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Multi-layer neural network has been regarded as a useful algorithm in identification and dynamic control of structures.
As one of the existing researches, the active vibration control for structure-actuator coupled system consisted of a tendon
system controlled by a signal hydraulic actuator using multi-layer neural networks has been studied. Active Mass Driver
(AMD), as another kind of control device, has been studied on the concept of conventional control methods and control
design. In this paper, a coupled system consisting of a four-story frame structure and an AMD driven by a
electrohydraulic actuator was investigated. Firstly, considering the dynamics of electrohydraulic actuator, the dynamic
equation of a structure-AMD coupled system was formulated. Second]y, an emulator neural network with suitably
chosen input variables corresponding to the structure-AMD coupled system was established and trained for the purpose
of non-parametric identification. Lastly, a neurocontroller was set up and trained with the aid of the trained emulator
neural network to control the dynamic response of the structure-AMD coupled system subjected to earthquake loading.
Because accelerometers can readily provide reliable and inexpensive measurement of absolute structural acceleration at
strategic points on a structure, development of identification method based on acceleration feedback is presented. The
effectiveness of the identification and control is evaluated through numerical simulations.
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1. Introduction

With increasing research activities in the field of structural
control over the last two decades, significant progress has been
achieved toward making active structural control as a viable
technology for enhancing structural functionality and safety
against natural hazards such as strong earthquakes and high
winds. Since the initial conceptual study by Yao", a number of
structural control methods and devices have been proposed.
Some of the widely used structural control methods are
explained by Abdel-Rohman® and Soong®. Most of these
control algorithms require the analysis and identification of the

system in an explicit mathematical form. The effectiveness,

robustness and stability of controllers depend on the accuracy
of the dynamic system models. These contemporary control
techniques often rely on the assumption of a good dynamic
mathematical model containing identified system parameters
such as mass, stiffniess and damping. The conventional control
methods and control design are highly dependent on the
parametric construction of the dynamic system models.
However, there are many factors such as structural
uncertainties, non-linearities, and measurement noises which
are so difficult to be identified and incorporated in control loop
as to result in poor mathematical models and less-effective
control algorithms.

Structural identification is the basement of structural
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control and is a deliberate and challenging task. The ability of
artificial neural networks to approximate arbitrary continuous
function provides an efficient mechanism for identification and
control of structures. Modeling a dynamic system by using
neural networks has been increasingly recognized as one of the
system identification paradigms. The structural dynamics can
be identified by neural networks in an implicit form, in other
words, in a non-parametric form, where modeling of structural
parameters such as stiffness, damping and mass are not
necessary. The knowledge acquired by a neural network is
stored in its connection weights, which are adaptive and can
change in response to outside stimuli. At present, several neural
networks with different structures have been proposed to solve
the above problems.** The most widely used neural network is
the feed forward multi-layer neural network, which is trained
by a back-propagation algorithm. Neural networks are being
recognized as effective tools in control problems.

Numerous engineering applications of neural networks
have been reported in the literature of recent years. A number
of civil engineering applications of neural networks were
reviewed by Ghaboussi et al.”, Chen et al.¥ and Xu et al.*¥. An
experimental study on the vibration control of a three-layer
frame structure by a control system consisted of a tendon
system controlled by a signal hydraulic actuator has been
carried out on the shake table at the university of Illinois at
Urban-Champaign. The structure-actuator interaction was
considered. The effectiveness of neurocontroller has been
demonstrated by the experimental results. The robustness and
the relative stability were presented and discussed®'?. In case
of large-scale structure-actuator coupled systems, a localized
identification and control schematic by multi-layer neural
networks have been studied by Xu et al®.

