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Abstract: In this paper, a virtual work error estimator is defined to express the discrepancy between a

real structure and the analytical model, with which a system identification scheme is developed.

Moreover, an adaptive parameter grouping method is applied to deal with the sparsity of data. In

order to obtain the relationship between the input error and the output error, Monte Carlo method is

used to simulate the measured data with error. Based on the identified results, the normal distribution

of estimated parameters can be assumed. As a statistical approach, Hypothesis test is introduced for

damage assessment. Using one solution in the sample, the status of an existing structure is statistically

evaluated by locating and assessing the damage of elements. The proposed scheme is proved effective

through numerical example.
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1. Introduction

The damage in all load-carrying structures, such as
building, bridges, air-crafts, spacecraft and offshore
platforms, may be continuously accumulated during their
service. Structural damage often occurs in one or several
individual locations of a structure with the degradation of
stiffness. Some damage assessment methods based on the
identification (SI)
developed to detect the damage in structural systems

system techniques have been
during the last decade (e.g., Sanayei and Onipede (1991),
Hajela and Soeiro (1990), Hjelmstad and Shin (1997),
Yeo. and Shin (2000)). A SI-based damage assessment
algorithm consists of system identification and damage
assessment. First, the stiffness properties of a given
structure are estimated by a SI algorithm and then the
damage status of the structure is identified by comparing
the changes in stiffness of the structure. Therefore, a
stable SI algorithm is essential for a reliable damage
assessment. It will be reasonable to say that SI plays an

important role for the establishment of maintenance
theory. ‘

Either static or dynamic response can be used in SI-
based damage assessment algorithms, which are divided
into two major categories: dynamic and static. The intent
of parameter estimation is to adjust the parameters of the
analytical finite element model (FEM) to match the real
structure with measured data.

Although there have been many successful examples
by applying dynamic parameter identification methods in
civil engineering, they also has some disadvantages to
this kind of methods. Firstly, a large amount of dynamic
data is needed to derive an accurate response of the
structure. Generally, an estimated damping matrix must’
be used, which induces error in the system identification.
Moreover, the identification process usually is not
carried out usually at the element level, so that the
damage locations can not be exactly known.

For static parameter estimation, on the other hand, to
express the discrepancy between the real structure and



the analytical model, both force error estimator and
displacement error estimator are defined respectively,
with which several models of structural identification
have been proposed. Sheena et al. (1982) developed an
identification method on the assumption that the
displacements of all degree of freedom must be measured
completely. But due to its complexity, they choose
limited number of measured displacements to calculate
the remaining displacement measurements based on
spline theories. This introduces a major source of error
for the stiffness matrix of structures. The drawbacks of
method are that the
displacements should be measured at the same locations

Sanayer and Scampoli’s
where the external loads were applied. In the paper of
Banan and Hjelmstad (1993), the unknowns comprise
both  constitutive  parameters and  unmeasured
displacements. Therefore the number of unknown
variables increases and the stability of calculating
process decreases. Sanayei and Onipede (1990) proposed
an algorithm in which the unmeasured displacements
were condensed, but its limitation is that the degrees of
freedom of measured displacements are fixed still in all
load cases. The main difference among those methods is
how to deal with incomplete measurements or
measurement sparsity problem and to chose what
schemes are used to solve the minimization problems.
Although those methods are .capable of identifying the
structural parameters of structures, they could not yet
deal with noisy and sparse measured data successfully.
This paper focuses on detecting and assessing the
damages in structures from measured static response.
The use of static response has practical value, since the
static displacements can be measured with sufficient
accuracy, due to the development of recent measurement
technology. The static identification has fewer theoretical
complications, and provides clear view of damage
detection. Due to those considerations, we propose a
virtual work error estimator and adopt an adaptive
parameter grouping scheme to develop the system
identification scheme. Monte Carlo method is used to
simulate the measured data with error. We investigate the
relationship between the input error and output error in
detail and adopt Hypothsis test to statistically evaluate

the status of the existing structures.
2. Structural Modeling and System Identification

In this section, we define a virtual work error estimator
to express the discrepancy between the real structure and

its analytical model, and then develop the solving
algorithm. In order to deal with the sparsity problem of
measured data, an adaptive parameter group subdivision
method at the same time is adopted also.

