u from the total Cauchy
stress T, which is defined by

c=T+ul (44)
For the plane strain condition using the divergence theo-
rem, the equilibrium equation is obtained as

divI1=0, (45)

I1 is called the fotal nominal (first Piola—Kirchizoj]) stress
rate that is related to the total Cauchy stress rate T by

M=T+@D)T-TL" (46)

Since the stress rates T and G are not invariant under
rigid rotation, let the corresponding Jaumann rate be intro-
duced as the objective corotational rates:

T=T+ TW-WT, 47)
G=6 + 6W - Wo. (48)

Substituting Eqgs. (47) and (48) to Eq. (46) with Eq. (44),
the total nominal stress rate H can be rewritten as

=]

=T + («tD)T -TD + WT

'= I - #1 - u(teD)I + L, (49)
where

I = & + (trD)o — oD + Wo. (50)

IT' is called the effective nominal stress rate”. Using Eq.
(45) for continuing linear equilibrium, the total nominal
stress rate must satisfy

omy oy 9k

a9y on (s1)
art, oIt 3

T (O %y,

ox, odx, ox

The rates of the nominal stress IT' in Eq. (51) are given in
terms of the Cauchy stress and the velocity components from
Eqs (40) and (50) as follows:

T - It = Qu- o) - 22,
x, _ox,
-0 v -, | 6D
3
a
n;.—(u+r)—-+(u =
X, X;
where :
G=%‘(G“+G33), T=%(0”_033). (53)

(»»>w;) are the (X, X,) -components of velocity.
Now, introduce a stream function ¥(x;,X;) " such that

Y =-§z, v =-a—ql. (54)
ox,
The substitution of Egs. (52) and (54) into Eq. (51) leads to

=0. (55)

3.3 Classification of bifurcation regimes

Consider the rectangular homogeneous specimen, with the
current dimensions 2a, X 24, (see Fig. 3) subject to a current
axial stress g, in the ends and a constant hydrostatic confin-
ing pressure 0;; = 0.. We examine the possibility of incre-
mental deformation when the sides (the faces perpendicular
to X3 direction), remain traction-free, the ends are subject to
frictionless constrains and the pore water pressure maintains
homogeneous. We seek modes of the type

= W(x,)eos(n,x ). : (56)
The substitution of Eq. (56) into Eq. (54) leads to
v =V(x)cos(mx), v, =mv(x)sin(nx), (57)

where V' = dv, /dx;. The kinematic constraint on the ends is
satisfied when
=mr)2a, m=1,2,3,.., (58)

by placing the origin of coordinates at the specimen center
when m is odd and at a distance a,/m from the center when
mis even. From Eq. (55), v(x,) must satisfy

(H-T)"" =2Qu*- WnV" +(L+T)v=0. (59

The boundary conditions can be written

v =0, IT,=0 on the ends,
o« e 0OV o ov . (60)
IL,=u-0,—, II;=-0.—2 on the sides.
ax3 ) ax]
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Since fI;’, given by Eq. (52) also varies as cos(n,x,), the
smoothness of stress distribution on the ends is automati-
cally satisfied. Substituting Egs. (40), (41) and (60) into Eq.
(51), the boundary conditions on the sides can be expressed

V'eniv=0,

onx, =zxa, (61)
(u—r)v"’-(4u*—u—r)n.2v'=0,} T

Symmetric modes satisfy ¥(x,,X;) = ~¥(x,,~X;) based
on odd functions v(x,) and anti-symmetric modes sat-
isfy ¥ (x,, x;) = ¥(x;,-x;) based on even functions v(x;) .

