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The infinitesimal deformation analysis of the rate-independent Sekiguchi-Ohta model is
formulated to include a class of two-invariant stored energy function considering initial state of
stress. Elastic shear modulus is assumed to depend on pre-consolidation pressure and increase
exponentially with strain-hardening parameter after yielding by taking damage effect on
energy conservation into account. The principle of maximum plastic dissipation is connected
to the associated flow rule while hardening/softening law is described by the hardening
potential function defined to suit the model. The implicit integrative scheme is return mapping
algorithm based on the Closest Point Projection method. The nonlinear analyses for
stress-strain-strength under UU and CU tests were carried out to test the performance. It was
found that the method is proven to robust, stable and accurate even in very large strain

increments.
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1. Introduction

In the realm of nonlinear analysis for cohesive soils, ‘the
model proposed by Sekiguchi and Ohta” (1977) is one of the
most widely used soil constitutive models based on Critical State
theory. The model characterizes nonlinear stress-strain behavior
including softening/hardening and dilatancy responses, principal
stress reorientation, initial-stress-induced anisotropy and time
dependency. The performance of the model has been proved to
be consistent with many field responses in predicting soil
behaviors (Ohta and lizuka®, 1992). The integration of
constitutive equation over a discrete sequence of time step is
commonly practiced by incremental solution that is classified
into explicit and implicit categories. The first method simplifies
the integration to the summation of sub-increments while the
latter one applies the iterative scheme using Newton-Raphson
method formulated in complex expressions. It has been shown
that the procedure used for explicitly integrating the constitutive
equations is inferior to that of implicit integration on solution

stability and accuracy”. Moreover, in nonlinear problem, the
size of increments substantially affect the quality of analysis, that
is, a large step size will cause inaccuracy while a finer one will
become a drawback in computation speed. According to several
literatures*®, the effective method suggested to handle the
problems is to apply the implicit integration method using
return-mapping algorithm, the algorithm that usually starts in the
first iteration with a purely elastic increment.

Much of foundation for the retum-mapping methods for
nonlinear isotropic and kinematic hardening/softening plasticity
have been contributed over the passed two decade (Simo et al*”,
1985, 1988, 1992, 1993) in which Closest Point Projection
(CPP) and Cutting-Plane (CP) methods have been developed.

Borja et al'™™ (1990, 1991, 1998, 2001) have developed
the implementation of return-mapping algorithms applicable to
the modified Cam-Clay model with a remarkable solution
accuracy and quadratic rate of convergence. However, the
procedures concerned show a sign of incompatibility with the
Sekiguchi-Ohta model because both models have lost much in
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common since the advent of modified version. In addition, a
number of recent studies have been proposed for the modified
Cam-clay with prominent performance.

Recently, Pipatpongsa and Ohta'? (2000) developed the
return-mapping algorithm applicable to an invisid form of the
Sekiguchi-Ohta model as its first kind of implementation, which
is fallen within the class of convex CP method coupled
nonlinear hypoelastic response on two invariants stress space.
The iterative return path generated by the algorithm is optimized
at quadratic rate with high accuracy.

The purpose of this paper is to extend the previous work by
developing an efficient CPP method applicable to the
Sekiguchi-Ohta plasticity model, formulated to include a class of
two-invariant stored energy function considering initial stress
and damage process. The nonlinear elasticity is adopted by
taking shear modulus G varied with pre-consolidation pressure
while bulk modulus K is varied with mean stress. As a
consequence, a conservation of energy is satisfied and path
independent feature can be guaranteed in an elastic predictor
step, which is rigorously required by return mapping algorithms.

An outline of the paper is as follows. In section 2, the
mathematical framework is set for the algorithmic residuals and
constraints. The constitutive equations and empirical hardening
law are reviewed in section 3. Section 4 deals with a class of
stored energy function considering initial stress. In section 5,
hardening potential function appropriate with the model is
defined. A procedure for damage process is accounted for
changing a value of G in comesponding to a hardening
parameter. A set of equations regulating the elastic constitutive
law is arranged in section 6. In section 7, the implicit integrative
scheme under CPP method is derived. In section 8, the
nonlinear analysis for stress-strain-strength under CU and UU
tests in two-invariant stress space problem were carried out to
test the performance of the algoritim by comparing with
sub-stepping technique and closed-form solutions. The
conclusion is marked in section 9.

It is noted that in this study, attention is confined to
infinitesimal deformation and rate-independent plasticity. It is
out of scope in this paper to consider the existence of comer on
yield surface however basic theories” and ongoing researches
are available''®. The unusual procedures can be neglected if
the interested stress poirits lie outside and far from the comer.
The further research subjected to soil/water coupling FEM for
three-dimensional state of stress is being developed.