2.1 The Virtual Work of Error Estimators

Consider a linear structure subjected to static load case
{Af}. The dimension of measured displacement vector
{4} is nmd, standing for the number of measured
displacements. If we assume that there is virtual force
vector {f} applied along the directions of measured
displacements, whose dimension is also nmd. Then the
corresponding virtual work of the structure could be
expressed as:

VWi={f}-{a} @

Through a finite element method, the real structure is
parameterized to be an analytical model in which the
relationship between the applied forces {Af} and
corresponding displacements under the static load case
can be described as follows:

{ag =1k (p)] e} @)

where {Aff} (NX1) is the nodal vector of the applied
forces {Af}, {u} (NX1) is corresponding response vector
in the finite element model of system, and [K(p)] is the
parameterized stiffness matrix which can be formulated
by decomposing the stiffness matrix into constitutive
parameters and constant matrices for each element,

N, M,

> PunlAn B,V (D, 1B,]  (3)
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[K(p)]=

in which N,, is the number of the elements, others are
messages about element m: M, the total number of
parameters, P,, the constitutive parameter, [D,,] the
parameter-independent  constitutive kernel matrices,
[ A,] the location matrix, and [B,] the translative
matrix. For a given structure, [B,)"[D,,}'[B,] is a
constant matrix depending on element geometry only.

Therefore, the virtual work of the analytical model is

YW2={ff}-IK(p)]™ {Aff} @



where {ff} is the nodal vector of virtual forces {f}.

For an the identification problem, there is a
parameterized finite element model, which is called
analytical model above and measured displacement data
of a real structure from static tests. We need an index to
express the discrepancy between the measured data of
real structure and the calculated data from the analytical
model. We define the discrepancy of virtual work
between the real structure and the analytical model as an

index to examine the fitness of estimated results.

E(p)={ff} -[K(p)I" {4}~ {F}-{a} (5)

The essence of parameter estimation is to find a set of
parameters, which can minimize the absolute value of
E(p). If the structural stiffness matrix exactly captures
the properties of the system and if the measured data
were free from errors, then Equ.(5) would be zero.
Although the structure is linear, because of the inversion
of matrices, they change into a nonlinear problem.

2.2 Parameter Estimation Algorithm
. We adopt the square of error value as a criterion of
judgment,

J(p) = E(p)* (6)

Now the smaller the J(p), the better accuracy of fitting

we get. The mathematical model of the structure

identification is

tofind {p,,

SO as to minimize

i=1,2, ..., nup}

J(p)= (Y [KIH{AFF - {F}-{a})? )

To solve this nonlinear optimal problem, one can use
any of a number of available optimization methods. Here
we use the improved Newton method® to develop
recursive quadratic programming algorithm, which
requires the gradient (Jacobi vector) and the Hessian
matrix of the error function with respect to unknown
parameters. They are given respectively as follows:

aJ(p)
o{pr}

Jacobi vector {G} =

©)

In which the ith component can be e'xpressed as:
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where the jth component in ith line is:
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in which aup is the number of unknown parameters. Now
the recursive procedure can be set up for static
identification.

{ap}= 1116} - (12)
{p}iﬂ - {p}i +

o {ap} (13)

in which i idicates the iteration number and [¢;] is a
damping coefficient matrix to assure that J(p,,,) is
smaller than J(p,). For the general Newton method, it is a
unite matrix. Besides two criteria are chosen to check the
algorithm for convergence. The first one is the change in



the scalar error function, J(p) and the second one is
changes in the parameters, p;*'/p/, where i is the iteration
number and j is the order number of parameters. As to
measure the goodness of fit between the real structure
and analytical model, the first one is more suitable.
Tolerance limits are set for two criteria. When any of the
limits are reached the algorithm is considered to have
converged. These limits can be also used to control the
desired accuracy in the identified parameters.

