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Numerical simulations are performed to investigate the characteristics of the formation of alternate and
multiple bars with the use of the NHSED2D model. The results of the simulations show reasonably good
agreement with the results of the theoretical analysis and the experiments. It is found that periodic
boundary conditions with an insufficiently small calculation domain tend to stabilize multiple bars. It is
also found that there is possibility that different initial configurations lead to different equilibrium states.
The reduction of the bar mode can be well explained by the theoretical results that the difference between
the dominant modes associated with the maximum growth rate and the maximum equilibrium amplitude.
The irregularity appeared in the reduction process of the bar mode is suggested to be caused by the

nonlinear interaction between multiple modes of bars.
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1. Introduction

The interaction between flow and its boundaries
provides a variety of riverbed patterns. The instability of
erodible beds leads to the formation of bars, which are
categorized by the bar mode n, the number of bars
laterally contained in the channel, into single alternate
bars and multiple bars as shown in Fig. 1.

Bar formation in rivers has been one of the greatest
concerns for many river engineers and researchers
because it plays significant roles in both engineering and
ecological aspects in fluvial processes. For instance,
pools caused by bar formation as shown in Fig. 1 induce
successive side bank erosion while sandbars are habitats
for various species in rivers.

A large number of studies have been conducted on the
bar formation. Only a brief review of the studies related
to this paper is provided herein. Ikeda" proposed
empirical formulas to predict the wavelength and wave
height of alternate bars. He tested his formulas by a
number of experimental data obtained by himself and
other researchers. Fujita?® performed numerous
‘experiments to investigate the formation processes of
alternate and multiple bars, and braided strecams. He
found that in most of the cases, the bar mode is reduced
as time progresses.

Theoretical studies started with linear stability
analysis™®", which successfully described the regime
of bar formation. However, the linear theories can
describe only the very beginning of bar formation. When
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Fig.1 Alternate bar (left) and multiple bars (middle and right).
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the amplitude grows to be finite, the linear theory is
invalid because of the domination of nonlinear terms.

Nonlinear stability analyses have been conducted in the
last few decades. Fukuoka & Yamasaka® performed a
nonlinear analysis assuming the interaction between two
different modes of bars to treat equilibrium states.
Colombini et al.”) proposed a nonlinear stability analysis
by the growth rate expansion method to obtain the wave
height of alternate bars. Two of the authors of this paper
proposed another nonlinear analysis'™" to extend
Colombini et al.’s to more general cases. In order to
remove the restriction of small growth rates, the
amplitude expansion method was used to derive the
equilibrium wave height of both alternate and multiple
bars.



In recent years, numerical models of bar formation have
been developed thanks to the rapid development of
computers. Egashira & Takebayashi '?, and Takebayashi
et al."™ performed numerical simulations of bar formation,
and succeeded in reproducing the reduction of bar mode
as observed in Fujita’s experiments. Kurabayashi et al.')
and Kurabayashi & Shimizu' proposed another
numerical simulation model using the CIP method that
minimizes the numerical diffusion. Their model also
succeeded in reproducing the transition from multiple
bars to braided streams. .

In the study presented herein, the Nagoya Hydraulics
Surface and Subsurface 2-Dimensional simulation model
(NHSED2D) is used to investigate the formation
processes of alternate and multiple bars in more detail.
The simulation results are compared with both theoretical
results’® 'V and experimental data® ? in order to clarify
the effects of initial and boundary conditions on the bar
formation process. The cause of the reduction of bar
mode observed in experiments is also discussed in terms
of the theoretical and numerical analyses.

2. NHSED2D model formulation

The NHSED2D model comprises two main parts, the
flow model and the sediment transport & bed variation
model. At first, the flow is computed over an initial bed
configuration until it converges. Then, the sediment
transport and the resultant bed variation are calculated
using the flow field. After the bed is renewed, the flow is
calculated again on the renewed bed. These procedures
are repeated to obtain successive bed deformation. The
NHSED2D model is essentially based on the model
developed by Tsujimoto et al’s'®.  The model is
modified to include semi-coupling of surface and
subsurface flow and the periodic boundary condition for
the simulation of bar formation in this study.