Two kinds of widely used control devices, such as active
tendon system and active mass driver, have been studied based
on the concept of conventional control methods and contro}
design'?'®. Ghaboussi et al. has verified the effectiveness of
multi-layer neural networks for the control of linear and
nonlinear system by active tendon®'Y, An open-close loop
control algorithm of the seismic response of structures with
active mass driver system was presented by Sato et al.'¥, in
which an AMD driven by a AC motor was employed, and the
dynamic performance of the motor was considered. In order to
develop the multi-layer neural networks for structural control
problems, the possibility and effectiveness of multi-layer neural
network for AMD system was studied. An active mass damper
for the control of an elastic arm, which is a single degree-of-
freedom structure, by using neural networks was studied by
Kumagai et al.'®, in which an idealistic actuator was employed.
On the other hand, an active structural response control method

with self-learning mechanism was developed by Sato et al. *%,

but the dynamic performance of the active tendon system was
not included in the system formulation. Moreover, the
predictive control of structural seismic response with time
delay by using Kalman filtering technique and identification for
nonlinear system by neural network was proposed by Sato et
a1.17-18)

In this paper, a four-story frame structure and an
electrohydraulic actuator driven AMD coupled system is
studied. The dynamic performance of electrohydraulic actuator
is considered. Firstly, considering the dynamics of
electrohydraulic actuator, the dynamic equation of the
structure-AMD coupled system was formulated. Secondly, an
emulator neural network with suitably chosen input variables
was constructed and trained for the purpose of non-parametric
identification by a generalized delta rule training algorithms for
the purpose of learning the mapping between the actuator signal
and the response of the structure. Lastly, a three-layer
neurocontroller was set up and trained with the aid of the
trained emulator neural network to control the dynamic
response of the structure-AMD coupled system. The trained
controller can then operate independently in controlling the
structure. Numerical simulation is carried out to show the
performance of presented control algorithm, the numerical
integration accounts for the actuator dynamics, and a time delay
is included in our numerical simulation. As accelerometers can
readily provide reliable and inexpensive measurement of
absolute structural acceleration at strategic points on a structure,
development of a non-parametric identification method based
on acceleration feedback is presented. The effectiveness of the
identification and control is evaluated through the numerical

simulations.

2. Equations of Motion of Coupled System of
Structure- AMD Actuators

2.1 Equations of Motion of Structure and AMDs
The motion of a structure and AMD systems can be

[m Yz} + e+ [ 0e T T e} -[n]e K}
(&) (LT T Yo} - [ & K ) M
=-[1.]rh-[m X1 15,

[} )+ [c. e} - [ )T )+ [K. e )
(KLY = [ Hr F- M ] T,

where[Ml],[Dl] and[Kl]are n x n mass, damping, and

@)
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stiffness matrices of structure; {xl} s {xl} and {xl}are

n x 1 acceleration, velocity, and displacement vectors of
structure; X is earthquake base acceleration; {f}is a
mx 1 vector representing the coupled force between structure
and AMDs ;{f}={f f. £Y. foG=1m)is
the control force between the ith controller and structure.

Moreover, [1] is a nxm matrix. The element I of

matrix [1] equals 1 when the degrees-of freedom k attach to
the /th actuator, equals 0 when the degrees-of freedom & does

not attach to the /th actuator; and[]l] is a nx1 identity

vector.
m 0 0 0 c, 0 0 O
0m 0 0], 0 c 0 Of
[M1]= 0 0 . 0 ’[C:]= o o0 -. o}
0 0 0 m 0 0 0 c
k 0 0 0
0 kK 0 0
K ]= o 3)(@4)(5
(&)1, o 0 XH)
0 0 0 &

m, c , k, (i=1,m) are the mass , damping and

stiffness of ith AMD system; {xz} , {xz} and [xz]are

m x 1 acceleration, velocity, and displacement vectors which

represent the acceleration, velocity, and displacement of the
AMD systems; [12] is a mx1 identity vector; [Ia]is a
m x m identity matrix.
2.2 Equation of Hydraulic Actuator®’

Hydraulic actuator is employed as the active control

device. Suppose there are m actuators used.”

(1) Valve Equation
A first-order linear differential equation is used to describe

the relation between control signal e, to the valve flow rate
q, of ith actuator.
e =a4 +4a.4, (=Lm)  ©

The parameters in this equation @, and a,, are related to the

constant gains Kk and k_ and the valve’s time constant T, .