2.3 Adaptive Parameter Grouping Algorithm

To localize damage in a systematic manner, we
introduce an adaptive parameter group subdivision
algorithm'” to the proposed parameter estimation model.
The main idea of the scheme is to separate damaged parts
in finite-element model by subdividing parameter groups
sequentially starting from a known baseline grouping.
(Note: when we refer to “baseline” values we mean
values determined by a prior application of the algorithm,
i.e., values obtained through parameter estimation with
measured data). After each subdivision, a new set of
parameter groups and their group parameter are
established and estimated. By subdividing a suspicious
parameter group, parameter become more sensitive and
more representative of the real values. Because several
damaged regions with different levels of severity may
coexist in a structural system, the subdivision should be
continuously carried out until all the damaged members
are completely extracted. In this process, the
parameterized stiffness matrix, shown in Eq. 3, is
rewritten as follows:

N M
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(14

where N indicates the number of parameter groups; the
index set £, contains all of the element numbers
associated with parameter group n. The subdivision of
parameter groups implies that the number of groups,
and hence the number of parameters, is a variable in
the parameterization of the model.

In order to develope a parameter group updating
scheme one must decide which parameter group should
be subdivided. In selecting the candidate group, Natke
and Cempel (1991) suggest to use the error between the
estimated value and the baseline value of a parameter to
measure the need for subdivision. With this measurement,

the group whose estimated parameter is the most distant
from its baseline value would be selected as the
candidate subset. The schematic flow chart of this
method is illustrated in Fig. 1.

1. a. Set up the initial grouping Q) and its parameters {p®}.
b. Set k=1.
2. Estimation parameters {p"’} by minimizing J(p").
3. a. Set J(p)min=/(p®)
b. If |p®-p,#") < tolerance,
remove the ith parameter from further estimation.
c. If all the parameters are fixed, STOP.
d. Otherwise, update Q% and its parameters {p™®}.
4. a. Set J(p)old = J(p)min.
b. Determine the deepest level of grouping.
c. If all the groups have been investigated, STOP.
d. Otherwise, determine the candidate subset.
doi=1, N
. subdivide the ith possible candidate subset
. estimate {p;} by minimizing J(p*))
. if J(®) s J(p)min) then
J(p)min = J(p®)
Jcandidate = j
endif
continue
if (J(p)min s J(p)old) then
update Q® and {p®}by subdividing jcandidate
update group level
else
return to the parent grouping
endif
e. Set k=k+1.
f.Go to 3.

Fig. 1 Flowchart of Parameter Grouping Algorithm

Numerical simulation studies have shown that the
estimation error generally exhibits a significant decrease
when damaged elements are clearly separated from
undamaged elements. However, when noise exists in the
measured data, one cannot be certain that a group
contains the greatest degree of damage (or any damage at
all) simply because the deviation in the estimated
parameter is the greatest. Noise in the measured data may
cause a group to behave as if it contains damaged
elements even when it does not. Based on this
observation, the current algorithm seeks a candidate
subset by carrying out parameter estimation M times,
where M is the current number of parameter groups. The



subdivision that gives the smallest value of the error
function J(p) is then permanently subdivided. The M
possible candidate groups are those at the deepest level
in the subdivision hierarchy. The groups at lower levels
in the hierarchy are not considered any longer as
candidates until depth is probed in the current group.

3. Data Perturbation Method

If the measured data on the real structure were free of
error, a single cycle of calculation using the algorithm
described above would be eﬁough to track damage out.
Any parameter estimation that different from the intact
value would be associated with damage. The amount of
reduction in the value of the parameter would be
indicative of the severity of damage.

Measurements are, unfortunately, never free from
error. Practically, measured data always contain certain
levels of noise. Those noises include not only true
measurement errors, but also those caused by the
difference of load and displacement boundary between
the real structure and assumed model. The modeling
error, as it known, may also include other effects, such as
manufacturing inconsistencies, residual or thermal
stresses, or material flaws. Because the modeling error is
not the topic of this discussion, it is not considered in this
papér.