2.1 Flow model
The 2D depth-averaged flow model has the following
significant features:

- The finite volume method is employed to discretize
the governing equations.

- The fractional step method to solve the Poisson
equation of water surface elevation is employed in
order to obtain the stable and accurate flow field'”.

- To prevent numerical oscillation due to collocated
grid arrangement, the idea according to Rhie and
Chow'® to interpolate the flux of mass at the cell
surface is used.

- The QUICK scheme is employed for interpolating
the convection of momentum at the cell surface.

- Semi-coupling of surface and subsurface flow is used

_ in the region where emerged bars appear.

- Periodic boundary conditions are employed for both
flow and sediment transport.

The governing equations of 2D depth-averaged surface
flow can be described by the following equations:
0q, . . q T, ¢ € 1
P +d1v(qx p) gh Py q,ld| @)
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where ¢ is time, x and y are the streamwise and lateral
coordinates respectively, g, and g, are the x and y
components of the discharge flux, q is the discharge flux,
£ is the water surface elevation, & is the flow depth, T,
and T, are the x and y components of the Reynolds stress
tensor, g is the gravity acceleration, and C; is the
resistance coefficient of bed surface. The kinematic-eddy
viscosity is assumed to be proportional to the shear
velocity and depth.

When the flow depth 4 is less than critical value (= 2.D;,
where D; is the sediment diameter), the following
governing equations for subsurface flow are solved
instead of Egs. (1) — (3):

%+div(cw,,grad§)=- 0 @
C. s K -z,) ©)

n

where K is the permeability of the subsurface layer, 2, is
the elevation of the bottom of subsurface layer, and », is
the porosity of subsurface layer. We assumed z,, is a
constant of 0.5 m below the bed elevation for simplicity.
However, this does not affect on the bar formation
process as far as emerged bars are not so large.

When an emerged bar appears at a node, additional
conditions are required between the node and the adjacent
nodes. Proper treatment of the water surface gradients
around the node is necessary. This significance is also
mentioned by Kurabayashi & Shimizu™. In our model,
the appropriate water surface gradient can be computed
with the use of the semi-coupling of surface and
subsurface flow expressed as Egs. (4) and (5) in a
physically rational manner.

2.2 Sediment and bed variation models
The time variation of the bed elevation can be described
by the following sediment continuity equation:

0z
1-n)—=-di (6)
( e)at lvqb

where z is the bed elevation, and q, is the sediment flux
vector, which is estimated by the Ashida & Michiue
formula'. The x and y components of the sediment flux
(98-gsy) are estimated by the following equations:

Gne =95 OSP> gy, =g, SiNQ (7a, 7b)
where g3 is the total bedload transport rate per unit width,
and @ is the angle of bedload movement.

The effect of transverse bed slope on the sediment
transport is taken into account following Nakagawa et
al®. The model also includes the effect of secondary
flow caused by the curvature of streamlines using
Engelund’s equation®. The angle of bedload movement
@ is expressed by the following equation:

‘P=tan"(K—N. ﬁ)—tan“ T 92 )]
U r el T, On




where U and V are the velocity components in the x and
y directions respectively, N. is the coefficient of the
strength of secondary flow (=7.0 as given by Engelund), r
is the curvature radius of a streamline, y; and py is the
static and kinetic friction coefficients of sand grains

respectively, T.is the Shields number, r,_ is the critical

Shields number, and » is the coordinate normal to a
streamline.

After calculating bed variation, the bed slope angles
tan'(92/x) and tan'(9z/dy) between adjacent grids on the
bed are compared with the angle of repose ¢. In the case
that the bed slope angle is greater than the angle of repose
#, the bed is assumed to collapse with the angle ¢.

After iterating the flow calculation noflowitr times in
order for the flow to reach a quasi-steady condition, the
sediment and bed wvariation are computed as
conceptualized in Fig. 2. While the time step of flow
calculation At remains constant, the time step of sediment
computation Af, which is the controlling time for the
simulation is adjusted by ¢ as described in Eq. (9). We
found that &£ should be around 0.004D, to obtain
numerical stability.