2. Plastic dissipation

This section illustrates the important role of the principle of
maximum plastic dissipation'” (Hill, 1950), its connection to the
associated flow rule® (Drucker’s stability or normality postulate,
1950) and basic- regularization ‘in the infinitesimal
elasto-plasticity. The mathematical framework advocated by

Simo® (1992) is rephrased but a modification is made for plastic
variables in a sense to suit the hardening potential function
defined in the section 5. Within a convex elastic domain of
stress space defined by

E= o, )ESxR'|f(0, ) s 0} @1

where S is a vector space of symmetric second-order tensors,
R' is a real range of positive number and 4 is a stress-like
hardening parameter of material. Based on the 2™ Law of
Thermodynamics, partially a universal law of decay, the
dissipation function is defined by the difference between the
stress power and the rate of change of the internal energy. The
symbol *:’ signifies the contraction of a tensor by 2 orders.

D=06:6-P(,0)=20 22)

The internal energy is composed of elastic and hardening plastic
components expressed by the stored energy function and
hardening potential; i.e.,

V. V=9, a), V. W=#(a) (23a,b)

The stored energy function and hardening potential function are
subjected to define in section 4 and 5. The stress responses can
be obtained by hyperelastic relationship. Herein, o denotes a
strain-like variable conjugating to a material memory variable A.

e o
o< np(e®,a) ’ he LEA(Y)]
9g° do

Using Eq.(2.3a, b) and chain rule to Eq.(2.2) yields,

(24a, b)

D=[6-V_]:e+V Y I_a - é"J— d,#()az0 (25)

Eq. (2.4a-b, 2.5) imply (2.6) to hold for all admissible stress state
and hence the optimum stress state for a given strain rate can be
obtained by maximizing,

Objective function: @ = o:[¢ - &° |- h6 2 0 2.6)
Optimized variable: (o, h)EE

Subject to constraint: f(6,4) <0

The corresponding Lagrangian function

L=-D+y.f(c,h) @.7)

By Kuhn-Tucker condition for extrema, define the residuals

]2
AT et I R
R SN
oh
v20;£(0,h) <0;y.f(0,h) =0 (292,b,¢)

Eq.(2.8a, b) are read as associative flow rule and associative
hardening/softening law to the maximum dissipation energy

principle. It is noted that Eq.29a<) can judge
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loading/unloading condition but can not judge for a state of
hardening/softéning.
p_a e 9 .o
=£-¢ -_YE’ a——yah
Eq. (2.10a) is corresponding to the postulate of associated flow
rule by taking a Lagrangian multiplier y as proportionality
constant. In Critical state models, a hardening plastic variable /
is chosen to p’. and its conjugate o is referred to €, in particular.
Therefore, an empirical hardening law denoted in Eq(2.11) is
commonly employed instead. Compaﬁson of Eq.(2.10b) to Eq.
(2.11) implies the adopted hardening/softening law in Critical
state models is non-associative sense’™, that is, Lagrangian
function in Eq.(2.7) is not maximized because a is empirically
associated to volumetric plastic strain, not theoretically
associatedto p’,..

£

of  of

=t =g/ 1y 2.11

v rwriaietiers @11
Eq.(2.10a) is found to contain (2.11), therefore, hardening
parameter updating procedure can be set aside from iteration as
formulated in section 7.

3. Constitutive laws

Sekiguchi and Ohta (1977) proposed constitutive equations
for stress-induced anisotropy in clays. The inviscid form of yield
function is expressed by

4

flo,p'.)=f(p'm,p) = MDln( )+Dn =0 G.1)
p’. indicates an isotropic hardening stress of the subsequent
yield surface which is determined by an empirical relationship
based on e-In(p’) curves of consolidation test (Eq. 3.2- 3.3).

el —¢l =ﬂln(ﬁi) (2)
: l+e, |\ p', i
Sic - s(\ico -~ ln(ﬁi.) (33)
l+e, (P .

The pre-consolidation pressure p’, marks the isotropic
pressure after the completion of K,~consolidation. According to
an infinitesimal void ratio-volumetric strain relationship denoted
in Eq.(3.4a), the plastic and elastic volumetric strain at p’, equal
to zero, Eq.(3.4b-c).

—e

P ¢ -
> 8vo_oa Evcn_o

:, = (42, b, ¢)

l+e,
Select the candidates of hardening variables in particular
h=p',, o=¢cf ' (3.5, b)

where recompressibility and compressibility indices are

(2.10a,b)

I8

l+e,

K

K= , = (3.6a,b)

l+e,

A summary of constitutive laws is noted in Box 1.

