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An approximate method is extended for analyzing the free vibration problem of simply
supported orthotropic square plate with a square hole. In this paper, a square plate with
a square hole is transformed into an equivalent square plate with non-uniform thickness
by considering the hole as an extremely thin part of the equivalent plate. Therefore, the
dynamic characteristics of a plate with a hole can be obtained by analyzing the equivalent
plate. The Green function, which is the discrete solution for the deflection of the equiva-
lent plate, is used to obtain the characteristic equation of the free vibration. The effects
of the side to thickness ratio, hole side to plate side ratio and the variation of the thick-
ness on the frequency properties are considered. Some numerical analyses are carried out
for the simply supported orthotropic square plate with a square hole. The efficiency and

accuracy of the numerical solutions by the present method are investigated.
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1. Introduction

Plates with holes are extensively used in aeronau-
tical, mechanical and civil structures to lighten the
structure and to obtain the convenient connection of
structural members. Their dynamic characteristics
have been studied for many years. Most previous
investigations have been confined to isotropic plates
with holes [1-5]. The study of composite plates with
holes are rather limited. Reddy [6] studied the large
amplitude free vibration of layered composite plates
with rectangular. cutouts by finite element method.
Frequencies corresponding to linear and nonlinear sit-
uations were presented for thin and thick orthotropic
and laminated composite plates. Avalos, Larrondo
and Laura [7] obtained the frequency parameters for
anisotropic rectangular plates with free-edge holes by
using the Rayleigh-Ritz method. The effects of aspect
ratio, hole side to plate side ratio and the position of

the hole on the frequency properties were investigated.

However, in these studies the effect of the variation of
the thickness on frequency properties was not consid-
ered.

This paper extends the early work {8] to analyze the
free vibration of orthotropic square plates with a hole.
By considering the hole as an extremely thin part of a
plate, the free vibration problem of a plate with a hole
can be transformed into the free vibration problem of
its equivalent square plates with non-uniform thick-
ness. Green function, which is the discrete solution
for the deflection of the equivalent plate, is used to
obtain the characteristic equation of the free vibra-
tion. The effects of side to thickness ratio, hole side
to plate side ratio and the variation of the thickness in
one direction or two directions on the frequency prop-
erties are presented. The lowest 5 frequency parame-
ters and their mode shapes are given for simply sup-
ported orthotropic square plates with a square hole.
By comparing the present results with those previ-
ously reported, the convergence and accuracy of the
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present method are investigated.

2. Discrete Green Function

An zyz coordinate system is used in the present
study with its z — y plane contained in middle plane
of an orthotropic square plate and the z—axis perpen-
dicular to the middle plane of the plate. The thickness
and the length of the orthotropic square plate are A
and a, respectively. The principle material axes of the
plate in the direction of longitudinal, transverse and
normal directions are designated as 1, 2 and 3. The
differential equations of the plate with a concentrated

load P at point (z4,y,) are as follows:
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where Q; and Q, are the transverse shear forces, M,
and M, are the bending moments, My, is the twist-
ing moment, k; = 5/6 is the shear correction factor,
d(z — z4) and 6(y — y.) are Dirac’s delta functions,
A;j (3,7 = 4,5) are the extensional stiffnesses, D;;
(1,7 = 1,2,6) are the bending stiffnesses.

A;j, Dij can be obtained by the following expres-
sions:

1 E,
Aii = Qiih, Di; = —Qyh3, =
Y] Qz] ij 12Qz] Qll 1— V1oV
FE. v B
Qo= ——2—, Quz= —22 Qu4 = Gas,
1— vy’ 1 —vovy

QRss = G31, Qes = G12, other Q;; =0,

where E; is the axial modulus in the 1-direction, E;
is the axial modulus in the 2-direction, vy, is the Pois-
son’s ratio associated with loading in the 1-direction
and strain in the 2-direction, v; is the Poisson’s ratio
associated with loading in the 2-direction and strain in
the 1-direction, G23, G31 and G2 are the shear mod-
uli in 2-3, 3-1 and 1-2 planes.
By using the non-dimensional expressions
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Fig. 1 Discrete points on a rectangular plate

a

Do(1 — v1ava1)
[Xs, X, Xl = [0,6, ], [0,,6 = [2,2,5],

the equation (1) can be rewritten as

[XS,X41X5] = [M:cy;MyaMz] )