T . 1

a.,= k“kiz (l = 17m) (7)

a = ’
" kilkil

The electrical signal ¢, to the actuator is in the form of a
series of step functions. Let actuator signal e, keep constant
during a sampling period, the valve flow rate g, can be

determined as follow,

q, =k k, [l - exp(-——t) ]e, +q, exp(_—t-) @E=1m) (8
T, T,

The actuator signal e, is issued at the beginning of each

sampling period, which is considered as the origin of time ¢ in

equation (8), and the valve flow at the beginning of the
sampling period is g, .
(2) Ram Equation

The relationship among the actuator force f,, the ram

displacementx, ~ and the valve flow rate g, of ith actuator

can be described as the following differential equation.

g =ax +pf +df (i=Lm) (9
v Cl

d=——, p ="t 10,11

Sl (10,11)

where a, is the area of ram, ¢, is the coefficient of leakage,

v, is volume of piston, B, is compressibility of i-th actuation

system.
Equation (9) can be rewritten in matrix form as follow

YAl ) -lale o[k Jr}={a) @2

d 0 0 0 a 0 0 0
0 d 0 0f. 0 a, 0 Of
i Y P | PRI |
0 0 0 4 0 0 0 a
p, 0 0 O
0 T
LSNPS TR U R A A
0 0 0 p

(13,14,15,16)

2.3 Motion Equation of Coupled System

The equation of actuator dynamics and the structure’s
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equations of motion are coupled through the displacements and
the actuator forces. Displacements in some of the structural
degree of freedom are tired to the ram displacements, while the
generation of the actuator force is influenced by the motion in
those structural degrees of freedom.

The coupled equations for the system of the structure and

AMD can be written as follow,

M.] o o)f{
0 [M:]O x
0 0 of|{f

]

CANACH YT AR e
2.]||{/
[ x

-[m )k
-[m. 1

W

The equation of structure-actuator coupled system is

numerically integrated by Newmark- 8 method to obtain the

solution of dynamic response of structure and the coupled
forces between structure and actuators under earthquake
excitations and control signals. The integration time step used
in the numerical analysis is chosen to be a small fraction(one-
tenth) of the sampling period. This will allow for a realistic
representation of the generation of actuator forces during the
sampling period as a result of the actuator’s dynamics, and the

interaction between the structure and the actuators.

3. Structure-AMD Coupled System

The structure under study, shown in Fig. 1, is a four-story
frame. The model of a shear-resisting structure is considered
with only four degrees of freedom for the four floors. For
control purposes, a simple implementation of an AMD was
placed on the fourth floor of the structure. The AMD consists
of a single hydraulic actuator with steel masses attached to the
end of the piston rod. When AMD is used as controller, the
structure-AMD coupled system has five degrees of freedom.
The mass of each floor is 4500kg, and stiffness of the each
floor is 4.1e6kg/cm. The moving mass for the AMD was 400kg,
and consisted of the piston, piston rod, and the steel disks
bolted to the end of the piston rod. Thus, the moving mass of
the AMD was 2.2 percent of the total mass of the structure.
Because the hydraulic actuators are inherently open-loop
unstable, position feedback was employed to stabilize the
control actuator. The displacement of AMD relative to the

control point is measured using a LVDT (linear variable

differential transformer), rigidly mounted between the end of
the piston rod and the point of control.

The following parameters of electrohydraulic actuator are
used for composing the equations of the actuator dynamics.

The area of ram is 50cm? the volume of chamber is
40000cm?, the coefficient of leakage is 10.0cm’/(kgf.s), the
compressibility of actuator system is 2.1e’kgf/cm?, the time
constant is 0.20s, the maximum absolute value of actuator force
is 60T, the acluator gain, k,, is 100.0, k, is 100.0cm®/s, and
actuator transducer gain, k; , is 10.0 1/kgf.