General solution of Eq. (59) is given in the form

W) = Y0 Myexp(in), (62)

where i = /=1. and M; (j=1, 2, 3, 4) are the real and/or
complex constants. Substitution of Eq. (62) into Eq. (59) re-
veals that ;, satisfies

(U+T)m +22u*-wnin +(u-7)m =0.  (63)

The roots of Eq. (63) are classified into the elliptic complex
(EC), the elliptic imaginary (EI), the hyperbolic (H) and the
parabolic (P) regimes depending on the current sate of stress
and internal variables. In each of these regimes diffuse bifur-
cations are possible and, in fact, in each regime the analysis
leading to the appropriate eigenvalue equation. On the other
hand, we can construct functions of each type from solutions
of types Eq. (62), and eigenvalue equations corresponding to
Eq. (63) in each of four regimes EC, EI, H and P.

(1) Elliptic complex regime (EC)

The elliptic regime can be subdivided into portions where
the roots are complex (EC) and imaginary (EI). In the ellip-
tic complex region, the solutions for the symmetric modes
are of the form

v(x;) = Re[Msin(n;x;)], (64)

where Re][...] denotes the real part of[...], Mis a complex
constant, and #, = m(p 1 iq) that p * iq are any complex
roots of Eq. (63). Similarly, the anti-symmetric modes are of
the form

v(x,) = Re[Mcos(n,x,)], (65)

~ Substituting Eqs (64) and (65) into boundary conditions
(61) lead to an eigenvalue equation of the form

-1 112
. (__,u ) + (2u*/t-1)
gsinepna) _ /T4l
1 _i ’ (66)
psinh(2gna,) —1\"?
BT -
(2u*/t-1)
©/T+1
where the (+) sign applies for the symmetric modes, and the
(-) sign applies for the anti-symmetric modes. For both the
symmetric and anti-symmetric modes, the real and imagi-
nary parts, p and q satisfy the following equations:

/T+1 "
p2 +q2 :(i—],
B/T~1

2u*/p-1
P 2t
/-1

(67)

(2) Elliptic imaginary regime (EI)
In the elliptic imaginary regime, there are symmetric
modes of the form

v(x,) = Msinh( pn x;) + Nsinh(gn,x;), (68)

and anti-symmetric modes are of the form

v(x;) = Mcosh(pnx,) + Ncosh(gnx,), (69)

where both M and N are the real constants now. p and g are
positive and related to the coefficients of Eq. (63). In the el-
liptic imaginary regime, the roots of Eq. (63) have the
form tip and tig . The substitution of Eq. (68) into the
boundary conditions (61) yields the eigenvalue equation for
symmetric modes:

2
ptanh(gna;) _ P+l (10
gtanh(pma;) g+1)’

Repeating this for the anti-symmetric modes (69) gives

2
ptanh(pnlaJ) = p2 +1 (7[)
gtanh(gna) | g*+1 )’

where p and g for both the symmetric and anti-symmetric
modes, satisfy the following equations:

1,2 2 _ 20u*p-1

2(17 +q)_' T/u,—l ’

L g __((2u*/#—1)2+(r/u)2—l)m 2
5P -9)= pp— :

(3) Hyperbolic regime (H)
In the hyperbolic regime the appropriate symmetric modes
are

v(x;) = Msin(pn,x; ) + Nsin(gn, x;), (73)
and the appropriate anti-symmetric modes are
v(x,) = Mcos(pn x;) + Ncos(gn,x;), (74)

where p and q are positive roots of Eq. (63). The substitution
of Eqgs. (73) and (74) into the boundary conditions (61)
yields the eigenvalue equation for symmetric modes

2
qta‘n(pnla.?) - qz_l (75)
ptan(gna;) | p*—1)’
and for anti-symmetric modes
2 2
qtan(gma;) (g ~1 (76)
ptan(pna) | p*—1)’

where p and g for both the symmetric and anti-symmetric
modes, satisfy the following equations:

1,2 2y 204*p-1
2(P +q )— T/ﬂ—l s (77)
@u?/p-13+(c/up-1)"

/-1
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(4) Parabolic.regime (P)

In the parabolic regime one pair of roots of Eq. (63) con-
sists of real roots, and the other pair is consists of imaginary
roots. With p and ig, the positive real and imaginary roots,
respectively, the symmetric modes in the parabolic regime
are of the form '

v(x,) = Msin(pn,x,) + Nsinh(gn x, ), 78) -

and the anti-symmetric modes are given by

v(x,) = Mcos( pm x; ) + Ncosh(gn x;), (79)