Now we only deal with the errors of measurements.
Those errors will cause the SI algorithm to estimate
parameter values different from the actual properties of
the structure. If the experiment were repeated the

estimated values would be different. Even though the

experiment is repeated under the identical conditions, the \

measured data show random distribution. Therefore, the
parameters calculated from the measured data should be
also considered as random variables. Here, we use Monte
Carlo to simulate the input data and investigate the
relationship between the input error and output error.

3.1 Modeling of Input Error

The input data consist of force vectors and
displacement vectors. If the force is applied on only one
dimension of the freedom space at one time, except for
that forced dimension, all other dimensions apparently
will have zero in force vector components. On the other
hand, the displacement will be formed along all
dimensions. In this way, the force can be assumed to have
no errors and only displacement vector contains noise.

Although we consider that there are noises only in the

measured displacements, it is difficult, if not impossible,
to mathematically model measurement noise. However,
for numerical experimentation, we can simulate them by
varying the calculated displacement measurement values
slightly, as shown in Fig. 2, with a known probability
distribution.

{4f} | Real structure Simulated

— ]
[K@)]" - {p}

Fig. 2 Simulated Measured Displacements:

measured data

The most commonly used distribution is the normal
distribution, which represents a higher probability of

‘noise level closer to the mean, and a lower probability of

larger noise. To range the distribution, it is convenient to
use a 95% confidence interval. Therefore, k,, or I,
equals to 1.96 0 with 95% confidence, in which I, is
input error. Namely, the variance of measurement noise

is

12 12
2 a e e 15
‘ 1.96° 2? ,( )

Having determined the distribution parameterized on
I, Equ. (15) is used to generate a set of normal random
vector n; with a mean of zero and standard deviation 0.
Then,

{8} =[QIIK(P)I ™" {Aff } +{n} (16)

where {p} is the vector of true values of real structure
and [Q] is the Boolean matrix? that extracts the
measured response from the complete displacement
vector. The response {A} is taken as the measured
response of the real structure.

3.2 Statistical Indices _
For noisy response {A,, k=12, ..., NOBS }, the
estimation simulation produces a sample {p;,, k=1,2,
..., NOBS, j=1,2, ..., nup}, where p,, is jth parameter
of the results from Kth observation and NOBS stands for
the number of observations. So the sample size of every
variable is NOBS. By increasing the sample size NOBS

and using the method of Maximum Likelihood, the mean



and standard deviation of the sample converge to the
mean and standard deviation of the population.

To compare our proposed estimation algorithms and to
find trends in the behavior of these estimators, we will
use statistical indices to characterize our results. Taking
pe; as the intact value of the jth parameter, the intact rate
of the kth observation of the jth parameter is.

Pk
E;, =—= a7
pe;

The mean of intact rate and standard deviation of the
percentage error of the jth parameter is

NOBS

E;, (18)
=1

E; = 1
NOBS

1 NOBS
SD . =100- E., -ME)? 19
j oS Z( j ~ME)? (19)

For each unknown parameter p;, there will be NOBS
values. In all, there will be NUP x NOBS estimated
parameters. It is desirable to reduce this large number to
a single grand mean (GM), and a single grand standard
deviation percentage error (GSD) for ease of comparison.
GM and GSD will be used to investigate the relationship
between the input error and the output error.

NUP NOBS

! 2 ZEM (20)

M=
NOBS - NUP &

NUP NOBS

1 o 2
GSb \/[NUP-NOBS -1]2, ZI(EJ"‘ M)

(21)
In the same sense that a sample size of 1 is not valid
statistically, reducing all these experiments to two scalar
values is not an accurate representation; in particular, the
GM does not show maximums or minimums, but it is
merely a mean. Although it is possible to use different
levels of measurement error for each applied force and
each measured displacement, the input error is selected
as a single percentage value representing all possible
sources of error. In this sense, it is possible to establish
an input-output error relationship with a given /,, from
which a single value of GM and GSD are obtained.