8
0X, X, .
;{Flts—a_é_ + Fzzs—% + F3s X}
+P8(n — 1g)8(¢ — ¢-)01e =0, (2)

where t = 1 ~ 8, P = Pa/(Do(1 — viavm)), Do =
E>h3/(12(1 — v12121)) is the standard bending rigid-
ity, ho is the standard thickness of the plate, d;; is
Kronecker’s delta, Fy;s, Fops and Fys are given in
Appendix A.

By dividing a rectangular plate vertically into m
equal-length parts and horizontally into n equal-
length parts as shown in Figure 1, the plate can be
considered as a group of discrete points which are
the intersections of the (m-+1)-vertical and (n+1)-
horizontal dividing lines. In this paper, the rectangu-
lar area, 0 <7 < n;, 0 < ¢ < (;, corresponding to the
arbitrary intersection (i, j) as shown in Figure 1 is de-
noted as the area [z, j], the intersection (¢, j) denoted
by O is called the main point of the area [i, j], the
intersections denoted by o are called the inner depen-
dent points of the area, and the intersections denoted
by e are called the boundary dependent points of the
area.

By integrating the equation (2) over the area [i, j],
the following integral equation is obtained:

8 N
> {Fus (Xs(n,¢;) — Xs(n, 0))dn
s=1 0
G .
+Fu [ Xl10.0) — X0,

ni rCs
+Fys /0 ; Xs(n,C)dndC}

-152-



+Pu(n = 1g)u(¢ = )81 = 0, (3)

where u(n — 1) and u(¢ — ¢,) are the unit step func-
" tions. '

Nexf, by applying the numerical integration
method, the simultaneous equation for the unknown
quantities Xs;; = X(n:,¢;) at the main point (%, 7)
of the area [i, j] is obtained as follows:

8 1
Z {Fus Zﬂik(Xskj - Xsk())

T s=1 k=0

J
+F2ts Z /le (Xsil - XsOl') '
1=0

i J
+Fa5 ) Zﬂikﬁjlxskl} + Puiqujrdre = 0,(4)
k=0 [=0
where Bix = aix/m,Bj = aj/n, aix = 1~ (Sok +
5ik)/2, o = 1 - (50; + (53'1)/2, t=1~8,i=1~m,
J=1l~n,uyg= u(n; — "7q)a Ujr = U(Cj — )
The solution X;; of the simultaneous equation (4)

is obtained as follows:

Xpij = Z {ZﬂikApt[tho — Xtk (1 — dix)]

t=1 k=0

j
+ Zﬁlept[le — Xtir(1 — 651)]
=0

i J
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—AplPuiqujr, ' (5)

where p = 1 ~ 8, Ap, By and Cpyy are given in
Appendix B.

In the equation (5), the quantity X,;; at the main
point (%,7) of the area [z, j] is related to the quanti-
ties X0 and Xyo; at the boundary dependent points
of the area and the quantities Xix;, X and Xip
at the inner dependent points of the area. With the
spreading of the area [i,j] according to the regular
order as [1,1], [1,2], -++, [1,n], [2,1], [2,2], - -+, [2,7],
-+ fmy 10, [m, 2], - -+, Im, n], a main point of a smaller
“area becomes one of the inner dependent points of the
following larger areas. Whenever the quantity X,;; at
the main point (7, j) is obtained by using the equation
(5) in the above mentioned order, the quahtities Xikj,
Xt and Xy at the inner dependent points of the fol-
lowing larger areas can be eliminated by substituting
the obtained results into the corresponding terms of
the right side of equation (5).