The substitution of Eqgs. (78) and (79) into the boundary
conditions (61) yields the eigenvalue equation for symmetric
modes

2
qta‘n(pnlaB) = q2 +1 (80)
ptanh(gna) | p*-1)°

and for anti-symmetric modes

qtanh(anGB) — q2+1 i '(81)
ptan(pna;) p-1)’

where p and g for both the symmetric and anti-symmetric
modes, satisfy the following equations:

(@u*/n-1+ @/pp-1)"
T/p-1 BN
2u*/p-1
T/u-1 "

1, 2 2y _
(P +q)=

1, 2 2, _
(P -9)=

pi2p*

(B)R=09

Fig. 6. The (1/2u* {/2u*) trajectories with the variation
of the material parameter a in (a) the normal-
yield state: R =1.0 and (b) the subyield state:
R =09 for up =10.

Fig. 6 represents the bifurcation regimes as a function of
dimensionless stress 7/24* and moduli ratio f/2u* when
lateral stress 0733 is a constant hydrostatic confining pressure
O., and the bifurcation domains coincide for compressive
stress. The (’c/2ﬂ*, H/241*) trajectories for several levels of
material parameter @ ranging from 0.0 to 1.5 in (a) the nor-
mal-yield state: R=1.0 and (b) the subyield states:
R =109 for uz =10 are depicted in Fig. 6. In case of
R =1.0, ie. near the normal-yield state, the trajectories
monotonically rise up to the E-H boundary, whilst the larger
material parameter a makes it easier to pass through the
boundary with the increase of X , since both 7/2u* and
H/2u* become infinite as the denominator i * becomes zero
with the increase of X as was shown in Fig, 5. In case of
R = 0.9, on the other hand, the (7/2u*, [t/2u*) trajectories
first rise up with the increase of X but they suddenly turn
back to the origin, since y* does not become zero but in-
versely  increases with the increase of y* as was shown in
Fig.5. ' : _

Fig. 7 shows the lowest bifurcation stress as a function of
the wavelength of the diffuse mode mma,/2a, obtained for
the symmetric (Fig. 7(a)) and the anti-symmetric (Fig. 7(b))
elliptic modes of bifurcation in several values 2u*/it . The
(t/2u*, mrmas/2a) trajectories for several levels of the
normai-yield ratio R =0.89, 0.90 and 1.00 for uz =10 are
depicted in Fig. 7. In case of R = 1.0, i.e. near the normal-

yield state the trajectories rise up with the increase

of mna,/2a, and then turn down, whilst in case of subyield
states ( R =0.89 and R = 0.9 ) the trajectories rise up
shortly.

(b) ) T ma3 / 2a1

Fig. 7. The (t/24* mmas/2a;) trajectories with variation
of R in the lowest bifurcation stress: (a) sym-
metric modes, (b) anti-symmetric modes.

-519 -



4. Concluding Remarks

The diffuse bifurcation modes of the rectangular specimen
subjected to the undrained plane strain condition are ana-
lyzed incorporating the subloading surface model with tan-
gential stress rate effect. The main results obtained in this ar-
ticle are as follows:

1) The analytical solutions for the inception of the diffuse
bifurcation modes are derived, which are classified into
the elliptic complex, the elliptic imaginary and the hyper-
bolic and the parabolic regimes.

2) The incorporation of the tangential strain rate has no in-
fluence on the instantaneous shear moduli for the normal
stress difference but lowers the instantaneous shear
moduli for the shear stress.

3) The tangential strain rate term makes easy to fulfill the
necessary conditions of bifurcations for not only normal-
yield but also subyield states.

4) The formation of symmetric and anti-symmetric bifurca-
tion is affected markedly by the material parameter R in
the normal-yield ratio prescribing the approaching degree
of the stress to the normal-yield state.
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