Box 1: Constitutive equations

Yield function proposed by Sekiguchi and Ohta (1977)

flo, p'. )= (P, p) = MDln( )+Dn =0

c

tr(o ):;s=6-p1

o = el

] l 1
where p'= Etr(c) iD=

So=°o'19'01;'l-—7:'lo = :
p

B
M(l+e,)
In generalized convex format
- - V277
f(c,p'c)Ef(IIaJ2:Ic)=MD1n(_1[1—)+D 2 =0
[4

I
where §=s—p'no;11=1:c;j2=%tr(§2);lc= 3p',
1
=040 +0,0; |6, ¥e; We, Ve
I 266 ) e, e, ®

AEI—%(1®1) 1=3,¢ ®¢;

— 1 1 1

AEA_§1®']0_Eno®1+§no:no(l®])

First derivative of yield function

o _yon, o ol

dc ol, 36 aJ, do

where 1,22 (4 L1y, ):5=R10
do do

of D '\/ .o 9D

== -3— ==

of 1 11 an 211437,

Second derivative of yield function

azf_azf®a_1,_+af _‘2_ of 3l afsz

6666—86811 d6 dedJ, d6 I/, dedc 6J2 dedc
2
where oy =0; 9 J2 =A
dcdc aoao
a'f 8 f ol axf @
asal,  alal, P 8,0 1, ac
o 9 o, 9 8T,
96dJ, 0l,0J, o6 8J,8J, do
0 f __MD 6Dy3J, @f _ 9D
anot, I L ody0l 212,37,
°f 9D . ¥ f 90 .
anal, 21237, L3y 41Ty37,
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4. Nonlinear elasticity

Mechanisms of strain are typically depicted by recoverable
and imecoverable parts caused by alternation in particle spacing,
bending and reorientation of clay particles. Elastic stress-strain
relation should cover time independent behavior, recoverable
feature (monotonic & hysteretic) and small strain range. Classes
of soil elasticity are among of linear, nonlinear, isotropic,
anisotropic hypoelasticity and hyperelasticity. Hypoelasticity
(Cauchy’s elasticity) is fine for monotonic unloading/reloading
but not guaranteed in energy conservation and path dependence.
Hyperelasticity (Green’s elasticity) is acceptable for all types of
unloading/reloading, satisfying conservation of energy in any
closed loop and path independence. In regardless of stiffness
degradation by small strain, the typical elastic constitutive
equation is related to volumetric and deviatoric stress-strain
responses with stress variable stiffness as shown in Eq.(4.1).

P [k J[e
{q}=[J 3GH:¢:§'} @0

For materials that are elastic and isotropic, the coupled
shear and volumetric effects are decoupled; ie., J equals to
zero™. Isotropic pressure-dependent bulk and shear moduli; i.e.,
K=K(p), G=G(p) are often employed but such relation does
not give an energy conservative model”, Thus, the viable
nonlinear elastic moduli are restricted to a sort of K=K{(p) and
constant G %Y. Actually, an extensive study showed that G is
both a function of p’ and p’.>. For an illustrative study, G is
assumed to depend only on p’; and govemed by a stored energy
function cast for a class of two-invariant isotropic nonlinear
hyperelasticity accounted for damage effects. Energy
conservation is guaranteed in the elastic domain but the material
characteristics on the subsequent state boundary are path
dependence and obeyed the elasto-plastic constitutive laws. The
damage process is incorporated when elastic domain changes in
shape due to hardening/softening process.

It is noted that a sort of K=K{p) and G= G{p’,) implies a
variation of apparent Poisson’s ratio which may become very
low or negative value for a considerably low mean stress. Thus,
there is a limitation of applying G(p’) to a certain extent of
OCR values. To solve this difficulty, a light of K=K{p’g) and
G=G(p’) has come into view in recent research™>, though,
complex expressions of non-zero coupling modulus J and elastic
dilatancy response during simple shear appear questionable.

By and large, soil is considered to hold initial stresses, thus,
work done by initial stresses is included to the stored energy.
The parameter of hardening p . is held constant in formulation.
4.1 Energy of distortion
Consider the energy as a product of deviatoric stress-strain,

, 1 ;.
x(8§,p'c)55(s-si)' g5 +s, -€f 42)

where &% is the principal elastic strain deviator, s is the principal

stress deviator. s; is initial stress deviator, q; stands for initial
deviatoric stress and G(p’;) denotes the shear modulus. Eq.(4.2)
can be reduced to,

L3 A,
X(smpc ) = —Z_G(pc )Ei + qiei (43)

T T PR 1Y

Conjugate of y, by Legendre transformation

x(@p.) = max(q:e; - X(e1)) = %%(7"—); 44)

€

4.2 Energy of contraction
Based on e-/n(p’) curve of consolidation test,

-

Void ratio-strain relation (elastic): £ = 4.5

+é,

e, is the reference state referred to void ratio at the completion of
consolidation.

