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The mechanical response of the elastoplastic constitutive model for soils is examined, which is
based on the subloading surface model with tangential stretching describing the inelastic stretching
induced by the stress rate component tangential to the yield/loading surface. The stress rate
response to the imposed stretching under triaxial condition in not only hardening but also softening
states on the meridian and the deviatoric planes is shown firstly. Then, it is indicated that the stress
rate response in the deviatoric stress rate plane is decreased to the tangential direction of
subloading surface by the tangential stretching effect. Further, a nose is predicted in the response
envelope to the imposed stretching inducing the axisymmetric deformation and the response
envelope in the softening state exhibits a crescent form.
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1. Introduction

In the traditional elastoplastic constitutive equation with a
single smooth plastic potential surface, the plastic stretching is
independent of the stress rate component tangential to the
yield/loading surface, called the tangential stress rate, and then
the direction of the plastic stretching is given uniquely to the
normal direction of a plastic potential surface. The disregard of
the tangential stress rate effect leads to the prediction of
unrealistically stiff response of materials when a loading path
deviates from the proportional loading as observed in the
localization of deformation. The tangential stress rate effect

has been experimentally observed for soils™2?,

As reviewed previously by the authors™ ¥, various
elastoplastic constitutive equations extended to describe the
tangential stress rate effect have been proposed up to the

present™ ® ™ ¥, Among them, however, only the subloading

surface model with tangential stress rate effect” would be

applicable to a general loading process for materials with an
arbitrary yield/loading surface. The model fulfills the
mechanical requirements for constitutive equations™ '> ' 2,
i.e. the continuity condition, the smoothness condition, the
Masing effect and the work rate-stiffness relaxation. It is

formulated by introducing the additional stretching, named

. tangential stretching induced by the deviatoric tangential stress

rate, into the subloading surface model™*'™'® exhibiting
smooth elastic-plastic transition. It is of simple form of
rate-linearity enabling the reciprocal expression, i.c. the
analytical expression of stretching in terms of stress rate and
its inverse expression, and keeps the symmetry of the stiffness
modulus, and thus leading to the convenience in the analyses
of boundary value problems.

Some attempts™ '™ "®to search the mechanical responses of
elastoplastic constitutive models of soils have been conducted
by imposing stress rates or stretchings to various directions
(stress probes). Note that the mechanical responses of the
subloading surface model with tangential stretching applied
for metals was examined by the authors”, whilst the analysis
was conducted for a plastically-incompressible metals
exhibiting only a hardening behavior under the imposed stress
rate condition in the deviatoric stress rate plane.

In this article, the subloading surface mode! with tangential
stretching is applied for soils with the isotropic hardening rule,
so that the mechanical responses of the model for soils could
be understandable clearly in not only normal-consolidated but
also over-consolidated states. Then, the basic characteristics of
the model are examined by calculating the stress rate response
to the imposed stretching in not only hardening but also
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softening states.

The tensile stress (rate) and stretching (a symmetric
component of velocity gradient) are taken to be positive
throughout in this article.

2. Outline of the Subloading Surface Model with
Tangential Stretching

In this chapter, the subloading surface model with tangential
stretchings) previously proposed by the authors is reviewed
briefly.

2.1 The extended subloading surface model

Denoting the current configuration of material particle as x
and the current velocity as v, the velocity gradient is described
as L =0wox, by which the stretching is defined as D
(=(L+L")/2),()" standing for the transpose.

Now let it be assumed that the stretching D is additively
decomposed into the elastic stretching D and the plastic
stretching D7 | ie.

D=D°+D", M)
where the elastic stretching D is given by
D°=Els . V)

o is the Cauchy stress tensor and (°) indicates the proper
corotational rate with the objectivity'> > and the fourth-order
tensor E is the elastic modulus.

Assume the yield condition: _

f6,H)=F(H), 3)
where

6=o0-a. @

The second-order tensor @ is the reference point on or
inside the yield surface, which plays the role of the kinematic
hardening variable as it translates with the plastic deformation.
The scalar H and the second-order tensor H are the isotropic
and the anisotropic hardening variables, respectively. Let it be
assumed that the function f is homogeneous of degree one in
the tensor & .

Hereinafter, the elastoplastic constitutive equation will be
formulated in the framework of the unconventional plasticity”
defined as the extended plasticity theory such that the interior
of the yield surface is not a purely elastic domain but a plastic
deformation is induced by the rate of stress inside the yield
surface. Thus, the conventional yield surface is renamed as the
normal-yield surface, since its interior is not regarded as a
purely elastic domain in the present model.