By repeating this process, the equation X,;; at
the main point is only related to the quantities X, ko

6, =0

6, =0
May My=6,=w=0 w=0
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My B, =0
[/ w=0
My ny szsey A’Izy

Fig. 2 Simply supported plate

(r=1,3,4,6,7,8) and X,q; (s=2,3,5,6,7,8) which are six
independent quantities at the each boundary depen-

dent point along the horizontal axis and the vertical

axis in Figure 1, respectively. The result is as

6 [ 7
Xpij = Z{Z apijderfO + Z bpijdesOQ}

d=1 *f=0 g=0
+qp'ij P7 (6)

where apij54, bpijga and g,,;; are given in Appendix C.

The equation (6) gives the discrete solution of the
fundamental differential equation (2) of the bending
problem of a plate under a concentrated load, and the

discrete Green function is chosen as Xg;;/[Pa/Do(1 -

V12V21)]-

3. Integral Constant and Boundary
Condition of a Square Plate

The int;egral' constants X, s, and X0, involved in
the discrete solution (6) are all quantities at the dis-
crete points along the edges ( =0 (y=0)and n =0
(z = 0) of the square plate. There are six integral con-
stants at each discrete point. Half of them are self-
evident according to the boundary conditions along
the edges ¢ = 0 and 1 = 0 and half of them are needed
to determine by the boundary conditions along the
edges ( =1 and n = 1.

The integral constants and the boundary conditions
for a simply supported square plate are shown in Fig-
ure 2, and those shown in the boxes are the integi‘al
constants and the boundary conditions at the corners
of the plate.
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Original plate Equivalent plate
Fig. 3 Square plate with a square hole and its equiv-
alent square plate

4. Equivalent Square Plate of a Square
Plate with a Square Hole

A square plate with a hole can be transformed into
an equivalent square plate with non-uniform thick-
. ness (shown in Figure 3) by considering the hole as
an extremely thin part of the plate theoretically. The
thickness of the actual part of original square plate
is expressed as h, and the thickness of the extremely
thin part of the equivalent square plate is expressed
as hy. The thickness of the plate along the border line
between the actual part and the extremely thin part is
chosen as (h + h;)/2. In this paper, numerical results
are obtained for a simply supported square plate with
a central square hole. The simply supported and free
edges are denoted by the symbols S and F, respec-
tively, and shown by solid line and dotted line. The
plates with four simply supported edges are denoted
as SSSS plates.

5. Characteristic Equation of Free Vi-
bration of Square Plate with Non-
uniform Thickness

By applying the Green function w(zxo,ve,Z,¥) /_P
‘which is the displacement at a point (zo,yo) of a plate
with a concentrated load P at a point (z,y), the dis-
placement amplitude @ (xo,yo) at a point (zo,yo) of
the square plate during the free vibration is given as
follows:

"Table 1 Material properties of isotropic and or-
thotropic plates

Material £ fa  Sn  Cm ),
isotropic 1 038 038 038 03
0.25

orthotropic 40 . 0.5 0.5 0.5

(z0,¥0,2,y) Do(1 — viava:)
a Pa

G(nOa CO) m C) = ot
W(z,y)
a

1

W(n,¢) = 1= ba,

where po is the standard mass density.
By using the numerical integration method, equa-
tion (7) is discretely expressed as

m n

kWit = > Y BrniBni HijGriss Wij» kg = 1/(uA*Y8)
i=0 j=0
From equation (8) homogeneous linear equations in
(m+1)x (n+1) unknowns Wy, Wo1, - -,Won, W10,Wn
T '1W1m' o WmO,Wmly' .
lows:

-,Wmn are obtained as fol-

n

Z (ﬂmiﬂnjHiijlij - kféikéjl)wij = 0$
i=0 j=0

(k=0,1,---,m,l=0,1,---,n). 9)

The characteristic equation of the free vibration of
a square plate, which is a (m +1) x (n + 1) matrix, is
obtained from the equation (9) as follows:

