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An inverse problem of determining the elastic wave produced by an ultrasonic transducer

from laser velocimetry data is considered. The quality of the inversion is tested via a

comparison between experimental data and simulation results obtained with a 3 dimen-

sional time domain elastodynamic BIEM using parallel computing. The agreements of
these results are satisfactory. The feasibility of the determination of defects based on the

- laser measurements is also investigated. The size and location of an unknown defect are

determined with high accuracy.
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1. Introduction

Determination of defects in structural members is
one of fundamental issues of the non-destructive eval-
uation. In these few years, the present authors have
been investigating the reconstruction of unknown de-
fects from real data of ultrasound using a BIE (bound-
ary integral equation) approach.}2»3) As the data,
the particle velocity associated with the ultrasound
measured with a laser interferometer has been used.
This is because the setting of the inverse problems as-
sumes that one knows both incident elastic waves to
illuminate the defects,' and the scattered waves from
the defects quantitatively.y With the laser velocime-
try one can measure the scattered waves quantita-
tively, but the incident waves still remain to be deter-
mined since these waves are generated by transducers
with unknown characteristics. In view of this, an aux-
iliary inverse problem has been considered which uses

real data obtained with a laser interferometer to de-

ultrasonic transducer, laser interferometer,

termine the waves from the transducer?). The quality
of the inversion was then tested in a comparison be-
tween measured and calculated scattered waves from a
known defect. The comparison turned out to be good,
but not completely satisfactory for carrying out the
reconstruction of defects.

To improve the results, Yoshikawa et al.® at-
tempted to use a more realistic, but still simple, model
for the transducer to determine the incident waves®).
This model removed the assumption of the uniform
distribution of the equivalent force under the trans-
ducer made in the previous investigation?. Also a
paralle]l BIEM® for 3 dimensional elastodynamics in
time domain was used to verify the result of the in-
version, thus eliminating possible inaccuracy of the
numerical solution caused by the coarse mesh. The
comparison between measured and calculated scat-
tered waves turned out not to be completely satisfac-
tory, but the results were good enough for carrying

out a preliminary reconstruction of defects. Indeed, a
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simple inverse problem of determining the geometry
of an unknown defect from real data was solved in
Yoshikawa et al.®) In this problem the radius and the
depth of an unknown defect were determined numer-
ically using the real ultrasound data. The estimated
values were not very satisfactory (the estimated ra-
dius included an error of 20%), and further need for
the improvement of the accuracy of the inversion was
concluded.

In the present paper, we continue the efforts to im-
prove the quality of the reconstructed incident waves
from the transducer in order to improve the accuracy
of the determination of unknown defects from ultra-
sonic data. Specifically, we reconsider the process of
determining the equivalent load under the transducer,
and attempt to identify the sources of error. We shall
see that the setting of the experiment can be improved
so that more information from the experiment can be
taken into the analysis. Using the new experimental
setting we shall carry out both experiments and in-
verse analysis to reconstruct the incident wave from
the transducer. The comparison between the recon-
structed incident wave from the transducer and the
corresponding experimental results will be seen to be
quite satisfactory. Finally, we shall see that a consid-
erably improved reconstruction results are obtained
in the inverse problem of determining the unknown

defects using the new experimental setting.

2. Experiment and Inversion in

Yoshikawa et al.¥

We shall describe the experiment and the inversion
discussed in the previous papers?)3) for the purpose

of referential convenience.

2.1 Experiment

The test piece shown in Fig.1 is made of aluminium
alloy, and has a circular cylindrical shape with the
diameter of 200mm and the hight of 49.8mm. This
test piece has an artificial defect, i.e., a cylindrical
hole having the diameter of 19.8mm and the depth
of 44.4mm from the bottom. We set an ultrasonic
transducer (SONIX, central frequency = 500 KHz, di-
ameter = 14.5mm) at the indicated position (20mm

from the centre of the test piece) using silicone grease

as the couplant. The ultrasonic transducer is then
excited with an electric pulse generated by a pulser
(RITEC SP-801). We then use laser interferometer
(ONO measuring instruments LV-1300) to measure
normal velocities at points denoted by L;—4 and R; in
the same figure. The points L4 are taken 5mm apart
from each other, and the pdints L, and R, are placed
22mm away from the centre of the transducer(the ori-
gin of the coordinate system).