Now, the subloading surface' '

is introduced, which
always passes through the current stress point o and also
keeps the similar shape to the normal-yield surface and the

positioning of similarity to the normal-yield surface with

a Subloadi
Shigadne
Normal-yield surface

Fig. 1. Normal-yield and subloading surfaces

respect to the similarity-center s. Here, note that the
similarity-center has to lie inside both the normal-yield and
subloading surfaces, since these surfaces are not allowed to
intersect each other, whilst the subloading surface plays the
role of loading surface. The approaching degree to the
normal-yield state can be described by the ratio of the size of
the subloading surface to that of the normal-yield surface, i.c.
the similarity-ratio R of these surfaces. Hereinafter, let the
similarity-ratio R be called the normal-yield ratio. Then, it
holds that

o =Lt{o-(1-Rs} (@-s=Ry-9), ©

where 0y on the normal-yield surface is the conjugate stress
of the current stress on the subloading surface (see Fig. 1).

By substituting Eq. (5) into Eq. (4) with regarding o in
Eq. (4) as 0y, the subloading surface is described as

f(o,H)=RF(H), ©6)
where
G=0-a (=R(o,-a)), ™

a=s-R(s-a) (@-s=R(a-s)), (8)
a on or inside the subloading surface is the conjugate point of
a on or inside the normal-yield surface. In calculation, R is
first determined from Eq. (6) with Egs. (7) and (8) by
substituting values of o, H, a, H and s, and thereafter @
is found from Eq. (8).

It is stress
asymptotically approaches to the normal-yield surface in the
plastic loading process D"#0. Thus, let the following

observed from experiments that the

evolution equation of the normal-yield ratio R be assumed.

R=U|DP| for D* %0, )
where U is the monotonically decreasing function of the
normal-yield ratio R, satisfying

B {oo for R =0,
0 for R = 1, (10)

(U <0 for R>1).
() stands for the material-time derivative and | | the

magnitude. Let the function U satisfying Eq. (10) be simply
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given by

U=-uplnR (11)
where up is a material constant prescribing the approaching
rate of the current stress to the normal-yield surface with a
plastic deformation.

The similarity-center s is required to translate with the
plastic deformation in order to describe realistically the cyclic
loading behavior exhibiting the Masing effect '> 2* 29, The
translation rule of s is given as

$=6 D72 +&

o {F H-tr (af(s ) H)} (12)

where
6=0-5s, (13)
F=d, (14)
§=s-a. (15)

¢, is amaterial constant,
Assume the associated flow rule and then the plastic
stretching is given as

DP =AN (A>0), (16)
where '

- tr(]Vo°') ’ an

(18)
My Etr[ﬁ(i+{-ﬂh
=t (af(" . H) h)+—}o')] (19)

h,h and a are functions of the stress, plastic internal state
variables and N in degree one, which are related to H ,
Hand @ by

=H _ﬁ ~
h== h==-, (20)
a= f =z-Us-R(z~a), 1)
a= &
e (22)
$ :
zs;=cs—%—+a+ {Fh tr ( h)}s (23)

since these rate variables include A in degree one.

The plastic stretching (16) is obtained by substituting the
associated flow rule into the extended consistency condition
obtained by incorporating the evolution rule (11) of the
normal-yield ratio R into the time-differentiation of Eq. (6)
for the subloading surface. Then, the plastic loading process
develops gradually as the stress approaches the normal-yield
surface, exhibiting a smooth elastic-plastic transition. Thus, the

ye
s
A,
/
0%
g
[\ 1
\\=
SO
y Loading surface
(2
Deviatoric stress plane
\ >
Closed curve formed by

intersection of loading surface
—0] and deviatoric stress plane

Fig. 2. Deviatoric tangential stress rate g7
illustrated in the principal stress space

subloading surface model fulfills the smoothness condition'®
1), 12)

2.2 Extension to tangential stress rate effect

Let the stretching D be additively decomposed into the
elastic stretching D? and the inelastic stretching D' which is
further decomposed into the plastic stretching D given by
Eq. (16) of the subloading surface model and the additional
stretching D', i.e

D=D°+D' , 24)

D'=DP+D', (25)
where D' is called the tangential stretching and induced by the
stress rate component tangential to the subloading surface,

-called the tangential stress rate, obeying the Rudnicki and

Rice’s conclusion® that “no vertex can result from hydrostatic
stress increments” based on the consideration of the sliding
mechanism in the fissure model.