Elastic swelling curve: é= —L, p' 4.6)
p

Initial condition: ee(p)=¢;,;=0 @n

Substitute Eq.(4.6) into (4.5), integrate with initial condition

e = ——1In(-£) 48)
l+e, P}
Rewrite Eq(48)to  p'= p'; exp(=> ;E"" ) 4.9)
L . AU
Form potential strain energy by setting: ~ p'= P 4.10)
EV

Integrating Eq.(4.10) reveals the potential energy as follow,

& Ee —SL'-
U-U, =fp'ds; = p', Kexp( VE vy

@.11)
Eyi
Potential energy is energy of state. And the state chosen to

correspond to zero potential energy is arbitrary. As a
consequence, the constant terms in (4.11) is omitted,

U = p Rexp(2=4y @.12)
K
Find a conjugate of U by using Legendre transformation,
W= p'x|In(Eo) + 22 - 1] @.13)
pi X

4.3 Stored energy function
Sum of Eq.(4.3) and (4.12) gives a stored energy function as
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presented by Eq.(4.14) below

(:‘ e

-€
Y(ey, €0, plo) = p,KeXP(” L)+ = G(pg)s " rge

Complementary stored energy function is also obtained,

m V’ s IC = li
Phq.p')=p 6 G, ,C)

. .
ln(L')+£_K’-—l +
pi K

Stress relation can be taken by gradient of stored energy

oy . .
p ge’ ' ex (ei _E:’)
{ }:V\p= M Py eXp—— .16
7 3G(p', el +4;

it}

J€

R

By the same fashion, strain relation is,

o g—;" Eln(ﬁ—)ﬂ:ﬁ,
" =Vw =, = ! 4.17
{sﬁ} @[] 1g-g @n
| 99 3G6(p')

Stiffness matrix can be taken via stored energy function as

ERTER
12 '
C=vvy-| %" 09% @.18)
vy 9y
8p'3q  9q”
Then C= TeXP( = = e D (4.19)
0 3G(p',)
By the same fashion, the compliance matrix is
£ o
E-C'=-vvg=|? | (4.20)
0
3G(p'.)

Compare Eq.(4.1) with (4.19) and (4.20), tangent bulk modulus
is determined by,

K(e) = Zrexp(r =t W) or K(p)=LZ @21)
3 K
Tangent shear modulus is set to be the function of constant

Poisson’s ratio v’ and bulk modulus at the state of consolidation,

Gp ) =wK () =wEe (42
where u'= 3a-2v) (4.23)
21 +Vv")

In Eq.(4.24), the parameter p’. can be calculated from a
pre-consolidation pressure p’, and volumetric plastic strain £, or

volumetric elastic strain £, in loading process or consolidation

on e-In(p’) relation (see Eq.(3.2-3.4)). The rate form of p’; will

be discussed later. The change of p’.causes a change in size of
elastic domain and trigger damage process on stored energy.

4.24)

P —poeXP( ) p'oexp(—== "C)

It is concluded that, within state boundary condition, G is
constant but increase exponentially with strain-hardening
parameter after yielding by taking damage effect on energy
conservation into account. Its explicit evaluation will be shown
in the next section.

5. Hardening potential and Inelastic damage process

[rreversible part of isotropic normal compression
represents the hardening development in soil particles. A
hardening potential function is defined to keep in line with a
stored energy of volumetric elastic strains Eq.(4.12). Under this
combining process, an internal energy and derivative can be
defined straightforward by,

H(a)=p', (X -f)wp(X

% G.1)
- K

H(0) = Jf(a) (52

Substituting Eq.(5.l) into Eq.(2.4b) vields a stress-hardening
parameter corresponds to Eq.(3 Sa).

h=p, exp( ) P (53)
Nonlinear plastic modulus and rate form of p’. are obtained by
Hp) =5, pe=H(p)a  (4ab)
-X
q 07 ,m b an) Ee\} (Eevm-la Eesn’-i)
i N
II €
R /’P cn pcml €

Figure 1: Mapping of incremental elastic strain into incremental stress

According to the stored energy in Eq.(4.14-4.15), the inelastic
damage process affects on deviatoric stress when stress is in
contact with yield surface. Refer to Eq.(4.16, 4.24), the quotient
of incremental relation between g and p . are expressed by,

dq _ 3G(p'. )68 -3y 585 (55)

8 '
pC po exp( vc )asvc 68vc

It is assumed that a material experiences a holonomic strain
path; i.e., proporﬁonal increments of strain over the time interval,
thus, the explicitly integrated expression can be evaluated by
considering an incremental elastic strain as shown in Fig.1 from
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initial yield stress (step n) to a subsequent yield stress (step n+1).