Koo Ko KOZ KOm
Kio K11 Ki2 Kim
K20 K21 Ka2 Kaem [=0, (10)
Kmo Km]_ ng Kmm
where
[ BroHjoGliojo — kfdij BanHinGiojn
BroH 0G0 BanHinGi1jn
Kij = OBm; BroHjoGizj0 BrnHjnGizjn
BroH;j0Ginjo BrnHinGinjn — ky

W(zo,Y0) = / / phw(z, y)[w(zo, yo, 7,y)/Pldzdy, 6. Numerical Results
0 0 :

(7)

where p is the mass density of the plate material.
The non-dimensional expressions are used as

plz,y) h(z,y)

M= pohow?at
ho '

" Do(1 — v1ov21)’

H(T/) C) =

The convergence and accuracy of numerical solu-
tions are investigated for simply supported isotropic
and orthotropic plates with holes for the cases of uni-
form thickness and variable thickness in one or two
directions. The material properties of isotropic and
orthotropic plates are shown in Table 1.
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Fig. 4 The fundamental frequency versus the divi-
sional number m(= n) for SSSS isotropic
square plate with a square hole and uniform
thickness (¢/a = 0.5,a/h = 100, h/h, = 12).

6.1 Convergence of the Solution

In order to examine the convergence, numerical cal-
culation is carried out by varying the number of di-
visions m and n. The lowest 5 natural frequency pa-
rameters of ‘an isotropic square plate with a square
hole are shown in Figure 4. It can be noticed that the
results of m = 12 are close to the convergent results.
In order to get more exact results, the Richardson’s
extrapolation formula is used for two cases of divi-

sional numbers m (=n) of 12 and 16. In this paper,

the convergent results are those results obtained by
the Richardson’s extrapolation formula. Table 2 is
used to determine the suitable thickness ratio h/h; of
the original and extremely thin parts. The ratio h/h;
should be chosen as very large value theoretically, but
in fact, no good results can be gotten due to the pre-
cision problem of the computer. So in Table 2, the
h/h; is chosen as 2, 6, 12, 18. It is found the results
of h/h;s = 12 are very close to the results of h/h, = 18.
So it is sufficient to set the thickness ratio h/h; = 12.

By the same method, the number of divisions m(=
n) and the thickness ratio h/h; can be determined for
the other plates. :

6.2 Accuracy of the Solution
The lowest 5 natural frequencies and mode shapes
of the square plates with squaré holes are presented for
the cases of uniform thickness and variable thickness.
(1) Plate with Uniform Thickness
Numerical values for the lowest 5 natural frequency
parameter X of SSSS isotropic thin square plates with

Table 2 The natural frequency parameter X of SSSS
isotropic square plate with a square hole
and uniform thickness for various thickness
ratio h/hy (¢/a = 0.5,a/h = 100,m = n =
16)

Mode sequence number
Source 1st 2nd 3rd 4th 5th
4.965 7.105 7.105 8.912 10.028
4.776 6.564 6.564 8.815 9.270
4.768 6.528 6.528 8.544 9.204
4.767 6.524 6.524 8.468 9.194

2 Present
6 Present
12 Present
18  Present

Table 3 The first five frequencies versus the ratio
c/a for SSSS isotropic square plate with a
square hole and uniform thickness (a/h =
100, h/he = 12)

Mode sequence number
c¢/a Source 1st 2nd 3rd 4th 5th

0 Present 4.548 7.188 7.188 9.011 10.146
Ref. [4]  4.558 7.246 7.246 9.365 10.163
Ref. [9]  4.529 7.110 7.110 9.001 10.034
Ref. [10] 4.549 7.192 7.192 9.098 10.172
0.1 Present 4.544 7.193 7.193 9.002 10.143
Ref. {4] 4.403 7.194 7.194 9.235 9.891
0.2 Present 4.485 7.276 7.276 9.109 10.135
Ref. [4]  4.397 7.017 7.017 8.968 9.662
Ref. [9]  4.482 7.022 7.022 8.867 9.882
0.3 Present 4.507 6.785 6.785 9.133 9.776
Ref. [4]  4.478 6.797 6.797 8.739 9.768
0.4 Present 4.588 6.612 6.612 8.899 9.483
Ref. (4]  4.653 6.569 6.569 8.611 9.386
0.5 Present 4.822 6.455 6.455 8.448 8.845
Ref. [4]  4.936 6.502 6.502 8.525 8.881
Ref. [9]  4.979 6.542 6.542 8.667 8.875 -