The tangential stretching D' is formulated as

D' = }a, (26)

where T is a monotonically decreasing function of R, called
the tangential inelastic modulus, and simply given by

¢
== @7)

b (21) is a material constant. The second-order tensor o7,
named the deviatoric tangential stress rate, is given as follows:

3 =6 -6h, 01 = u@s I, @)
0 % ) * __1
o'=0 -0,1, om= o, 29
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(30)

(af(a H)) /(af(a L H)Y “_ 1
( ) stands for the deviatoric component, and 7 and n* are
the identity and the
outward-normal tensor of the subloading surface, respectively.

The deviatoric tangential stress rate @7 in the principal
stress space is directed toward the tangential line of the closed
curve formed by the intersection of the subloading surface and
the deviatoric stress plane as illustrated in Fig. 2.

Here, it should be noted that the other models® ™
incorporating the inelastic stretching induced by the tangential
stress rate have defects as follows:

tensor normalized deviatoric

(1) These models are not applicable to materials with an
arbitrary yield surface in the principal stress space since
their novel stress rates inducing the additional inelastic
stretching are not tangential to an arbitrary yield surface.

(2) These models are applicable only to near proportional
loading process since the continuity condition is violated
for the stress rate along the yield surface enclosing a purely
elastic domain.

The stretching D is given from Egs.(2), (16), (25) and

(26) as

I6 + -——tr(gp") N+16i. e

The elastic modulus tensor E is given by the Hooke’s type
as

where K and G are elastic bulk and shear moduli, respectively,
which are functions of the stress and internal state variables in
general and & is the Kronecker's delta, i.e. J; =1 fori=jand
6= 0 for i# j. The inverse expression of Eq. (31) is given
as: :

D=E

%G)&:jé‘kl +G(0y b +6;0,) , (32)

O
o=

D U __tr(NED) [~
1‘+2lG./T{ et [0

Mp +tr(NEN)

_G{.%tr(EI-\_’)I— (Ajlp_,__Ltr}Vtr(Eﬁ)) ";—%,: " }]

20 w(eD)(11- " — |)} (33)

Both the plastic stretching Dp and the tangential stretching
D' are formulated so as to be gradually induced as the
normal-yield ratio R approaches closely unity, i.e. as the stress

approaches closely the normal-yield surface, exhibiting the
transition and fulfilling the
smoothness condition and the continuity condition™ ' ' 12,
On the other hand, the extended flow models6_)' 8
incorporating the tangential stretching within the conventional

smooth elastic-inelastic

elastoplasticity violate these conditions. Here, note that the
tangential stretching D’ adopted for these models®®"® is
linearly related to the stress rate without a loading criterion,

./ Critical state line

ra

denser. 4 wetter

Tty

%\ Normal - yield surface
f=F

Subioading surface

Fig. 3. The normal-yield and the subloading surfaces
in (p,16”) plane

and then it diminishes during an infinitesimal stress cycle,
resulting in the so-called workless stretching during that cycle.
For a finite stress cycle, however, the tangential stretching D'
leads to an irreversible deformation with the loading path
dependency since the total differential equation is not
completely integrable leading to the violation of the exact
differential form. Furthermore, these models can only describe
the dependence of the direction of the inelastic stretching to
that of the deviatoric stress rate component tangential to the
loading surface, and then the extension to let have not only the
hydrostatic stress rate dependency but also the loading
criterion for the tangential stretching might be required.

The positive proportionality factor in the associated flow
rule (16) is expressed in terms of the stretching D , rewriting
Aby A, as follows:

_ tr(NED)
B Mp +tr (NEN) > (34)

because of tr(NEGS7)=0 for Eq.(32). Then, let the loading

criterion be given by the positiveness of the proportionality

factor A as follows':
D? £0: A>0, }

DP=0: A<0. (35)

2.3 Constitutive Equation for Isotropic Soils

In order to focus our consideration on the effect of the
tangential stretching for the stress rate response in the next
chapter, the simple isotropic constitutive relation is assumed.
Then, consider the case that the similarity-center of the
normal-yield and the subloading surfaces is fixed in the origin
of the stress space, leading to @ =s=0 (@ = H = 0O) (see
Fig. 3). Hereinafter, let o be meant the effective stress
excluded the pore-pressure from the stress.