q q ¢ _ Ee
'n+1 'n = 3M| eSn+l :n (56)
pc‘n+l_p cn 8vcn+1 _Evcn

Manipulate Eq.(5.6) and use Eq.(3.3), the nonlinear secant shear
modulus including damage process due to a change in size of

yield surface can be determined by,
Gne1 -4 \ Plep=Pe , ,
3w S < 3G, (P Pley) ()
Sn+l Sn ven+l ven
1 L 1 p' _p' "
where  Go(p'p,ysPley) =W =l = (5.8)

Kln(p'(,‘n.H /p’Cn )

Non-linear secant shear modulus is a result of externally
integrating on the plastic hardening parameter. It is noted that the
secant shear modulus is held constant inside the state boundary.
In case of the initial yield surface, the secant shear modulus is
the tangent shear modulus of pre-consolidated pressure.

lim Gy(p'e,p'y)=G(py)= u'% (59

pe=ps
By rewriting Eq.(5.7), Eq.(5.10) gives an evolution of g in
Eq.(4.16) and stiffness matrix in Eq.(4.19) are thus taking
damage effect into account. '

Qnet =9p + 3G\ (p'cnﬂ ’ p’cn )(einq.] - Ein) (510)
p'lﬂ 0

K
0 3G\‘ (p|Cn+] > p'Cn )
The relevant equations are summarized in Box 2.

C- .11)

Box 2: Elastic parameters and moduli

Recompressibility index: K =
l+e,

Compressibility index: A =

l+e,

31-2v")
2(1+v')

U

Tangent bulk modulus: ~ K(p') = %
K

Ratio of shear to bulk moduli: w'=

P
I3

Tangent shear modulus: G(p'. ) =u'
Secant shear modulus:
' -P'C,M-P'c,,
RI(p'e, 1/ Pen)
K

G(P'cpprsPlep) =1

note: G(p'c, s P, ) =W

6. Elastic constitutive equation

The incremental stress-strain relation can be described by,

6=c:¢ ‘ 6.1)

where  ¢f = ;(z =1® :pe 4—6-3—5? 6.2)
€ 3 £
N .
6=pl+s, s‘=—é—sﬁl+sﬁ, (6.3a, b)
' ' e ' e e
op _ ap' de, + ap' de, dg, 64)

0e°  de, dg°  oef gy oe°

¢ ¢ n ¢
os _ 08 ode. 3 oo, dey 65 90 ey (g5

9e® ot  ae 3l o) o’

¥

Is%[&,kéj, +5i,6jk]ei Re;®ey, D¢, is the forth-order

identity tensor, ¢ is forth-order tensor of elastic stiffness
including damage effect. Elements of C are defined in Eq.
(5.11). In this case, Cy, and Cy, are simply zero.

where AEI—%(I@]), n .—_-S_l

i

(6.7a,b)

7. Integration schemes

Solutions of elasto-plastic responses usually rely on
sub-stepping technique, however, a numerical result is
inaccurate due to a drift on the yield function. By fully implicit
integration (Backward-Euler), the state variables at current step
are calculated and enforced to satisfy the yield function at the
end of the step. Iterative methods based on this scheme are more
robust, stable and give a better accuracy for the same increment
of driving variables; e.g., strains, displacements, forces and time
periods. It is necessary to integrate the constitutive equations by
assuming material is subject to a constant rate of strain over the
interested time interval. Elastic-plastic operator-splitting
methodology is used in the fully implicit integrative scheme,
leading to the return-mapping algorithms with unconditional
stability and first-order accuracy””.

Operator splitting theory has everything to do with a
decomposition of incremental elastic and plastic parts. Fig. 2
illustrates an outline of the algorithm by referring to an
elasto-perfectly-plastic one-dimensional model being pulled by
force q on rough surface against friction resistance o,=up. A
slippage of box represents an irrecoverable deformation. A
stretch of spring represents a recoverable deformation. The
combined incremental deformation is split into two discrete
steps. First is called elastic predictor step where plastic part is
firmly locked and all deformation is dominated by trial elastic
part. Second is called plastic corrector step where plastic part is
released and elastic part is corrected. The box would stop at the
stationary point where dissipation energy of a system reaches the
maximum value and hence, the solution of a problem.
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P  Increment p

@ elastic predictor
" @ plastic corrector

P @Release
plastic part

Figure 2: Schematization of operator-splitting theory

7.1 Time discretization

According to ordinary sub-incrementation technique for
numerical integration, Forward-Euler difference is almost in
practice giving the series of sub-increments. Though
Backward-Euler difference is superior to that of explicit method
by providing the iterative scheme with a quadratic rate of
convergence, formulations driven by Forward-Euler are simpler
than Backward-Euler, which is complex and depends crucially
on the particular constitutive model chosen. Herein, the
integration algorithm applicable to the Sekiguchi-Ohta model is
presented. Refer to Eq.(2.10a),

g =€- yéj; 7.0

do :
The integration to Eq.7.1) within the time interval
[t.t,. ,=t,+At] can be approximated using Backward-Euler
differential scheme where plastic strain increments and

hardening variable are calculated at the end of the step.