a square hole are given in Table 3 with the FEM
values obtained by Ali and Atwal [4], Kaushal and
Bhat [9] and the exact solutions [10]. For the plate
with ¢/a = 0, by comparing the present results and
FEM results [4,9] with the exact solutions [10], it can
be found the present results are better than FEM re-
sults [4,9]. For the plate with small hole such as
¢/a < 0.3, the fundamental and fifth frequency pa-
rameters obtained by the proposed method are higher
than those FEM results, and the other frequency pa-
rameters show sometimes higher and sometimes lower.
For the plate with ¢/a = 0.4, the fundamental and
higher frequency parameters obtained by the present
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Table 4 Natural frequency parameter A for SSSS or-
thotropic square plate with a square hole
and uniform thickness (c¢/a = 0.5,h/h; =
12)

Mode sequence number
afh  Source 1st 2nd 3rd 4th 5th
100 Present 7.098 8.539 9.070 10.528 13.979

Ref [6] 7.160 — -  10.598 —
10  Present 6.473 7.634 7.841 9.240 10.373
Ref [6] 6537 — — 9139 -

method are lower and higher than those results [4,9],
respectively. For the plate with ¢/a = 0.5, all the
present results are lower than FEM results in refer-
ences [4,9]. From Table 3, it is noticed the results
obtained by differéent methods are some different but
the maximum error is smaller than 5 percent. The ef-
fects of the hole size on the first 5 frequencies for the
SSSS isotropic thin square plate can be found from
Table 3. It might be noted that the variations of the
fundamental and higher frequencies with hole size are
quite different. As the ratio c¢/a increases, the fun-
damental frequency first decreases a little , then in-
creases. For ¢/a = 0.5, the fundamental frequency of
the plate is higher than the corresponding frequency
for the plate without a hole. But as the ratio ¢/a in-
-creases, the second, third and fourth frequencies first
increase a little, then decrease. For c/a = 0.5, these
frequencies are lower than the corresponding frequen-
cies for the plate without a hole. The fifth frequency
monotonously decreases with the increase of ¢/a.

Table 4 presents the numerical results for the low-
est 5 natural frequency parameter A of the SSSS or-
thotropic thin and moderately thick square plates
with a square hole of side ratio c/a = 0.5. By com-
paring with the results of Reddy [6], the accuracy of
the present results is investigated. Table 4 shows the
side-to-thickness ratio a/h affects the frequency con-
siderately. The nodal patterns of the 5 modes of the
plates are shown in Figure 5. It can be noted when
a/h changes from 100 to 10, the 1st, 2nd, 4th and 5th
mode shapes don’t change but the 3rd mode shape
changes a lot. .

To further illustrate the effect of the hole size on the
frequency of SSSS orthotropic thin and moderately
thick plate, the variation of fundamental frequency
with ¢/a is shown in Figure 6. It can be seen that the
frequencies decrease with the increase of ¢/a for both
the thin and moderately thick plates. The effect of the

~—- ——- —;\:_ —_——— r—l—!

i 4 | ! || 4 F

Ist 2nd 3rd 4th 5th
a/h =100

1 41 F | || 4 F

— — I — /=

1st 2nd 3rd 4th Sth
a/h =10

Fig. 5 Nodal patterns for SSSS orthotropic square
plate with a square hole and uniform thick-
ness (¢/a = 0.5, h/hy = 12).