Now, the subloading surface for simple isotropic soils is
given as follows:

flo, H)=p(1+2%), (36)
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where

p=-0om, y=|nl/m, ' 37

n=o*p, o*=o+pl . . (38)
m is the material constant describing the stress ratio || in the
critical state line.

The isotropic hardening/softening function™ F is given by

FFy expl2Ly). | (39)

( )o stands for the initial value. p and y are material
constants describing the slopes of the normal-consolidation
and the swelling curve, respectively, in the (Inv,In p) plane
(v: volume, p: pressure).

The evolution rule of the isotropic hardening/softening
variable H is given by

H=—trD? . (40)

Considering that the stiffness would often be reduced not
only with the increase of the stress ratio but also with the
decrease of the confining pressure, the function & in the
tangential inelastic modulus 7 of Eq. (27) is assumed as

== )
a and ¢ (2 1) are material constants. Then, the tangential
inelastic modulus 7 in Eq. (26) with Egs. (27) and (41) is
formulated to induce the tangential stress rate effect gradually
with the increase of y and R, whilst the effect decreases
with the increase of pressure p. On the other hand, the equation
of Yatomi et al.” for the tangential inelastic modulus, i.e.
T=C(m-|nl)P (C: material constant) is applicable only
to the normal-yield state R=1 under the lower stress ratio than
that in the critical state, i.e. ¥ <1.

Elastic bulk and shear moduli are given as

p 31-2v)

K=y =2

where v is Poisson’s ratio.

K, (42)

3. Mechanical Response

The mechanical response of the present constitutive model
with tangential stretching and its differences from the
conventional model are examined by calculating the stress rate
response to the imposed stretching in not only hardening but
also softening states. Note again that the mechanical response
of the model for metals exhibiting only hardening behavior
was examined previously by calculating the stretching
response to the imposed stress rates 3,

The stress-strain relation depicted in Fig. 4, which is typical
one exhibiting the softening behavior and observed in
over-consolidated soils, is calculated by the subloading surface
model for the drained triaxial compression with a constant
lateral stress by selecting the initial values and the material

250 } (A)Hardening (B)Softening

—— T T

0 : >
iy £ 5 10 15 20 —&5(%)

%
(%)%°

Fig. 4. The calculated result under drained triaxial
compression with constant lateral pressure

"l A N

250 |
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Fig. 5. The stress states (A) and (B)
in (p,|c"|) plane

constants as follows:

o, =—80.01, F;, =500, up=30,
p=003, y=0.007, m=1.16, v=0.3,
a=0.02,6=20,c=1.0.

In Fig. 4 &3 and &y are the axial strain and the volumetric
strain, respectively. The tangential stretching is not induced in
that loading process since the deviatoric tangential stress rate is
not generated. Now, let the stretchings with various directions
and the identical magnitude be imposed at the same state of
stress in the hardening (A) and the softening (B) states of Figs.
4 and 5, whilst the normal-yield ratio R are 0.63 and 0.95 for
(A) and (B), respectively. The stressrate g can be additively
decomposed into the elastic stress rate 6° and the
inelastic-relaxation stress rate further
decomposed into the plastic-relaxation stress rate 67 and
the tangential inelastic-relaxation stress rate 67, i.e.

&' which is

6 =6°+6', 43)

o' =a67+d', (44)
where these stress rates can be derived from Eqgs. (2), (24)
and (25) as follows:

&eEED, &'iE—EDi, oP=—ED?, &tE_EDt. 45)

The response envelopes could be formed by connecting the
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Fig. 6. The elastic stress rate envelops
in (5, |o*") plane
(6 =6°)

end points of stress rate response vectors for the rotation of the
direction of the imposed stretching D of identical magnitude in
the stretching space, i.e. "D" =D=const. In Fig. 6 the response
envelopes of the elastic stress rate 6° to the imposed
stretching of constant magnitude D inducing the axisymmetric
deformation are depicted for six levels of the material
parameters v and y, whilst these envelopes cut the vertical
and horizontal axis at 2GD/3 and \/EKD, respectively, in
the (P, |o*||°) plane. Then it is shown that the response
envelopes of the elastic stress rate 6° become larger as the
material parameters v and y decrease, leading to the increase
of the elastic bulk and shear moduli, and especially for the case

v= 0.5 the envelopes yields a pair of straight lines. For the
subsequent analysis v= 0.3 and y= 0.007, used for the
calculation in Fig. 4, are adopted.