3.3 Damage Assessment Using Hypothesis Test
After the mean and standard deviation values of each

element in the current structure have been obtained from

trials,

the data perturbation normally distributed

parameters can be assumed”. Suppose that the
measurements are obtained under the same conditions for
both the current structure and the associated undamaged
structure. Therefore the statistical distributions of system
parameters in the undamaged structure can be reasonably
assumed the same as those of current structure. The
assumed normal distribution N,(1, 0 %) will be called the
baseline distribution for the system parameter, wherein 1
represents the intact status of member in undamaged
structure. The random variable is E;,. Hypothesis test can
be applied to determine damaged members by useful
properties of the normal distribution. The hypothesis test
is defined as follows:

HQ' m=1

H,: m<l

Statistic: E;,
Rule form: accept H, if E;; =2C

Otherwise, accept H,
Significance level:

Ejy-

. 1
Acceptance region: P(-k, < Y=l-a

Result: C=1-k, 'O

Using Hypothesis test, the damage status of a member
in the current structure is evaluated as Fig. 3 illustrates.
A member that accepts H, is taken as undamaged with
100x(1-a)% confidence; in the same way, a member
that accepts H, is taken as damaged with 100x(1-a)%
confidence. The damage index I, which represents the
damage status of a member with the significance level of
o, is defined as follows:

0
ID:=1

The severity of damage S, which indicates how

“if Hyacceptd (x zc) (22)
if H,acceptd (x sc)

seriously a member is damaged with the significance
level of a, is defined as a relative distance of the
estimated one from the intact value

Sp=(-x)xIp x100% (23)
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Fig. 3 Interval Estimation for Damage Assessment

4. Simulation Study on a Frame Structure

Consider a 5-story, two-bay steel frame shown in
Fig. 5 is used as an example. The frame was divided into
25 frame elements. Nodes were assigned at every joint,
and each node has three degrees of freedom. Elements 1-
15 make up the columns, and elements 16-25 make up
the beams of the frame. The cross-sectional areas,
moment of inertia of elements are listed in table 1 and
the elastic modulus of every element of the structure is
assumed as follows.

a. Undamaged structure

Young’s modulus for all elements=206.8 Gpa

b. Current structure (or real structure)

Damage in the structure is assumed as a reduction in
the Young’s modulus of element, details of which will be
stated late for different cases of the study. All of other
elements are considered to be intact.

Table 1 Cross Sectional Properties

Member | Area(cm?) | Moment of inertia (cm*
1~15 1065. 442246
16~21 1606. 442246
22~25 1406. 422246

In the frame structure, M,=2, and P, [D,n], [B.] in
Eq. 2 are as follows.

B =y = ED/

1 0 0 0 0 O

D, =0 0 0 D,,={0 4 2

0 0 O 0 2 4

(axial) (flexural)

-cosd,, -sinf, O «cosf, sing, O

(B}~ _sing,  cosf, 1 sing,, _cosf, 0
" Iy by by L,

_sing,,  cos§, 0 sing, _cosf, ]
L lm lm lm lm

The purpose of this simulation study is twofold. First,
the specific application will show clearly the meaning of
some of the quantities that have been defined by
illustrating how they are used. Second, by putting an
additional layer of Monte Carlo simulation on the
example we can examine the performance of the
algorithm with the consideration of measurement errors.
To meet these objectives, the two different cases will be
studied. We set NOBS=30. The number of parameter
groups is set not bigger than 5. The locations of the
applied force and the corresponding measured
displacement are shown in Fig. 4. Fig. 5 shows the
flowchart of numerical simulations.
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Fig. 4 A 5-story, two-bay steel frame



1.) about structure geometry size Start

2.) about the material properties of
all elements
3.) about applied forces

4.) about simulated input error

Input Data
=~ Y
Simulated Measured Data

Y

(combined with adaptive
parameter grouping algorithmy)

A

J(P)y—min
Y

No
Estimated Parameters |

Yes

ME,, SD,, GM, GSD
£ *

Locations and Severity |Damage Assessment

of damages *

Stop

Fig. 5 Flow Chart of Numerical Simulation

Case 1. One Member Damaged

It is assumed that element 13 is damaged with 40%
reduction in Young’s modulus. To generate the measured
data of the structure, we perform a finite element
analysis. The computed results are added with uniformly
distributed noise, whose amplitude is 5%.