by T T T T T
Present
» Ref.(6]
o F o Rel[11] -
8 ) ah=100 1

Fig. 6 The fundamental frequency versus the ratio
c¢/a for SSSS orthotropic square plate with a
square hole and uniform thickness.

transverse shear deformation on frequencies decreases
with the increase of ¢/a. The present results agree
closely with the results obtained by Lam, Hung and
Chow [11] and Reddy [6] shown in Figure 6. Com-
paring the results of the fundamental frequencies of
isotropic and orthotropic plates with ¢/a = 0.5 shown
in Table 3 and Figure 6, respectively, it can be noted
that the fundamental frequency decreases a little first
and then increases with c¢/a for isotropic plate, while
it decreases with c/a for orthotropic plate. To ex-
plain the phenomenon, two effects introduced by a
hole are considered. The first one is a reduction in
the strain energy of the plate which will decrease the
frequency of the plate. The second one is a reduction
in the mass which will increase the frequency. For the
isotropic plate with a small hole, the first effect might
be the dominant effect, and the frequency would de-
crease. But for a larger hole, the second effect might
become the primary effect, and the frequency would
begin to increase. Further explanation can be found
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Fig. 7 The fundamental frequency versus the thick-
ness ratio a/h for SSSS square plate with a
square hole and uniform thickness (h/h; =
12).

in {4]. But for the orthotropic plate with a larger-hole,
the first effect might be still the dominant effect due
to its high ratio of E;/E5, and the frequency would
continue to decrease with ¢/a < 0.5.

Figure 7 shows the variation of the fundamental
frequency parameter with the side-to-thickness ratio
a/h for the plates with ¢/a=0, 0.2 and 0.5. Isotropic

“and orthotropic cases are considered. The results of
. Reddy [6] are included in this Figure. It can be no-
ticed that the effect of transverse shear deformation
is much more pronounced in orthotropic plate than in
isotropic plate. Also, the effect increases with the de-
crease of the ratio a/h. So for orthotropic plates, with
the increase of the ratio a/h, the fundamental frequen-
cies show non-linear increase for values of a/h < 30
but show linear increase for larger values of a/h > 30.
The fundamental frequency parameter for the plate
with side ratio ¢/a = 0.2 is lower than that of plate
without a hole for both the isotropic and orthotropic
cases. Compared with the frequencies of the plates
with ¢/a = 0 and ¢/a = 0.2, the frequency of the
plate with ¢/a = 0.5 is higher for the isotropic case
but it is lower for the orthotropic case.

(2) Plate with Variable Thickness in One Di-
rection

In order to investigate the accuracy of the present
method for the plate with variable thickness, numer-
ical values for the lowest 5 natural frequency param-
eter A of SSSS isotropic thin square plate with vari-
able thickness in one direction are given in Table 5
with the results of Appl and Byers [12]. In this

Table 5 Natural frequency parameter A for SSSS
isotropic square plate with variable thick-
ness in one direction {(a/ho = 100, ho/h: =
12)

Mode sequence number
2nd” 3rd 4th  5th

o Source 1st

0.1 Present 4.660 7.363 7.363 9.312 10.390
Ref. [11] 4661 - - - -

0.8 Present 5.354 8.406 8.439 10.68511.747
Ref [11] 5335 - - - -

Table 6 Natural frequency parameter A for SSSS or-
thotropic square plate with a square hole
and variable thickness in one direction
(c/a. = 0.5, a/ho = 100, ho/ht = 12)

Mode sequence number
a Source  1st 2nd 3rd 4th  5th

00 Present 7.098 8539 9.070 10.528 13.979
Ref. [6] 7.160 —  —  10.598 —

0.1 Present 7.267 8.749 9.299 10.782 14.045

0.8 Present 8217 10.110 10.571 12.388 15.710

Table 7 Natural frequency parameter A for SSSS or-

thotropic square plate with a square hole
and variable thickness in one direction
(¢/a=0.5,a/ho =10, ho/hs = 12)
Mode sequence number
a Source  1st 2nd  3rd 4th  5th

0.0 Present 6.473 7.634 7.841 9.240 10.373

Ref. [6] 6537 — - 9139 —
0.1 Present 6.584 7.755 7.917 9.368 10.431
0.8 Present 7.206 8.456 8.565 10.151 10.784

paper, variable thickness in one direction varies lin-
early along the y-direction according to the equation
h(z,y) = ho(1 + ay/a). From Table 5, it can be seen
the method described can be also used to solve the vi-
bration problem of the plate with variable thickness.