The actuator signals are issued at the beginning of cach
sampling period and are kept constant within each sampling
period. This will allow for the analysis to properly account for

the effects of actuator dynamics in generating actuator forces.

4. Acceleration Feedback Identification for
Coupled Systems by Multi-layer Neural
Networks

4.1 Emulator neural network for Identification of
Structure-AMD Coupled System

Modeling the dynamical systems by neural networks has
been increasingly recognized as one of the system
identification paradigms. The application of neural networks in
system identification is due to their generalization ability and
their capability to describe the system accurately. The neural
network modeling problem in system identification is to
develop a neural network model that is capable of learning and
predicting the functional mapping between the inputs and the
outputs of an unknown linear or nonlinear multivariable
dynamic system. We call this kind of neural network as
emulator neural. However, neural network presentation is not
exactly the same as the function they learn. A typical three-
layer back-propagation neural network is designed for the
purpose of identification. The two kinds of operations called as
“feed forward” and “error back-propagation” have been
described in references.*!" 151619

A typical three-layer back-propagation neural network
with / nodes in the input layer, m neurons in the hidden layer
and n neurons in the output layer is designed. Weights w,,
(h=1,m; i=11), w,, (0o=1,n; h=1,m) are used to represent the
strength of connections of the neurons between the input layer
and the hidden layer, the hidden layer and output layer
respectively.

The first type of operation of three-layer neural network is
called as “feed forward”. In this operation, the output of a

neuron I of hidden layer and output layer N can be shown as,
— N
x;, = f (x i ) (18)

where
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fiN = ’Ew:.ﬂ-lxjNvl _hiN
& 19)

fx)=1/ {1 + exp(-—x)} 20)
where f(x) is an activation function, which is differentiable; xj”"
is the output of neuron j of layer N-1 ; h” is the bias
representing the threshold of the activation function of neuron i
of layer N. The output of the neuron of input layer equal to
the input value.

The second type of operation of the back-propagation
neural network is called as “error back-propagation”. The error

function £ is defined as,

!d‘. -x," ’
E=Ep » 2 @1)

where d; x/!are the desired output and the network output of
the ith neuron in output layer respectively; i, p are the number
of output nodes of output layer and the total number of patterns
(examples) contained in the training set.

Usually, the learning algorithm for training neural network
called delta rule which is based on the gradient steepest decent
method is widely used. In order to increase the rate of learning
and yet avoid the danger of instability, a modified algorithm
called the generalized delta rule is used in this paper by
including a momentum term, which describe the relationship of
the correction of weight w,*¥/ between layer N-1 and N at
iteration k+1 and at iteration k as follows'?,

Aw "'k +1)=nd"x" + adw " (k)

(22)
where

s+ _dE

. Fer
' (23)

Aw M (ke+1) and Aw;*¥!(k) are the correction applied to
weight w, ¥ at iteration k+1 and k; 7 is a positive constant
called the learning-rate parameter, and @ is usually a positive
value called the momentum constant. In any event, care has to
be exercised in the selection of the learning-rate parameter. A
small learning-rate parameter lead to a slower rate of learning,
on the other hand, if we make the learning-rate parameter too
large, the learning procedure may become unstable. In this
paper, let 7 equal to 0.8. Moreover, as described by

Hagiwara,'” the momentum constant must be restricted to the

range 0= | a | <l,sowelet @=0.6 here.
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Fig. 1 Schematic Diagram of Experimental Setup

The updated value of weight w,""/ at iteration k+1I is

computed as follows,

w Tk + D) =w (k) + Aw] " (k + 1)

(24)

The neural network learning process is to adjust the
connection weights by repeatedly training thereby minimizing
the error between the network output and the desired target in
the training set.