The frequency range of the laser interferometer is
from 1Hz to 2.5MHz. The interferometer produces a
voltage proportional to the measured normal velocity,
and the output from the interferometer is recorded
with a digital oscilloscope (LeCroy 9384TM). The
S/N ratio of the output is enhanced with a stack-
ing of 5000 sweeps. In this experiment we determine
the incident waves from the transducer by using the
data obtained at L;_4 in an interval of ¢ where the
responses at these points are not affected by the arti-
ficial defect. Our interest is to see if the incident waves
thus reconstructed predicts the responses at the point
R, sufficiently accurately that one can use the recon-

struction result for the incident wave in the second

inversion of determining the geometry of defects.

transducer E %

laser
interferometer

49.8

200

Fig. 1 Test piece. (unit: mm)

2.2 Determination of Equivalent Loads
(1) Formulation

One may model the action of the transducer to the
test piece by a few time varying uniform normal loads
pi(t) (j = 1,..., M) called equivalent loads. With
this assumption one obtains a system of integral equa-

—146—



tions given by
o,
=Z.,/0 Ki(t - s)py(s)ds, (i=1,...
J :

where k%(t) is the normal displacement at the point
z* produced by the jth uniform load having a Dirac
delta time variation, V'%(t) is the normal velocity at z*
obtained with laser velocimetry, and N is the number
of the experiments. The union of the area of appli-
cation of the load p; denoted by 6D;, coincides with
the area under the transducer.

Since this system of over determined integral equa-
tions of the first kind is unstable to solve numerically,
we convert it into the following stabilised integral

equations with the help of Tikhonov’s regularisation®
T .
b)) + [ Koult.rpe(r)dr
0 ,

T .
-y /t Ki(s—tVis)ds,  (2)

T . .
Kse(t,) =Y / Ki(s — t) Kifs — 7)ds,

;Y max(t,T)

where € is the Tikhonov parameter. The solution p;
of Eq. (2) then determines the elastic waves from the
transducer as one solves a direct problem with this
p; as part of the boundary conditions. Namely, one
solves the following initial boundary value problem for

the unknown velocity v:
pAY+ (A + p)VV v = pd in D x (t > 0), (3)
Tv =0 on (8D\ (0D, U---U8Dy,,)) x (t > 0),
Tv = —p;(t)n on D;; x (t > 0),
V|i=0 = D}t=0 =0 in D,
where D is the domain under consideration, 8D is
the boundary of D, n is the unit normal vector to

0D and T is the traction operator, respectively. The
boundary integral equation for Eq. (3) is given by

t
lvi(y,t) = / / Iij(y — z,t — 5)Tjeve(, s)dsdS
2 ap Jo
t
—][ / Lrij(y, x,t — s)vj(x, s)dsdS,
aD Jo
ye€ oD (4)

where the integration sign with a superimposed —

stands for a Cauchy’s principal value. The function

,N) (1)

I';; is the fundamental solution for 3 dimensional elas-
todynamics and I'yy; is the double layer kernel defined,

respectively, by

F,;j((l: t)
[ t—|$|/CT)5ij
0.9 (t.— |lz| /er) (t—lz| /cL)
%a—a—( pe - ).
(5)
Lrij(y, x,t) = (A\lim,m(y — T, t)05% (6)

+ 1T k(y — x,t) + Tix j(y — , 1))k (),

where ’,;’ stands for 0/0z;, é;; is Kronecker’s delta,

. x4 is defined by (z +|x|)/2, cL is the velocity of the P

wave and cr is the velocity of the S wave, respectively.
The normal velocity at R; shown in Fig.1 is computed

numerically from Eq. (4).

2.3 Results

Yoshikawa et al.®) have carried out an inversion
to determine p;(t) using the velocities V*(t) (i =
1,...,4) obtained at Li_4 shown in Fig.1. The data
in the interval of tg <t < t; are used in the inversion,
where tg is the rise time at Ly, t; = to+T and T =6
(us). The action of the transducer is modelled by
two equivalent loads, i.e., one (p;) distributed on the
circular area (3D, ) under the oscillator of the trans-
ducer, and the other (p2) on the rest of the area (0D,,)
under the transducer, respectively (Fig.2). One may
then assume the domain for the analysis to be a half
space since the reflection from the side and the bottom
of the test piece is negligible. Hence one may use the
well-known solution by Lamb® to obtain k;'-(t) in Eq.
(1) and Eq. (2). The optimum Tikhonov parameter &
is obtained from the L-curve”) to be 10~7.