Ats = d (9)
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Fig.2 The conceptual sketch of flow and sediment time steps.

2.3 The initial and boundary conditions

There are two possible approaches to specify the initial
and boundary conditions for the simulation of bar
formation in which instability needs to be induced. One
is to use the periodic boundary conditions in the
calculation domain. Small disturbances are given to the
initial flat bed to achieve instability. The other approach
is to give disturbances only to the upstream boundary; all
the other initial variables are undisturbed. While the
influence of the initial disturbance is reduced after
sufficiently long time in the former approach, it remains
persistently in the upper reach of the calculation domain
in the latter case. Considerably long domain is necessary
to achieve self-organized bed configuration, resulting in
long calculation time in the second approach. Although
the latter approach is more equivalent to most of
experiments, the = periodic boundary condition is
employed because of the limitation of CPU performance
in this study. The domain length selected in this
‘approach requires great scrutiny because it is expected to
have strong influences on the results, which is to be
revealed later in the present study.

3. The simulation of alternate bars

In this section, we attempt the simulation of the
formation of alternate bars. The results are compared
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with the corresponding experimental and theoretical
results.

3.1 Description on the experimental study

The formulation described in the previous section is
applied to the case of alternate bars (n = 1). Some
qualitative characteristics of alternate bars observed in
experiments are described in the following ?:

- Immediately after the flow commencement, sand
grains are swept straight downstream, with
fluctuating left and right to some extent.

- After a while, obliquely directed lines with very
small height appeared here and there on the bed.

- The sand grains seem to be trapped on and under the
lines, which become small steps with increasing
height.

- Some of them are seen to turn into clearly
distinguished bar edges, increasing their height.

- These bar edges continue to develop till they reach
an equilibrium state.

- Longitudinally averaged cross-sections of the bed are
characterized by Quonset hut-shaped (bell-shaped)
configurations.

The model is tested using Fujita’s Run C-2 described in
table 1, in which the aspect ratio f is the ratio between
channel width and flow depth. The aspect ratio is an
important parameter, which determines the bar mode n,
when larger B generally corresponds to larger n.

Table 1 Experimental data of Fujita’s Run C-2.

Run no. C-2
Channel width B (m) x length L (m) 040x 18
Water discharge Q (I/s) 1.95
Slope S ) 0.01
Sediment Diameter D, (mm) 0.99
Water Depth H (mm) 12.6
Aspect ratio 31

3.2 Conditions of the numerical simulation

Conditions employed in the simulation are described in
table 2, in which Z, is the initial bed elevation, ¢ is the
control parameter to determine the time step for sediment
transport and bed deformation as already described, and
"Nran" means the disturbance with a normal distribution,
which has a mean value of zero and a standard deviation
of 0.1. We adopt normally distributed random
disturbances that are considered to reproduce
experimental situation appropriately. The application of
the disturbance with a normal distribution have been
employed in other studies such as Dey el at’s®™®. The
length of the calculation domain is taken to be 3 m which
corresponds to the bar wavelength observed in the
experiment.

Table 2 Conditions of the simulation for Fujita’s Run C-2.

Domain B (m) x L (m) 0.40x3
No. of nodes 16 x 40
(Lateral x Streamwise)

At(s) 0.01
Zy type Nran
£ 0.004D;
Total time (min) 140




3.3 Results of the simulation for Fujita’s Run C-2

Fig. 3 shows the bed variation in each time step
obtained in the simulation. At the beginning of the
simulation, the small random disturbances set to be the
initial bed. It is found that the disturbances evolve into
alternate bars, and that the bar height increases with time.
After about 1 hour, the alternate bar reaches an
equilibrium state to become fully developed alternate
bars, propagating downstream with a stable regular shape.
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Fig.3 Bed topography of the simulation for Fujita’s Run C-2.