Most of the current modern-state-space based active
structural control strategies for earthquake protection have been
based either on full-state feedback (i.e. all structural
displacements and velocities) or on velocity feedback.
However, because displacements and velocities are not absolute,
but dependent on the inertial reference frame in which they are
taken, their accurate measurement at arbitrary locations on a
large-scale structure is difficult to achieve directly. Because
accelerometers can readily provide reliable and inexpensive
measurement of accelerations at strategic points on the
structure, acceleration feedback strategy is used in this paper. In
this study, accelerometers were positioned on the ground, on
each floor of the structure, and on the AMD, as shown in Fig. 1.

The absolute accelerations are used as parts of inputs to
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emulator neural network and neurocontoller. X, is the

m

relative displacement of the mass, which is equal to the
displacement of the ram of hydraulic actuator.

Deciding the input variables to emulator neural network is
a critical task especially for the structure-AMD coupled system.
In the study of active tendon system by multi-layer neural
networks, the nodes in input layer represent the absolute
acceleration at the floors and the control signals at the past time
step”'?. When AMD is used as controller, the absolute
acceleration at the floors and the control signals at the past time
step for the emulator neural network are not enough to identify
the structure-AMD coupled system. As described in equation
(9), in the case of hydraulically actuated systems, a velocity
feedback path exists between the velocity of the actuator and
the control signal input to the actuator. Through the velocity
feedback, the dynamics of the structure directly affect the
characteristics of the control actuator. Thus, the measurements
that are directly available for forecast dynamic response are the
four floor acceleration measurements, the control signal, the
coupled force between the structure and AMD, the
displacement and acceleration of the AMD, and the valve flow
rate of the hydraulic actuator described in Equation(6) at the
beginning of the current sampling period. The displacement of
the AMD relative to the forth floor is measured using the
LVDT mentioned above. The coupled force between the
structure and AMD is measured by a piezoelectric force ting or
a load cell. The architecture of the three-layer neural networks
based on acceleration feedback is presented in Fig.2. The
number of neurons in hidden layer is set to be two times of
those in input layer. The neurons in output layer represent the
forecast relative acceleration response at the coupled degree of
freedom at the end of current sampling period. The number of

input, hidden and output layer includes 9, 18 and 1 neurons.

4.2 Trainihg of Emulator Neural Networks

The training process of emulator neural network is to
establish the appropriate connection weights between neurons
of each layer by a form of supervised learning with the help of
training cases which are composed of a number of patterns of
inputs and desired outputs of coupled system.

Based on the error back-propagation algorithm, emulator
neural network is off-line trained at first. At the beginning of
training emulator neural network, the weights are initialized
with small random values. The outputs are then computed by
feeding forward the inputs through the network. The error
function is calculated from the difference between the outputs
of emulator neural network and the dynamic response of
corresponding subsystem recorded by sensors. By back-

L
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Contral Signul at the Top Floor
Coupled Force
Flow Rute
Output luyer:

Displacement of Ram Values at the end of

current sampling perind

Input layer:
Valucs at the beginning

of current sampling
period

Fig.2 Emulator neural network

propagating the error function to adjust the weights, the
emulator neural network can be trained to achieve a desired
accuracy for modeling the dynamic behavior of the structure-
AMD coupled system.

The training cases for the purpose of training emulator
neural network are constructed from the numerical integration
analysis results while the structure-AMD coupled system is
subjected to random control signals and earthquake excitation.
The numerical integration analysis is carried out with
integration time step of 0.004s. The training cases are
performed with the data taken at the intervals of the sampling
period of 0.04s.

Emulator neural network is trained with the results when
the structure-AMD coupled system is subjected to 12 seconds
of the Taft earthquake (July 21, 1952, Ken Country) with 50%
of the amplitude and a 12 seconds random signals with a upper
and lower limit of 1.0V and -1.0V. The data sets, used for
training the emulator neural networks are the 300 patterns of
input and output data taken from the 12 seconds of acceleration
response record. The whole off-line training process takes
50000 cycles. By means of the error back-propagation learning
rule”™®, the training cases performed above are enough (o train
each emulator neural network in order to model the dynamics
of the coupled subsystem and to generate the dynamic
responses of each subsystem.