As application of the present method, the numerical
results for the lowest 5 natural frequency parameter A
of SSSS orthotropic thin and moderately thick square
plates with a square hole of side ratio ¢/a = 0.5 and
variable thickness in' one direction are presented in
Tables 6 and 7. From these Tables, it can be noticed
that the frequency parameters will increase with the
increase of a. The nodal patterns of the 5 modes of
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Fig. 8 Nodal patterns for SSSS orthotropic square
plate with a square hole and variable thick-
ness in one direction (¢/a = 0.5,a/h =
100, ho/he = 12).
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Fig. 9 Nodal patterns for SSSS orthotropic square
plate with a square hole and variable thick-
ness in one direction (¢/a = 0.5,a/h =

10, ho/hy = 14).

the plates are shown in Figures 8 and 9. In both Fig-
ures, the horizontal nodal lines of the second modes
move to the thinner parts of the plates with the in-
crease of a.

(3) Plate with Variable Thickness in Two Di-
rections

The numerical results for the lowest 5 natural fre-
quency parameter A of the SSSS orthotropic thin and

" moderately thick square plates with a square hole of
side ratio ¢/a = 0.5 and variable thickness in two
directions are presented in Tables 8 and 9. The
thickness of the plate varies in the z, y-directions ac-
cording to the sinusoidal function given by h(z,y) =
ho(l1 — asinnz/a)(1 — asinwy/a). Three cases of
a=0.1,a=0.3and a = 0.5 are considered. It shows

Table 8 Natural frequency parameter A for SSSS or-
thotropic square plate with a square ‘hole’
and variable thickness in two directions
(¢/a=0.5,a/hg = 100, ho/hy = 14)

Mode sequence number
«  Source st 2nd 3rd 4th  5th

0.1 Present 6.839 -8.246 8.796 10.216 13.213
0.3 Present 6.289 7.634 8.286 9.578 12.520
0.5 Present 5.691 6.994 7.759 8.927 11.454

Table 9 Natural frequency parameter A for SSSS or-
thotropic square plate with a square hole
and variable thickness in two directions
(¢/a=0.5,a/ho =10, ho/h, = 16)

Mode sequence number
a Source  1st 2nd 3rd 4th  5th

0.1 Present 6.331 7.489 7.692 9.086 10.249
0.3 Present 5.995 7.147 7.504 8.788 10.021
5.543 6.705 7.124 8.395 9.755

0.5 Present

that the frequency parameters will decrease with the
increase of a. The nodal patterns of the 5 modes of
the plates are shown in Figures 10 and 11.

7. Conclusions

An approximate method is extended for analyzing
the free vibration problem of simply supported or-
thotropic square plate with a square hole. An equiva-
lent square plate is used to obtain the dynamic char-
acteristics of a plate with a hole. The characteristic
equation of the free vibration is gotten by using the
Green function. The frequency parameters and their
mode shapes are shown for simply supported thin and
moderately thick plates with a hole for isotropic and
orthotropic cases. It can be found that the transverse
shear deformation effect is much more pronounced in
orthotropic plate than in isotropic plate. The effects
of the variation of the thickness in one and two direc-
tions on the frequencies are considered. The results by
the present method have been compared with those
previously reported. It shows that the present results
have a good convergence and satisfactory accuracy.
Although numerical results are given for only sim-
ply supported plates, the present method is a general
method and can be used to solve the vibration prob-
lem of plates with different boundary conditions.
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Finn = Fias = Fiza =1,