3.4 Discussion on the simulation of alternate bars

In Fig. 4, the results of the simulation are compared
with those of the theoretical analysis performed by two of
the authors (the detailed description of the theory is not
provided herein due to the limitation of space. See the
references 10 and 11). The bar height observed in the
experiment is 25.8 mm and that derived from theory is
29.5 mm while the numerical simulation gives a smaller
value of 21.1 mm. The bar height, which is defined as
the difference between the maximum and minimum bed
elevations in one wavelength, is overestimated in the
theory. This is because the bar shape is represented by
only three different Fourier modes in the theory, in which
local scour and deposition are too exaggerated.
Nevertheless the agreement of water surface elevation
and bed topography is reasonably good. Fig. 5 shows the
bed topography derived from the theory. Compared with
Fig. 3, the numerical simulation is found to give more
realistic topography than the theory does.

Longitudinally averaged cross-sections derived from
the numerical simulations are compared with the
experimental result in Fig. 6. It is found that the cross-
section is characterized by the bell-shaped configuration,
which is well reproduced by the numerical simulation.
Though the agreement between the experimental result

-0.02 ]

Fig.4 Comparison of longitudinal profiles of Fujita’s Run C-2
aty = 0.0125 m between the numerical simulation and theory.
ws denotes the water surface elevation.

-16 -12 -8 -4 0 4

0.5 1.0 1.5 2.0

25m
Fig.5 Bed topography of Fujita’s Run C-2 derived
from the theory.

Fig.6 The longitudinally averaged cross-sections of Fujita’s
Run C-2. Lines with symbols are numerical results, and
only line is the experimental results.

and the simulated result in equilibrium (¢ = 140 min) is
reasonably good, the vertical scale of the simulated result
is not sufficiently large. There is a possibility that this
discrepancy is caused by the fact that the secondary flow
is not well reproduced in the present model 2,

4. The simulation of multiple bars

In this section, the simulations of multiple bars are
performed and the results are compared with Fujita’s
experimental data®. The aspect ratio S is set to be higher
than that in the simulation of alternate bars, implying
shallower water channels. Four cases with different
initial conditions and domain lengths are studied in order
to clarify the influence of the initial and boundary
conditions on the bar formation process, and to discuss
the mechanisms of the reduction of bar modes and the
transition to braided channels in terms of the numerical
simulation, theory and experiments.

4.1 Description on the experimental study

In the case of multiple bars, the situations are more
complicated since it is known that multiple bars are
unstable to evolve into a braided configuration.
Significant characteristics of multiple bars® observed in
Fujita’s experiments are summarized in the following:
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- It is observed in some cases, that regular,
symmetrical high modal bars appear on the early
stage, and that they merge together to evolve into
lower modal bars.

- In the transition to lower modal bars, sudden changes
of bar geometry, increase in wavelength and heights,
lead the appearance of braided patterns in some cases.

- The cross-sectional shapes averaged longitudinally
are different in each sub-reach. This suggests a
spatial change in the mechanism of bed evolution
even in the case without emerged bars.

- The bed change is more rapid in the experimental
cases with steeper slopes.

The model is tested using Fujita's Runs B-2 and B-4, the

conditions of which are shown in table 3.

Table 3 Hydraulic conditions of Fujita’s Runs B-2 and B-4.

Run B-2, B-4
Channel width B (m) x length L (m) | 3.01 x43
Water discharge O (I/s) 30.75
Slope § 0.005
Sediment Diameter D, (mm) 0.88
Water Depth H (mm) 25.5
Aspect ratio 124

The Runs B-2 and B-4 are conducted under the same
hydraulic conditions. The only difference is the fact that
in the Run B-4, the experiment was interrupted six times
to measure the bed topography. Table 4 provides the
description of both experiments, and Figs. 7 and 8 show
the bed topographical changes observed in the Runs B-2
and B-4, respectively. In table 4, A, and Zg,,, are the
wavelength and wave height of bars observed in the
experiments.

Table 4 Description of the results of the Runs B-2 and B-4.

Time N Aexp Zyexp Description
(m) | (mm)

B-2

o Helicoidal flow with
longitudal streaks

15 Small water surface
wave at upstream.
Below it, a feature
like a bar edge
migrates downstream.

3hr39' 2 13 ~80 | A symmetrical form

Helicoidal flow, water
surface wave, very
thin bar of mode ~4 at
early interruption.