In this study, three kinds of load cases, which are the
combination of different kinds of earthquakes and random
signals, are used to investigate the performance of the neural
networks.

(1) Case 1: Taft earthquake with 50% the amplitude and
random signal with a upper and a lower limit of 1.0 V and
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(2) Case 2: El Centro earthquake(May 18, 1940, Imperial
Valley) with 30% the amplitude and random signal with a
upper and a lower limit of 1.0 V and -1.0V

(3) Case 3; Kobe earthquake with 10% the amplitude and
random signal with a upper and a lower limit of 1.0 V and
-1.0V

Absolute Accelcration
Records of Each floor

. Control Command
Earthquake Record

Displacement of Ram

Output layer:
Values at the end of
current sampling period

Input layer:
Values at the beginning

of current sampling
period

Fig. 5 Architecture of neurocontroller

Evaluation of the prediction capabilities of the trained
emulator network is presented in time domain. Fig.3 gives the
result of the comparison between the absolute acceleration
responsé at the control point determined from the numerical
integration analysis by FEM and those forecast by the on-line
trained emulator neural network in Case 1,2, and 3,
respectively. The R.M.S. error of the forecast response in Case
1,2 and 3 are 3.54cm/s?, 1.82cm/s® and 3.43cmy/s?, respectively.
Cléarly, the emulator network is able to reproduce the structural
response under different seismic excitations very accurately.
This makes the emulator network independent of the training
cases and & generalized model for the structure-AMD coupled
system. On the other hand, the input variables for emulator
networks are suitable and enough to carry out non-parametric

identification for the coupled system.

5. Acceleration Feedback Control For Coupled
Systems by Multi-layer Neural Networks

5.1 Outline of Training of Neurocontroller with the aid of
Emulator Neural Networks
The concept of neurocontroller is meant to describe the use
of a well-specified neural network to issue actual control signal
to a designated control system. The neurocontroller replaces the
feedback control algorithm in a conventional control method.
The neurocontroller receives the feedback information as its
inputs to the input layer and issues an appropriate signal to the
control system from its output layer. The training method of
typical neurocontroller is shown in Fig. 4.
In training of any neural network, a set of training cases,
consisting of input and output pairs, are needed. The training

cases for the emulator neural network can be generated either
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through numerical simulation of the coupled actuator-structitre
system or in an experimental setting by sending control signals
to the actuator and recording the sensor outputs. But the same
procedure can not be used for generating training cases for the
neurocontroller, because the correct values of the output are not
known. So the neural-action network is trained based on the
above off-line pre-trained neural-emulator network. The trained
emulator network learns the transfer function between the
control signals and the output of sensor measujring the response
of the structure. The emulator neural network is used to provide
a path for back-propagation of the errors in training of the
neurocontroller. At first, the error of signals can be decided by
back-propagating the error function E through the trained
neural-emulator network without changing the weights. After
that, the error of signal is back-propagated to adjust the weights
of the neurocontroller network. This training process is
repeated until the structural responses reach the desired
responses within the specified tolerance. The neurocontroller
training method used in this study is the generalized delta rule
method described above.

The architecture of neurocontroller is indicated in Fig.5.
Thus, the measurements that are directly available for control
force determination are the acceleration measurements on the
four floors, the ground acceleration, and the displacement and
acceleration of the AMD. In the numerical simulation of the
control problem, the sensor data is received at discrete time
intervals, referred to as the sampling period. The output of the
neurocontroller is alse sent to the control system at the same

discrete sampling period.

5.2 Case Studies

In this study, control criteria is to reduce the acceleration
response to a small value of 0.03g. A neurocontroller was
trained with this control criterion and was applied to control the
structure response subjected to earthquake. In this section we
present the results of three case studies in which the structure is
subjected to three different earthquake ground accelerations.

In the first case study the structure is subjected to S0% of
the Taft earthquake record which is used to produce the training
data for training emulator neural network. The numerical
results are summarized in Fig.6 and 7, it is indicate that the
neurocontroller was successfully in mitigating and reducing the
system vibrations effectively. Clearly the acceleration and
displacement response on each floor have been reduced. Fig. 8
shows the control force produced by AMD.