Fi4s = D13, Fi47 = Dis,

Fis¢ = Doy, Fis7 = Fige = Do,

Fig7 = Deg, Fizs = ksAaa, Fiss = ks Ass,

Foip = Faos = Fazz = p, Faa = Fagr = pD1s,
Fasr = uD11, Fass = pDaes, Fast = p, D12,

Fre6 = 1Des, Fars = F0007 = F31006 = piksAss,
Fags = Figr = pksAss, Faza = F3a1 = —ps,
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Fis5 = Fysq = Fag3 = —uD, Fayy = Fagy = —uDT,
other Fjs =0,

p=b/a,Di; = Qi;/(2E2),

Ay; = 12(a/ho)?Qi;/E2, D = (ho/h)3,

DT = ho/h. ‘
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Appendix B

Apl = Ypl, Ap2 =0, Ap3 = Yp2y

Ap4 = 7p3yAp5 =0,

Aps = D127p4 + Da2vps + Dagps,

Ap7 = Di67p06 + Da267Vp07 + Despos,

Ap8 = ks (244'7127 + z457p8))

Bpl =0, Bp2 = /J"Ypl:BpB = HK7p3;

Bpa =0, Bps = pvp2,

Bps = u(D167pa + Da67ps + DesVps),

Bp7 = N(—5117p4 + 5127}95 + .516'7;76):

Bp8 = pks (2457117 + ZSS'YpS):

Cpikt = wyps + uDTxivpr,

Crakt = pyp2 + uDT ki vps,

Cpskt = wDivps,

Cpart = pDivpr,

Cpskt = uDiVpa,

Cpekt = —pks(Asavpr + AssTps),

Cprit = —pks(Aasypr + AssTps),

Cosit = 0, [vpt] = [pp] 1,

p11 = B, p12 = ufjj, p22 = —uPBij,

P23 = PBus, p2s = b5, p31 = —pBij,

p33 = 1Bz, p3a = Bis, pas = —puBi;j Dij,

Pag = Euﬁu‘ + N—D—lﬁﬂjj: Par = Elﬁﬁii + ﬂ'ﬁllﬂjj:
psa = —pPi; Dij, pse = Da2fBii + uD26f;;,
ps7 = Da6fii + pD12Bj;, pes = ~ubBi; Dij,
pes = Daefii + uDesBjj, psr = DeeBis + nD16Bj;,
pr1 = —pBijDij, pre = wksAsafBij,

prr = pksAgsBij, prs = ks(AsaBii + pAssB5),
ps2 = —uPi;Dij, pse = pksAssBij, :
ps7 = ks AssBij, pss = ks(AasBis + nAssB5),
other py,, =0 '

Appendix C

G1i0i1 = 03i0i2 = G440i3 = 1, 06i0i4 = A7i0i5 = Q8i0i6 =
1, bagjjn = baojj2 = bsojjiz = 1, beojja = brojjs =
bgojj6 = 1, b3oooz = 0,

13 , 4
Apijfd = Z{Z Bik Aptlatkord — aekjfa(l — ki)

t=1 “k=0

J
+ Y BitBptlaworsa — acitfa(l — 8i5)]
1=0

i 7
+ )" BikBitCririaskisa(l — 6ridi;) },

k=0 1=0

13,
bpijsa = Z{ZﬂikApt [bekogd — bekjga(l — Oki)]

t=1 “k=0

. J
C+ Z Bt Bpt[bioiga — beirga(1 — d15)]

1=0
i J
+ Z Z Bik Bt Cptkibekiga(l — 5ki51j)},
k=0 1=0
13 i
Tpij = Z{Z Bik Apt[Teko — qtkj(l — ki)
t=1 “k=0
Jj
+ ZﬂlePt[atol = Qe (1 — &i5)]
=0
i 7
+ Z Z Bik B51Cptkt — Ap1UiqUsr-
k=0 1=0

(Recieved April 19, 2002)
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