2hr33' 4 ~5 ~40 Mode 4 was not found

in B-2.

ToOne3Z-ag

eI

" — Y 2 v

c 1""’" 4

Fig.7 The bed topographical change observed in the Run B-2.

Fig.8 The bed topographical change observed in the Run B-4.

4.2 Conditions of the numerical simulation

Since the periodic boundary condition is assumed to
have a strong influence on the bar wavelength, several
different domain lengths are used in the simulations. The
different initial conditions are also employed to clarify
the influence.  The conditions used in the four
simulations are described in Table 5.

As described earlier, the periodic boundary condition
does not represent the experimental condition, when the
domain length is expected to be of great importance. We
employed three different domain lengths in order to
clarify the significance of the length in the case of the
periodic boundary condition.

Table 5 Conditions of the simulations for Fujita’s Runs B-2 and
B-4. "Sine" means that Z, is set to be a sinusoidal shape.

4hr15s' 2 ~13 ~90 | Bar wavelength &
height increase, n

decreases.

Final ~1.5 Irregular bars, some
emerged, and single

meandering thread.

Simulation No. 1 [ 2. 3 4

B (m)x L (m) 3.01x5 3.01x15 | 3.01x25
No. of nodes 30x 50 30x 75 30 x 100
At (s) 0.01 0.02 0.03
Zo type Sine | Nran Nran Nran

€ 0.004D;
Totaltime(hrs) | 45 [ 50 | 70 [ 51
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Fig.9 Bed topography of the simulation No. 1.
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Fig.10 Bed topography of the simulation No. 2.

time = 0 min -0.3-0.2-0.1 0.0 0.1 0.2 0.3
Zpin = -0.36 mm, Z,,,.. = 0.34 mm mm
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Fig.11 Bed topography of the simulation No. 3. Emerged bars
are indicated by broken circles.

Fig.12 The longitudinal profile of the simulation No. 3 aty =
1.35 m. The small figure shows the vicinity of the emerged bar.
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Fig.13 Bed topography of the simulation No. 4.

4.3 Results of the simulations for Fujita's Runs B-2
and B-4
(1) The simulation No. 1

It is found that, at the beginning, the initial sinusoidal
bed topography with the mode » = 1 evolves into the bars
with the mode n = 3 as shown in Fig. 9. The bar height
increases with the evolution of the mode. In the final
stage, a stable symmetrical form of multiple bars with the
mode n = 3 is observed, the wavelength of which is
equivalent to the domain length. Therefore, it implies
that alternate bars (n = 1) with the wavelength equal or
less than 5 m cannot appear in the simulation.
(2) The simulation No. 2

Fig. 10 shows the formation process of the simulation
No. 2. The disturbances with a normal distribution are
given on the surface as an initial condition. While the
mode n = 5 with the wavelength around 3 m, is
dominantly observed at the beginning, it is reduced to the
mode n = 4. The bar height increases with reducing
mode. Symmetrical bars with the mode n = 4 become
dominant in equilibrium. It is interesting that although all
the conditions other than the initial condition are identical
between both simulations No. 1 and 2, the final bar
modes are different from each other. This implies that
there are two different equilibrium solutions in this case.
(3) The simulation No. 3

In this case, the domain length is extended to be 15 m.
The initial condition is small random disturbances with a
normal distribution. The time variation of the bed
topography is shown in Fig. 11. At the beginning, the
small disturbances decay rapidly, and bars with the mode

n =3 ~ 4 appear. Then, the bars with the mode n = 3
become dominant in the whole region. The bar height
and the wavelength increase with reducing bar mode
from n = 3 to 2. The bars with the mode » = 2 are rather
irregular and an emerged bar appears at 6.3 hrs. The bed
configuration is similar to alternate bars though the bar
pattern is rather irregular and emerged bars increasingly
appear as time progresses. The longitudinal bed profile at
t = 7.0 hrs that emerged bars already appeared in the
simulation along y = 1.35 m is shown in Fig. 12.
(4) The simulation No. 4