The estimated intact rates of all elements, averaged
over 30 Monte Carlo trials in the face of 5%
measurement error, are shown in Fig. 6. It can be clearly
seen that element 13 is seriously damaged. Although
slight damage also happens in element 11 and 16, it is
not dominant compared to element 13.

In a real application one has a single set of measured
data, a single sample of estimated results can be obtained.
Based on the results as shown in Fig. 6, we assume o
=8% in the baseline distribution N,(1, %) in the face of
5% measurement error, then we set a=5%, so K,=1.65
and C=0.84. We take one from 30 estimated samples, the
status of current structure of all members is evaluated
and the results are plotted in Fig. 7. By the Hypothesis
test, the damaged member is identified as damaged and
two undamaged members are assessed as damaged
of other

Since the severities

undamaged members are small compared to the damaged

members. damage

member, it is concluded that It is unlikely to damage in
those members. Those results have 95% confidence.
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Fig. 6 Mean and Standard Deviation of Intact Rate

in all Elements with 5% Input Error

70

60 |
50 |
| assumed value
40
0 evaluated value
30 |
20 |
10 | ”
0 RSP | N | P | N
1 5 9 13 17 21 25
Member Number

Fig. 7 Severity Damage Charts

Case 2. Two Members Damaged

Let us consider the case in which two members are
damaged to different degrees. The stiffness deterioration
is 50%, 25% in member 5 and 21 respectively. The
estimated intact rates of all elements, averaged over 30
Monte Carlo trials under 2.5% measurement error, are
shown in Fig. 8. One can clearly see that member 5, 21
are damaged, although there appear to be two candidates
for characterization lightly damaged.

To examine the input-output error relationship, it is
desired to plot the GM and GSD values against /, values,
which are shown in Fig. 9 and Fig. 10 respectively. They
are used to estimate the output error for a given input
error, and also can be used to determine the allowable /,
by limiting output error for the experiment design. The
measurement noise tolerance is expected to vary from
structure to structure based on the locations of
measurements and the topology of the structure. Even if
the results depend on cases, we can determine the stability
of algorithm approximately based on Fig. 9 and Fig.10.
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Based on the results as shown in Fig. 8, we can assume o
=15% in the baseline distribution N,(1, &) in the face of 2%
measurement error, then if we set a=5%, so K,=1.65 and
C=0.85.

By using one sample from estimated result, the status
of current structure is presented in Fig. 11. By
Hypothesis test, two damaged members are identified as
damaged. In Fig. 11, when x<1, we also calculate their
severity of damage. In this way, only one undamaged

members are taken as damaged. Since the damage
severity of undamaged member is small comparing to
that of the damaged members, it is concluded that there
is little possibility to damage in those members. Those
results have 95% confidence.
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Fig. 11 Severity Damage Charts(%)

5. Summary

This paper focuses on a new detection and assessment
algorithm, which is based on the virtual work error
estimator with an adaptive parameter grouping scheme
and Hypothesis test. The procedufe is illustrated and
tested using Monte Carlo simulation theories in
numerical simulations. The conclusions can be drawn as
follows.

1.) It has been recognized in all literatures related to
static identification that the number of parameters
to be estimated should not exceed that of the
number of independent measurements. However,
this restriction is no longer a problem with the
algorithm derived based on the virtual work error
estimator proposed in this paper.

2.) With the decrease of measuring numbers, the
output error can be reduced on a large scale. The
level of acceptable measurement errors will also be
greatly improved comparing with the results in
Ref.V,

3.) Hypothesis test is an effective tool to evaluate the
damage status of existing structures based on the
estimated results.

nonlinear
though the
structure is linear one. The loading of computation

identification is a highly

problem, even

System
unconstrained optimal

increases with the increase of element number. Its

solvability is greatly depends on the structural
characteristics, applied load and measured displacements

selected for numerical simulation. More effort should be



made to discuss the uniqueness of solution.
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