In this way Yoshikawa et al.® could determine the °
incident wave from the transducer. The computed
and measured normal velocities at R, are shqwn in
Fig.3. As we can see in this figure, the agreement of
these results are satisfactory up to 7us, but then the
computed result shows a deviation from the curve of
the measured results at around ¢ = 8us. Yoshikawa et
al.3 also presents a result of the same inverse prob-
lem of determining fhe shape of a defect as will be
discussed later. They could, however, determine the
radius of the defect only to within 20% of the true

—147—



transducer

0.006

0.004 [

0002 -

velocity{mvsec)
&
g

" " 2 " " N " "
10-08 2e-06 3008 4006 5e-06 6006 Te-08 80-06
tme(y sec)

Fig. 3 Computed and measured normal velocity at
R;. R;: measured, R;-b: computed

value.

3. Criticism to the Earlier Investiga-
tion

As seen in the previous section the analysis in
Yoshikawa et al.®) was satisfactory to some extent,
but not completely for carrying out the determina-
tion of defects. In this section we shall consider how
one can improve the results in Yoshikawa et al.?

Fig.4 shows the behaviour of p as a function of
time obtained using the method and data presented in
Yoshikawa et al.?) except that the distribution of p is
assumed to be uniform under the transducer. The last
assumption is introduced for the purpose of simplic-
ity of the discussion. (See Yoshikawa et al.®) for the
plot of the p; (2-DOF) used for obtaining the result

in Fig.3. The 2-DOF results for p; show the same
behaviour as will be explained in Fig.4.) This fig-
ure shows an unnatural spiky behaviour at ¢ ~ 3us.
We also see another, but much smaller, anomaly at
t = 1.5us. In the solution of Eq. (3) using this p, the
former anomaly begins to propagate from the edge
of the transducer at t ~ 3us and takes about 5us to
reach R; in the form of the Rayleigh wave, whose
phase velocity is about 2900(m/s). Hence we expect
to see the effect of this anomaly clearly at about 8us
at R;, considering the fact that the most dominant
carrier of wave motions in terms of the amplitude is
the Rayleigh wave. This is in agreement with the ob-

servation made in Fig.3.

e E;O.m‘
S0
a.f = -0.0002
£.0003
-0.0004
<0.0005 4
3 2 2 1 14 3 2 1|
o I 2. A Y v .y
] 1008 20-06 3008 4008 5006 6008
time(sec)

'
¥ : The contribution of the P wave component measured at Li.

é : The contribution of the S wave component measured at Li.
i

¥ :The

ion of the Rayleigh wave P atLi

Fig. 4 Reconstructed pressure rate p. r¢,: radius of
the transducer

We now discuss why this anomaly takes place. The
triangles in Fig.4 with a superposed number i show
the arrival time of certain waves at the observation
point L; plotted backward from t = T + tg with
T = 6(us), where tg is the rise time at L; and T is
the period of the measurement. In the sequel we shall
call the locations of these triangles ‘backward arrival
times’. It is easy to see that the information carried
by a certain wave and observed at L; is used in the de-
termination of p in the interval of t between 0 and the
relevant backward arrival time. Therefore the curve
of p between the white triangle marked ‘2’(t = 5.2us)
and 6us is determined only from the information car-
ried by P wave and observed at Ly, for example, and,
therefore, may not be very reliable. It is seen that
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the locations of the spikes correspond to the back-
ward arrival times associated with the Rayleigh wave.
In other words, we see anomalies at the instants when
the amount of information of p carried by the Rayleigh
wave changes suddenly. Judging from the curve in
Fig.4, however, changes of the amount of information
carried by other waves do not seem to contribute to
the anomalous behaviour of p. This observation may
be explained from the facts that the biggest compo-
nent of waves propagating on a surface is the Rayleigh
wave and that a time variation of Lamb’s solution is
continuous at the arrival times of P and S waves and
is discontinuous at the arrival time of Rayleigh’s wave.
Or, possibly, the difference between the assumed and
true wave speeds of Rayleigh’s wave may be respon-
sible for this behaviour. At present, however, the au-
thors do not have more definitive explanations for the

occurrence of the anomalies.