This simulation is conducted in the longest simulation
domain. Rather symmetrical bars with the mode n = 3
are found at the beginning as shown in Fig. 13. The bars
migrate downstream and increase their height. The
merging process of bars from the mode n =3 ton=21is
clearly observed in some regions. The wavelength
increases with decreasing bar mode. In this case, the
symmetrical bars with the mode »n = 2 and a wavelength
of about 8 m are found in the figure. It is found that the
bed evolution processes seen in the simulations No. 3 and
4 are rather similar to each other; the bar mode n = 3 is
dominant first, and is reduced to the mode n = 2. The
irregularity increases with decreasing mode.

4.4 Discussion on the simulations for multiple bars
(1) The effects of initial and boundary conditions

In each simulation, the process of bed evolution is
found to be rather different. This is caused by the
influence of the domain length and the initial conditions.
In the simulations No. 1 and 2, the stable patterns of
multiple bars appear. The bar wavelength A is forced to
be equivalent to the domain length by the periodic
boundary conditions because the domain is not long
enough. It is suggested that the large effect of the
boundary condition seems to stabilize multiple bars. In
addition, these two cases end up with different final
patterns; two different initial conditions result in two
different final configurations. These results suggest that
there exist at least two equilibria that are induced by
different initial conditions in this case.

It is found that boundary conditions are essential to
solutions (bar modes) that can exist in a channel. This
further suggests that solutions or bed configurations are
strongly influenced by the change of boundary conditions
such as riverbank erosion or the formation of emerged
bars.

(2) The modal transition (reduction)

The results compared with the theoretical analysis
provide a useful insight on the bar formation. The
characteristic wavelength associated with the maximum
growth rate is commonly assumed to be the dominant
wavelength that appears in the field. Fig. 14 shows the
relation between the growth rate and wavelength A for
each mode. For A =5 m, the theory shows that the bars
with the mode n =2 can develop. This corresponds to
the simulation No. 1, where the initial bar mode » = 1
changes into n = 3 because the domain length is 5 m. We
have tried starting with a sinusoidal shape with the mode
n = 2, and have found the initial mode (7 = 2) was stable,
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Fig.14 The linear growth rate as a function of the
wavelength and the mode n derived from the theory.
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Fig.15 Bar height Zg as a function of the wavelength and
the mode n derived from the theory.

though the results are not shown herein because of the
limitation of space.

The domain lengths of the simulations No. 3 and 4 are
15 and 25 m, respectively. It is found in Figs. 11 and 13
that the bars with the mode # = 3 and the wavelength A =
4-6 m firstly appear. According to the theoretical results
shown in Fig. 14, the bars with the mode n = 3 have a
higher growth rate than those with the other modes, and
that the maximum growth rate corresponds to a
wavelength around 5 m.

The relation between the bar height Zz and the
wavelength A for several modes derived from the theory
is shown in Fig. 15. From the figure, the bar height Zp
corresponding to the modes n = 3 and 4 are found to be
28 mm and 36 mm, respectively, when the wavelength A
is 5 m. In the simulations No. 1 and 2 in which the
modes n = 3 and 4 appear, respectively, and the
wavelength is constrained to be 5 m by the domain length,
the bar heights Zz are 20 and 24 mm, respectively.
Meanwhile, bars with n =4, Zg =40 mm,and A=5m
were observed in Fujita’s experiment (Run B-4 at ¢ = 2hrs
33min). This suggests that the mode with the larger bar
height becomes dominant in reality. In addition, the
qualitative agreement is found to be good among the
simulation, experiment and theory though the quantitative
agreement is not prefect.