In control problem, we must take into account the time
delay. In this study, the dynamic performance is considered, the
time delay of each sampling period includes the time for
digitizing the observed input of neural networks, the time for

calculating the control signal and converting it to analogous
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Fig. 6 Comparison of acceleration response of each floor

control signal. The consumed time of deciding contro! signal in
each sampling period is indicated in Fig. 9. It is clear that the
maximum consumed time is far less than the sampling period
of 0.04 second. In order to consider the influence of the time
delay for digitizing the observed input of neural networks,
calculating the control signal and converting it to analogous
signal , a time delay of a sampling period has been included in
the numerical simulation of the dynamic response of the

controlled system.
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In the previous case study, the structure is subjected to
50% of the Taft earthquake record, which is the same
earthquake record as that used in the training of the
neurocontroller. The performance of the neurocontroller, when
the structure is excited by other earthquake records and
controlled by the neurocontroller that has been trained with the
50% of the Taft earthquake record, is demonstrated in the
following case studies by numerical simulation.
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Fig.8 Control force
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Fig. 9 Consumed time for determining control signal

In the second and third case studies, the structure is
subjected to 30% of the El Centro earthquake record and 10%
of the Kobe earthquake record, respectively. Fig.10 and 11 give
the results of acceleration and relative displacement response at
each floor when structure is excited by 30% of the El Centro
earthquake record and controlled by the neurocontroller that
has been trained with 50% of the Taft earthquake. Fig.12 and
13 give the results when structure is excited by 10% of the
Kobe earthquake record and controlled by the neurocontroller
that has been trained with 50% of the Taft earthquake. This
demonstrates that the neurocontroller learns to control the
motion of the structure in both cases. In summary, for different
earthquake records, similar observations have been made. This
demonstrates that the fact that the neurocontroller learns to
control the motion of the structure, regardless of the source of
excitation. The adaptability of the neurocontroller was
investigated and verified.

In the study of active tendon system for structural control
by using neural networks by Bani-hani et al.,”'® the
robustness with different types of uncertainties and delays, and
relative stability were presented and discussed by numerical
and experimental method. It is necessary to carry out study
deeply on the robustness with different types of uncertainties
and delays and stability of the AMD system.

6. CONCLUSIONS

A multi-layer neural-networks-based AMD system for
structural control was proposed in this paper. The dynamics of
a typical hydraulic actuator is considered. In this proposed

control method, a neurocontroller is used to replace the control
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Fig. 10 Control and uncontrolled response of structure
subjected to 30% of the El Centro earthquake record

algorithm of the conventional control. From the present study,
the following conclusions can be drawn:

(1) Based on the generalized delta rule training method,
an emulator neural network can be trained to predict the future
response according to absolute acceleration, control signal, the
coupled force between -the structure and AMD, the

displacement and acceleration of the AMD, and the valve flow
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Fig. 11 Control and uncontrolled response of structure
subjected to 30% of the El Centro earthquake record

rate of the hydraulic actuator. The emulator neural network is
trained to learn the mapping between the control signal and the
response of the structure. In other words, the identification can
be carried out successfully by the multi-layer neural networks
for structure-AMD coupled system when the dynamics of the

actuator is considered.
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Fig. 12 Control and uncontrolled response of structure

subjected to 10% of the Kobe earthquake record Fig. 13 Control and uncontrolled response of structure

subjected to 10% of the Kobe earthquake record

(2) During the vibration control of coupled system under

. . neurocontroller. The learning capabilities of the neurocontroller
earthquake excitation, based on the trained emulator neural g cap

. . make it an adaptive controller.
network, a neurocontroller can also be trained to decide the P

necessary control signals, and the dynamic response can be
controlled successfully by the neurocontroller.

(3) The method of vibration control using multi-layer REFERENCES
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