(723, b)

. af
= P _ef e

€hs1 =8y +A8’ €41 =8y +AYn+l
g n+l

where €,,; =€(t,,1), AV, =VnaAt, Ae=£At

Subtract Eq.(7.2a) by (7.2b) yields a current elastic strain tensor,

€nel = e - A'Yn+] {-f-}
n+l

o - (13

g =g +Ae (74)

¢ is a trial strain given by geometric update of the imposed

displacement increment over the time stép. Ay is taken as zero in
elastic predictor step. Stresses are updated correspondingly,

gl . —¢t

p'n+l = p’n exp( vn+l Vn)

— (1.52)
K

Spa1 =Sp +2G (P Plen ){sfm, -€5, } (7.5b)

Update state variables are summarized in Box 3.

7.2 Linearization

The goal of this section is to solve Eq.(7.3) for €° in strain
space constrained by the discrete form of Kuhn-Tucker
conditions given by

AYnH =0 ;fn+1(6’ p'c ) s0 ;AYn+l'fn+l(67 P'c ) =0 (76)

The solution can be achieved iteratively by Newton-Raphson
method assigned on a set of equations below with p . fixed.

Unknown vector; x=i5m 7.7
AYn+l

Eq.(7.3) and yield function define a residual vector of

r .
r= where F =g%41 —€" + Ay, {1} (7.8)
n+l oc n+l

Consistent Jacobian of the residuals is defined by,

2
ar I+ A\(M cf A
{_} - 33 oo 79)
x LA ¢ 0
de n+l

-
Iterative scheme; x**D = x®) - k. {%} +® (710
Super-script 4 indicates an iteration number. The iteration will
stop when the norm of residual vector is less than the tolerance
imposed. k. denotes a controlled step of convergence. Iterative
scheme in Eq.(7.10) can be reduced to the following
procedures. The algorithmic moduli E replace the Hessian
matrix of the Lagrangian function by reassembling

32 s et e
I+ AYn+1 f :C:H-‘ = :‘nll :c:+1 (7.11)
dodo
n+l
;- -!
Therefore, E,,, = (c;,rl + Ay,,+,H,,+,) (7.12)

a? ' E)
where H,,, = {ac;;} and h,,, = {a—j;}
n+l n+l

The different of unknown vector for each iteration can be

expressed by Eq.(7.13). Substitute Eq.(7.13) into Eq.(7.10) and
rearrange to form Eq.(7.14),

x&D _ k) de’ (7.13)
dAY|
-], e [4 - .
= hpogee] 0t (7.14)
h:c® 0] |04y S|

Pre-multiply the first set of Eq.(7.14) by {h E}n o , then
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fo:ct 86 + 0Ayh:E:h),, =~k fn:E:F),, (7.15)

(h o :68")"“ =—k.fra (7.16)

Solve for 64y by substituting R H.S of Eq.(7.16) to Eq.(7.15).
8¢° can be solved by substitution of §A4yin Eq.(7.15) to the first
set of Eq.(7.14). The difference of the increments of consistency
parameter and elastic strain are as follow,

say = k (L=HETY. (7.17)
h:E:h |,
8¢ = {_ e :E(kcF+6Ayh)} (7.18)
n+l

According to the previous research', a controlled-step of
convergence is suggested by k. =3/4 to refrain iteration from the
ill convergent direction. Update the unknown variables by,

A = Ayl + ay (7.19)
k+1 k+1

e = g% 4 0e (7.20)
S(k+1) k+l1 k+1}) k+1

Ein,,: =1r(e o )), f,f,:; — A (721a, b)
(k+1) olk+D)

&0 =fr(8 =€l ) 02

p(k+l) gp

v (k v &y

p Lfr++ll) = p cn exp(—”“?——”) (723)

(e e
P p, exp(Crn_"Fomy (7.24)

S =5, 426, 8" P e~} 729
The iterative loop of Eq.(7.10) corresponds to the Closest
Point Projection (CPP) method. To bypass the need for
computing the gradients in Eq.(7.9), Cutting-Plane (CP) method
using an explicit procedure is developed involving
quasi-Newton method®. CP algorithm applicable to the
Sekiguchi-Ohta is available in the previous research'¥. It is
obvious that CPP is superior to CP in accuracy and stability in
_particular for a large step increment”. Box 4 contains detailed
procedures of single/multiple-step CPP method.