It is found, in Figs. 14 and 15, that the wavelength
associated with the maximum bar height Z is far larger

0.03 7
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Fig.16 The comparison of the longitudinal profile in the
simulation No. 1 at y = 0.05 m, ¢ = 4.5 hrs with the
corresponding theoretical result. Solid and broken lines
indicate the simulated and theoretical results, respectively,
and ws denotes the water surface elevation.
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Fig.17 The comparison of the longitudinal profile in the
simulation No. 2 at y = 0.05 m, ¢ = 5.0 hrs with the
corresponding theoretical result.
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Fig.18 The comparison of the longitudinal profile of the
simulation No. 4 fromx=10to20maty=1.5mand ¢
= 3.6 hrs with the corresponding theoretical result.

compared with the characteristic wavelength defined by
the maximum growth rate. Fig. 15 also shows that the
lower modes give the larger maximum bar height Zg.
This causes the fact that higher modal multiple bars with
shorter wavelength tend to merge each other and evolve
into lower modal bars with larger bar height.

We saw an example in which two different equilibria
were induced by two different initial bed conditions even
under a rather strict boundary condition. In the case of
natural channels with a large aspect ratio, various modes
of bars can develop in the channel because the effect of
boundary condition is so small. The questions as to
which mode dominantly appears or how the modal
reduction occurs can be generally answered by the theory
as discussed above. This process is not so simple
however. The irregularity that appeared in the reduction
process of the bar mode suggests the nonlinear interaction
between multiple modes of bars. The nonlinear
interaction may be an essential factor to cause the strong
irregularity and instability of braided streams.
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Fig.19 The time development of bar height of the simulation
No. 1-4 compared with the results of the Run B-4.

(3) Longitudinal profiles, time development of bar
height and longitudinally averaged cross-sections

Figs. 16, 17 and 18 show the comparison of the
longitudinal profiles in the simulations No. 1, 2 and 4
with the corresponding theoretical results, where the bar
modes are found to be n = 3, 4 and 2, respectively. The
agreement between the numerical simulations and the
theory is reasonably good. The high bed elevation occurs

because of the exaggeration of insufficient number of the |

Fourier mode included in the theoretical solution in that
particular case. It is expected that, if more Fourier modes
are included, the exaggeration is attenuated. Nevertheless,
the theory is applied to the case beyond its applicabili ty,
and show good agreement in the nonlinear analysis
performed by two of the authors. In a similar manner,
though the theory is not applicable to the emerged bars in
fact, it provides good agreement even in the range beyond
its applicability.

The time development of the bar height Zp in each
simulation is shown in Fig. 19. The figure shows that the
bar height cannot grow in the case to the simulation No. 1
and 2. This implies that the insufficient domain length of
simulation No. 1 and 2 only allows for the appearance of
higher modal bars with small bar height. Though the
time development of bar height simulated by the
numerical model is generally slower at the beginning, the
agreement is improved afterwards. This is probably
caused by the difference of the magnitude of initial
disturbance.

The longitudinally averaged cross-sections of the
simulation No. 2, 3 and 4 are shown in Figs. 20, 21 and
22, respectively. Compared with the results of the Run
B-2, the best agreement is found in the case of the
simulation No. 4, which employs the longest calculation
domain in the four cases. This implies the longitudinally
averaged cross-section is also strongly influenced by the
domain length.

5. Conclusions

Numerical - simulations are performed to study bar
formation in straight channels with the use of the

Fig.20 The time development of longitudinally averaged
cross-sections of the simulation No. 2. The vertical scale
at t = 1.6 hrs is enlarged in the small figure.

——30hrs -+—5.0hs
—=—7.0 hrs

— Exp B-2

Fig.21 The time development of longitudinally averaged
cross-sections of the simulation No. 3 compared with the
experimental results.

-—25hs  —=3.1hms
—~—36hs ——5.1hrs

Fig.22 The time development of longitudinally averaged
cross-sections of the simulation No. 4 compared with the
experimental results. The vertical scale at £ = 2.5 hrs is
enlarged in the small figure.

NHSED2D. The results of the simulations show
reasonably good agreement with the theoretical and
experimental results. It is found that different initial
conditions lead to different equilibrium states. It is also
found that initial and boundary conditions have strong
influences on bar modes that appear in channels. The
process of modal reduction can generally explained by
the theory. However, the irregularity appeared in the
reduction process of the bar mode is suggested to be
caused by the nonlinear interaction between multiple
modes of bars. This process is far more complicated.
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