To avoid the contamination of the solution by this
anomaly, one may use the observation that the biggest
anomaly is associated with the backward arrival time
of the Rayleigh wave at the observation point clos-
est to the transducer (L;). Indeed, one may mea-
sure normal velocities V*(t) for longer periods of time
(0,T + AT) and determine p in the same time inter-
val using the technique presented previously, where
AT > 0. One then discards p for t > T and takes the
solution only in the time interval of (0,T). Since the
backward arrival time will then be delayed by AT,
one may adjust AT so that one sees the contamina-

tion only after the particular time interval of interest.

Another observation to support the use of the elon-
gated experimental data is the fact that the computed
p in Fig.4 approaches zero as t — 6(us). As a mat-
ter of fact, one shows easily that the solution to the
integral equation in (2) approaches zero as t — T if
€ > 0 since the integrals on both sides of (2) vanish
as t — T. This means that we force p to vanish for
t ~ T in order to stabilise the solution of the integral
equation. It is therefore obvious that it is desirable
to take T larger than required in order to compute p

accurately in the whole time interval of interest.

Fortunately, the experimental data used in
Yoshikawa et al.?) are available up to 7.5us. Utilising
all the data in this interval, i.e. with AT = 1.5(us),

we could obtain the result for p shown by the solid

line in Fig.5. Here again we have used a simplify-
ing assumptlion that p stays uniform under the trans-
ducer. As is evident from this figure the anomaly at
about t = 3.2(us) has been shifted to approximately

t = 4.7(us). In Fig.6 we have compared the normal
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Fig. 5 Reconstructed pressure rate p. p: recon-
structed pressure rate using data in the in-
terval (0,T), p-long: reconstructed pressure
rate using data in the interval (0,7 + AT)
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Fig. 6 Computed and measured normal velocity at
R,. R;: measured, R;-b: computed, Rib-
long: computed using p in the longer interval

velocity at R) observed experimentally (R1), with the
one computed with the method in Yoshikawa et al.®
(R;b) which is expected to be contaminated, and an-
other computed with the elongated experimental data
(R1b-long) and the 2-DOF approximation for p. The
anomalous behaviour near t = 8(us) is seen to disap-
pear in the result obtained with the elongated exper-

imental data. From this result the use of elongated
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experimental data is seen to be effective for improving
the quality of the inversion result. It is aléoobserved,
however, that this technique alone may not necessar-
ily be sufficient for the use of this inversion result
in the second inverse problem of determining defects.
This is because one still sees some difference between
observed and computed results in Fig.6.

As an additional means to improve the quality of
the inversion, we propose to take the observation
points L; closer to the transducer. In this way the
Rayleigh waves from the transducer are observed at
L; for longer periods of time, thus increasing the in-
formation of p in the data. However, one has to be

careful not to take these points too closely to each

other since too close observation points will lead to |

degeneracy of the data.

With these considerations we shall test a new ex-
perimental setting in the next section. Namely, we
shall combine the use of the elongated experimental
data together with the use of observation points closer

to the transducer than in the previous investigation.

4. New Experimental Setting

In the new experimental setting, we take 5 mea-
suring points L; (i = 1,...,5) which are taken 2mm
apart from each other. The location of L, is now
23mm away from the centre of the specimen, i.e., Imm
farther from the transducer than in the previous inves-
tigation. This undesired compromise is made in order
to avoid possible contact between the transducer and
the head of the laser interferometer. Also, the obser-
vation points R;_3 shown in Fig.7 are used to measure
elastic waves affected by the cylindrical defect. Other
details of the specimen are exactly the same as have
been used in Yoshikawa et al.®) and shown in Fig.1.

In the inversion to determine the elastic wave from
the transducer, we set the equivalent load p; to be dis-
tributed on the circular area (0D, ) having the radius
of three fourths of the radius of the transducer, and
the other (p2) on the rest of the area (9D;,) under
the transducer, respectively.

For the determination of p; for the interval of 6us
we use data in a longer measuring interval of 7.5us.
Then we discard the unreliable later part (for 1.5us)
and use p; in the interval of 0 < t < 6(us). Fig.8

R3(25,5)

L4 L2

P
XXX : ..§R2(28,0)
L5 L3 L1 “.R1£23,0)

(-23,0)

Fig. 7 The location of the measuring points.

shows the behaviour of p; obtained as functions of
time. In this figure the anomalous behaviour of p;
at the backward arrival time of the Rayleigh wave
associated with L; is not visible, possibly reflecting
the increased information of the data introduced by
the change of the locations of the observation points.
However a weak spiky behaviour associated with L2

at t = 3.7(us) is seen.
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Fig. 8 Reconstructed pressure rates p;.