Box 3: Updated state variables

Stress update

¢ e
Vn+l iEvn )

pn+] = p,,eXp(

e e
Spe1 =S, + 2G.v(p'cn+l > P'c,, )#dm-l ~&4y }

Stress-hardening parameter update
5n+l €y n
Pepi=Phn eXP(—————)

8. Numerical examples

In order to evaluate the performance of the algorithm, the
numerical examples based on two-invariant stress space
problem of consolidated undrained test (CU test) and
unconsolidated undrained test (UU test) were performed by a
strain-controlled axial compression to a maximum axial strain of
10%. Soil parameters were adopted from soil reports of the
northem line of Bangkok initial subway project®®. The
systematic parameter determination suggested by lizuka and
Ohta® (1987) was used to determine soil parameters for
calculation as listed in Table 1. The tolerances, TOL,; and TO L,
were set to 10°. Verification was done by comparisons with a
closed-form solutions derived from the constitutive equations as
well as exact results of both sub-stepping (SS) and CPP methods
generated by a series of very small increments of imposed strain.

Table 1: Soil parameters

Parameter Description Value
D Coefficient of dilatancy 0.102
A Irreversibility ratio 0.825
M Critical state parameter 1.12
v Effective Poisson’s ratio 0.38
K, Coefficient of earth pressure (NC) 0.61
K| Coefficient of earth pressure (in-situ)  0.70
A Compression index 0.376
€, Void ratio at ¢’ 1.735
T’y Eff. preconsolidation pressure (kN/m?) 100

o'y Eff. overburden pressure (kKN/m?) 69

8.1 Accuracy assessment

In practice, the number of sub-increments is repeatedly
applied to algorithms for improving the accuracy. To evaluate
the calculation performance, a series of analyzes were
performed for CU test by SS (using Forward-Euler difference)
and CPP methods (using Backward-Euler difference) with a
single step and incrementally multiple steps:- 5, 20, 50 and 1000
steps, in other words, with strain increments:- 2%, 0.5%, 0.2%
and 0.01% respectively. The closed-form solutions relevant to
the problem can be derived by directly integrating the
constitutive equations over the imposed stress paths. These
solutions are given for deviatoric stress and axial strain as
functions of effective mean stress shown in Eq.(8.1,8.2). The
comparisons with SS and CPP methods are arranged in Fig, 3.
L‘)%{ﬁ

.- [n,, _AA{.,,( 2 J]p 6.1),62)
Po

iy

+ n|-—
A(M‘nu)

p(l
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Box 4: Closest Point Projection iterative scheme

L.Input: 8¢,6,.8,,80, p'.,

2. Initialize: k =0, Ay%) =0

n+l =

¢ (k)
g =¢,-¢,€,,,=¢,+3¢, 8e”ns1 =0

~ €dpa -

Eopal = tr(enﬂ) > Asdn-]»] = A:8n+l’ n, o= l

on =tr(€n), &g, = Aie’n el =1r(e°n)

3. Elastlc predictor:
. (k) (k) : (k)
g =¢f +0c, €ni1 =", €/ni1 =& +8e7n0
k) k) e (k) (k)

Eype =€ ne1), 84, = A€ na
(k) (k) (k) (k)
ef o =tr@€’na), €)= Ae"nn

U0

Vn+1 evn)

P = ple, exp(

e(") £¢
vn+1 Vn )

P =p Y = p, exp(ntln

k k) (I
S EH-)I =S5, + 2Gf(p CS’H-I ’p cn ){effm-l szn}
k) W(k) (k)
£1+l = pgu—ll +5,4
4. Check yield function and residuals:

k v (k)
fn+l = f(csn)l’pcnn )

of 9°
h,. ={ } » Hyyy = A
96 |, dodo |

(k)h

n+1" n+l

Fogli - + Ay
F f,, <TOL AND |¥| < TOL,
THENSet (*),.,; = (*)\) and GOTO9

5. Algorithmic moduli:
et = K(pPEN®1+26,(p . ')A

n+l

-1
- e -1 k
Spel = (c:m + AYEI+)]HH+1)
6. Plastic corrector:

RN )
5Ay(k) k (f‘h-.-h-r)

n+l = h:

de° n+] {"

7. Update solutions:

n+l
(k)
LE(kE + 6Ayh)}

n+l

e = g% + BE% e, AyED - Ay 4 say )
68”531) =g" -¢ i,kﬁl), spi.kﬁl) =gl +88”£.k++11)
- o w?
D _ ey, e - e
(k+1)
p.cgk;;I) = p',, exp( fm)i _‘ Efn)
LI
P’ =P exp(————”"*‘ )

k+1 ke (etl)
£1+4i ) =Sy +2G (P cn+l *Poep ){steirnl —82"