The envelopes of the stress rate & to the imposed
stretching D inducing the axisymmetric deformation are
shown in Fig. 7 where the tangential stretching effect is not
induced since the tangential stress rate does not have a
deviatoric component. Here, note that the plastic-relaxation
stress rate 67 is not directed towards the inward-normal
direction —N but is directed towards —N -{(K/2G)

-
-
-

(B)Softening

Elastic
(unloading)

pap——_ X
v e i B e

(A) Hardening

LS Lont Wl M~

- P - o 2 e
-

T (e

- = p—r
e D A et

g 4

" [

Ne

Fig. 7. The elasto-plastic stress rate envelops
in(p, lo*|") plane
(6 =6°+67, 6'=0)

Elastic

: ) Softening
(unloading)

-1/3}(ttN)I (== EN/2G). In other words, the direction
of the plastic-relaxation stress rate deviates from the
inward-normal direction of the subloading surface for
plastically-compressible materials, ie.trN 20 and also for
the material with the parameter v # 0.0 derived from
K/2G-1/3#0 with Eq. (42). Therefore, they generally
exhibit a small nose, whilst the prediction of the occurrence of
the nose in the response envelope of the stress rate by the
non-associated flow rule has been indicated as the peculiar
response”™ 2%, That is, the nose is caused not only by the
non-associativity but also by the plastic compressibility, and
then the impertinence of the model could not be judged by the
occurrence of the nose in the stress rate responses. Further, the
response envelope in the softening state exhibits the crescent
form, since the stress relaxation is not induced for the
stretching causing the stress rate tangential to the subloading
surface but a large stress relaxation into the inward direction of
the subloading surface is induced for the stretching causing the
stress rate having the component normal to the subloading
surface. The crescent form seems peculiar, however, and thus
it would require experimental evidence and physical
considerations in order to clarify its validity.
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Fig. 8. The stress states (A) and (B) in
the deviatoric principal stress plane
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Elasto - tangential
Elastic
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Fig. 9. The elasto-plastic-tangential stress rate
envelops in the deviatoric principal stress rate plane

o o

(6=6+67+6")

The response envelopes of the stress rate & to the
imposed deviatoric stretching with various directions and the
identical magnitude D at the stress state (A) and (B) in Fig. 8
are depicted in the deviatoric stress rate plane (—c;',*,
-0, -0, ) as shown in Fig. 9. The elastic stress rate
responses &° cut the each axis at 2GD in the deviatoric
stress rate plane for both the stress state (A) and (B).
Furthermore, the plastic-relaxation stress rate g7 and the

tangential inelastic-relaxation stress rate o! have the

inward-normal direction and the tangential one, respectively,
of the subloading surface. Thus, the stress rate response is
decreased not only for the normal direction but also for the
tangential one by the tangential stretching effect. In addition,
the direction of the inelastic-relaxation stress rate &' is not
given uniquely at the give stress state, whilst the stress rate
envelope exhibits a symmetrical form due to the adoption of
the associated flow rule for the plastic stretching. Therefore, it
does not exhibit a nose but exhibits again the crescent form in
the softening state. Here, note that a nose is predicted by the
non-associated flow rule even for the response envelope to the
imposed deviatoric stretching.

4. Concluding Remarks

The main features of subloading surface model for soils
with tangential stretching are as follows:

i ) Both the magnitude and the direction of the inelastic
stretching depend on the stress rate tangential to the
subloading surface. ,

ii) The deformation behavior for not only normal-yield but
also subyield states can be described.

The stress rate response to the imposed stretching predicted
by the present model has the following characteristics.

i ) The response envelope of the stress rate to the imposed
stretching exhibits a small nose in (g, |o*||*) plane for
which the tangential stress rate effect is not induced. The
nose is caused by the plastic compressibility.

ii) Due to the tangential stretching effect the response envelope-
of the stress rate in the deviatoric stress rate plane (-o;,
—5'; , —5'; ) is decreased for the tangential direction of the
subloading surface.

iif) The response envelope to the imposed deviatoric stretching
in the deviatoric stress rate plane does not exhibit any nose.
On the other hand, a nose is predicted by the non-associated
flow rule not only for the response enVelope of the stress
rate in the ( 5, |o*||*) plane but also for that in the
deviatoric stress rate plane. ‘

iv) The response envelope in the softening state exhibits a
crescent form despite of the tangential stress rate effect.
These responses seem to be peculiar. Hereafter, the

essentiality of them would have to be examined by both

physical considerations and experiments.
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