With p; in the interval of 0 < t < 6(us) thus ob-
tained one may solve ordinary direct problem to com-
pute the velocities at R,_3 numerically. In the present
analysis we have used a 3 dimensional time domain
BIEM with a truncated plane boundary to this end.
The number of boundary elements used (V) are 4400,
and the velocities of P and S waves are set equal to
cp = 6400m/s and cp = 3100m/s, respectively. The
time increment At is 0.075 (ps), and the number of
the time steps N, is 110. Since the problem is fairly
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large, we have parallelised the code using MPI®). The
code was then run with 10 processors. Fig.9 shows the

mesh. used for the analysis. Fig.10 shows the normal

Fig. 9 Mesh.

velocities at R1_3 computed using the inversion results
for p;(t) and BIEM (marked R;—b), and the corre-
sponding experimental results (marked R;). These

results agree well.
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001 2 " " s n "
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L "
Te-06 86-06

Fig. 10 Computed and observed velocities at R1_3.

The smooth behaviour of p shown in Fig.8 sug-
gests that the results in Fig.8 might be used to com-
pute normal velocities beyond to + T. This is done
in Fig.11, which shows the computed normal ve-
locity at R; obtained with the full data for p for
T = 7.5(us) and BIEM (marked R;-b) and the exper-
imental data(marked Rl); The agreement between
the experimental and computed results is quite re-
markable. This result suggests that the new locations
of the observation points are efféctive in improving
the accuracy of the inversion results. Considering the
effectiveness of the use of elongated experimental data

concluded in the previous section, however, one may

not be able to say only from this result that this obser-
vation point arrangement alone will be sufficient for
the accurate determination of the elastic wave from

the transducer.
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Fig. 11 Computed and observed velocities at R;.

5. Determination of Defects

Encouraged by the agreement of the numerical and
experimental results achieved in the previous section,
we have tried to solve a simple inverse problem of de-
termining the shape of an unknown defect from the
real ultrasonic data obtained with the laser velocime-
try. Namely, we have considered an inverse problem
of estimating the depth and radius of the cylindrical
defect from the velocity data at R;_3, assuming that
the other details of the geometry of the defects are
known.

To solve this inverse problem, we introduce a cost
function J defined by

3
J =3 (VE(mAL) — v®i(r, d, mAt) - n)?
i=1l m

)

where V E¢ is the normal velocity obtained experimen-
tally at the point R;, and vFi(r,d, mAt) stands for
the velocity combuted assuming that the radius and
depth of the cylindrical defect are r and d, respec-
tively. The most plausible defect is determined as
the minimiser of this cost. The time increment At
is 0.075(us), and a time interval of about 6 (us) is

considered in the analysis.
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Fig.12 gives a plot of the contour of the cost
J. Instead of obtaining the minimum of J using
non-linear programming techniques, we have eval-
uated J at the grid points in Fig.12, interpolated
these values by a polynomial, and minimised J ap-
proximately by taking the minimum of the polyno-
mial approximation of J. In this way we obtained
(r,d) = (9.506,5.393)(mm), the true values being
(r,d) = (9.9, 5.4)(mm).

4.2e-06 - - -
66 39e-06 - - -
3.60-06 ———
3.3e-06 —-—
462 “3ooe .
2.7e-06 —--—
2.4¢-06 — —
58 516.08
S 1.8e-06 ——
1.5¢-06 ——
54 1206 - - -
9e07 - - -
5 6e-07 ———
3e-07 —-—
46 d(cm)
4.2

¥ : The solution of the inverse problem.

3 : The true value.

Fig. 12 Contour of the cost.

6. Conclusion

With several improvements of the quality of the in-
version proposed in this paper, we could verify that
the reconstructed incident waves from the transducer
are now quite reliable, and can be used in an inverse
problem to determine an unknown defect. Indeed, in
a simple problem, the size and location of an unknown
defect could be determined with high accuracy from
real data measured with a laser interferometer using

the new experimental setting. Since our approach re-

quires solutions of large scale problems using BIEM,
however, we are still unable to solve more realistic de-
fect determination problems. In the future work we
therefore plan to use fast solution methods of BIEM
such as FMBIEM (fast multipole BIEM) in order to
complete the solution of defect determination prob-
lems using real data within a reasonable amount of
time. Solutions of crack determination problems us-

ing real data are also of our interest.
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