(k+1)
Gl

8.Set k =k +1andGOTO4
9.0utput: 6,,,1,€,41580,1, P,y adEXIT

(k+1)
n+l

= pl(k+])1 +S

The errors of analyzes are obviously found due to the effect
of increment sizes. Therefore, the emphasis is placed on
selecting the size of sub-incrementation for high accuracy.
According to Fig. 3, it is clearly seen that solutions by SS are
drifted from the yield surface while those of CPP are always
constrained on it. That is why the accuracy performance of CPP
is substantially superior to SS for coarse increments or even a
single step increment however it becomes extremely laborious
for a finer step using very small sub-increments. The exact
solution can be obtained by repeatedly applying the increasing
numbers of sub-increments to the algorithms until there is no
change in results. For 0.01% strain increment (1000 steps),
numerical solutions by both CPP and SS meet the closed-form
solution, thus resulting in exact solution.

8.2 Convergence study

Fig. 4 and Fig. 5 show the effective stress and stress-strain
responses for UU test predicted by multiple-step SS and single-
step CPP methods. The convergence performance of CPP
method was tested by a single increment as large as failure axial
strain of 10%. The stress update iterations started from the initial
stress state inside yield surface and then moved outside by
elastic predictor step. The consistency condition iteratively
corrected the state variables to retum back to yield surface taking
damage effect on stored energy into account while internal
hardening variables were updated simultaneously along the
retumn paths. The number of iterations to satisfy the tolerance
was 12, Fig, 6 shows that the consistency parameters computed
at successive iterations using the consistent Jacobian can
approach to the solution with a quadratic rate of convergence.

8.3 Evaluation of error

The undrained shear strength, S,, is able to determine by
UU tests. Expression of undrained shear strength for ideal
samples is given below (Ohta et a™” ,1989).

_S"_- 1+2K" ——2Mexp(- A+Ano) 0CR1+2K (8‘3)
ideal 6 M

T 142K,

Table 2 shows the results of S, determined by SS and CPP
methods with the variation of sub-increments. Ermrors are
evaluated by comparison with Eq.(8.3). Though SS needs as
much as 1000 steps for 0.20% accuracy, a single-step CPP
method needs only 12 numbers of iteration for -0.77% accuracy.
Therefore, CPP method is proved to give a high accuracy and
stability even a single large strain near failure is imposed.
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RETURN PATHS GENERATED BY CPP METHOD
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Figure 4: Numerical results by 1000-step SS and single-step CPP
methods in p’-q space for UU test at 10% axial strain

Table 2: Undrained shear strength tests (10% axial strain)
Method

Normalized strength S,/o",, Error (%)
Closed-form 0.2547 0.00
SS (single step) 1.3258 420.48
SS (5 steps) 0.3443 35.16
SS (20 steps) 0.2909 14.21
SS (50 steps) 0.2639 3.60
SS (1000 steps) 0.2552 0.20
CPP (single step) 0.2528 -0.77
CPP (5 steps) 0.2543 -0.17
CPP (20 steps) 0.2545 -0.04
CPP (50 steps) 0.2546 -0.03
CPP (1000 steps) 0.2547 -0.03
SS = Sub-Stepping, CPP = Closest Point Projection
Consistency parameter at each iteration
T T T
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Figure 6: Convergence of consistency parameter approached
by CPP algorithm for a single-step of 10% axial strain
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9. Conclusion

The implicit integration algorithm cast in form of Closest
Point Projection method in the context of strain-driven process
for the inviscid Sekiguchi-Ohta model was developed. The
two-invariant conservative stored energy function with damage
process and choice of suitable hardening potential were
proposed. A class of isotropic pressure-dependent bulk modulus
and stress hardening parameter-dependent shear modulus were
employed as an illustrative case of hyperelastic model required
by retum-mapping algorithms. The developed formulations
were implemented and used in numerical analyses for CU and
UU tests. The numerical results showed that CPP method could
provide an effective, stable and robust integration scheme to the
rate constitutive equations for any variation of imposed strain
increments. The exact solutions of both CPP and SS methods
can be obtained by subjecting the algorithms to very small strain
increments. Verification has been done by comiparisons with the
closed-form solutions. The errors associates with CPP method
were relatively low in compare with those of SS method even at
a single large strain increment near failure. It was clear that CPP
method is superior to SS method in particular when a small
number of steps are applied or a large size of strain increments is
used. The fundamental mathematical disciplines developed in
the study will pave a way to a formulation of soil/water coupled
FEM and the emerged evolution of finite deformation analysis
in further research stages.
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