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The voxel analysis method and the meshless method have been proposed to relieve the
formidable task of mesh generation of traditional FEM. The model generation of the voxel
analysis is very simple, but how to get reasonable accuracy and avoid the sharp increase of
degrees of freedom is a problem of the voxel analysis. On the other hand, the meshless methods
can avoid the mesh generation completely. However, some difficulties limit the freedom of
meshless methods very much. One of these difficulties is how to easily guarantee the linear
independence of approximation functions. Recently a new meshless approximation method,
Cover Least Square Approximation, has been proposed, by which the linear independence
conditions can be simply satisfied. In this paper, it is implemented for linear structural analysis
by distributing the covers using multi-resolution voxel data.
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1. Introduction

Mesh generation for the traditional numeric analysis
methods such as FEM and FDM is in general very
labor-intensive, time-consuming and
experience-dependent. To overcome this bottleneck of
CAE, numerous research activities have been devoted
into the development of automatic mesh generation
techniques. As different approaches, the voxel analysis
and the so-called meshless method have been proposed
and attracted keeninterests of many researchers.

The model generation of the voxel analysis is so
simple and effective that it is possible to mesh any
complex structure that can be manufactured. However,
because all the elements are uniform, any local
refining requirement causes a global refining. When
small voxels are necessary to improve the accuracy in
a local area, a numerous number of elements and
degrees of freedom are required. How to get
reasonable accuracy and avoid the sharp increase of
degrees of freedom is aproblem of the voxd analysis.

On the other hand, establishing the approximation
on some scaited particles in the analysis domain
without the needs of traditional mesh, the meshless
methods avoid the mesh generation completely.
Several versions of the meshless method have been
proposed; among them are Generalized Finite
Difference Methodl), Smoothed Particle

Hydrodynamicsz), Diffuse  Element  Method”,
Multiquadrics4)5), Element-Free Galerkin Methods),
Wavelet Galerkin Method7), hp-cloud method®,
Reproducing Kernel Particle Method” and Partition of
Unity FEM'. An overview can be found in reference
11). However, there yet exist some problems on the
way of improving the practicability of the meshless
method.  Especially  some  difficulties  of
implementation still remain'). At the end of
reference 10), three open questions are addressed.
Among them, the choice of a basis of the
approximation space is discussed as a major problem.
If the basis of approximation space is not selected
properly the shape functions will be linearly dependent.
As pointed out in reference 8), behind allthe meshless
methods there is an underlying approximation
technique. As known, the linear independence of the
shape functions is the most important for any
approximation. Otherwise other discussions such as
convergence will lose the foundation. In the recent
reports about meshless method, more profoundly is
mathematical background established more attention is
paid to this point.

About the linear independence of meshless
approximation, some researches have been presented
recently. Babuska et al.'® have suggested a kind of
weight function for 1D problem of Partition of Unity
FEM, but the extension to multidimension does not
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seem easy. We'” have proposed two kinds of
sufficient conditions to construct weight functions for
Finite Cover Method (FCM), which have been
successfully utilized for 2D and 3D FCM with uniform
cover distribution based on voxel data. However, if the
cover distribution is not uniform, the weight function
is too difficult to be constructed by the proposed
conditions. Liu et al.” have pointed out that not all
particle distributions can be used in numerical
computation, and the concept of "admissible particle
distribution” is introduced. It implies that the linear
independence is guaranteed by carefully dealing with
the particle distribution, but how to implement the
admissible particle distribution is not shown. A more
mathematical discussion has been given in the
hp-cloud method®. In the hp-cloud method, Oden et al.
have introduced a new family of functions to construct
the approximation, and the linear independence of the
constructed functions has been proven mathematically.
However, it is regretted that their proof is not
sufficient, and the linear independence of their
proposed functioms cannot be guaranteed.

The purpose of meshless methods is to ameliorate
the formidable task of mesh generation of traditional
FEM. If the nodes have to be distributed with extreme
attention to linear independence, the freedom of
meshless methods will be limited very much.
Especially if the method how to guarantee the linear
independence is not clear, the meshless methods will
not be able to become practicable.

Recently a new meshless approximation method is
proposed, named as Cover Least Square
Approximation (CLSA)N)lS). By the CLSA, not only
the approximation accuracy can be controlled easily by
locally justifying the cover order or the density of
cover distribution but also the linear independent
conditions can be satisfied conveniently. In this paper,
the CLSA will be implemented for linear structural
analysis. In order to apply this method practicably, the
multi-resolution voxel data will be used to distribute
the covers.

2. Basic Formulations of CLSA

The CLSA is established on the base of Finite Cover
System. In order to make the model generation
convenient,. the mathematical approximation is
separated from the physical field and cover is
classified into mathematical cover and physical cover
in the Finite Cover Systend™'®,

Let u(x) be a sufficiently smooth function (for

example, u(x)EC’(Q) at least.), which is defined

on a simply connected open set 2.

Let {RQ;},
Q2 satisfying the following condiions,

i=12-- NC be open covers of

(3

IMEN,VxEQ, )
1s Number of elementsin {i|x€EQ,} s M

(b) VR, ,dim(RQ; N Q) = dim(RQ) 2)
NC is the total number of covers. Let local

approximation function space V, (R2;) be given
subordinate to €2, , with a complete basis of {¢q}'l"a 0-

On each cover, u(x) can be approximated by a

series, called cover function, locally as

u(x) = ,(x,0,) = idm,.(x—oi) ¢4, x€Q, O

where O, is the origin ofthe ith cover, and

9; ={¢i0’¢il’¢i2’°”’¢ini} “4)

di = {diO’dil’diZ’ "dini }T ()

In the case of that it is a polynomial series, it
becomes a Taylor expansion of u(x). When the
series is an infinite one, the cover function becomes
equalto u(x).

u(x) = lim ®,(x,0,), x€Q, (6)

xXeQ .
According to X, u(x) can also be expended as a

Now let us consider certain point

u(x) = ' (x,%) = Za,-(f)fﬁ,- (x-%)=da (7

where

¢={¢0’¢1’¢2’”°’¢n} (8)
a={a0,a1,a2,---,a"}T )

This series is called here local expanson function.
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Since the series is finite, there exists a residual

e(x, X) =u(x) - u' (x,%)

(10)

On each cover, substituting the cover function for
u(x), the residual is expressed as

e,(x, %) =, (x,0,)-u'(x,X) = ¢d, - ¢a (11)

A functional associated with these residuals is
defined as

J(@@) = Y w@) [o,(0e (. dx  (12)

w,(X) is called influence degree function or

weight function, which limits the number of covers
involved in the approximation around X .

supp w; = closure(S2;)

(13)

where supp w; is the support of weight function

w..

w,(x) is called localization factor function, which

localizes the cover approximation.

supp w; € closure(R2;) (14)

where supp w; is the support of localization factor
function w;,.

The weight function w,(Xx) defines that how much

the local cover approximation on the i th cover
influences the approximation at X . The bigger is

w,(X), the greater influence does the ith cover have.

w,;(X) =0 means that x is outside the ith cover

and there is no influence of the ith cover to the
approximation at x . Whereas the localization factor

function w;(x) localizes the evaluation domain of
the residual square. In the following implement,

w,(x) is set identical to 1 in its support and its

support is set as half of Q. ; the weight function is

defined as trilinear functionin 3D.
Since (13) and (14), the functional (12) can be
extended over the whole domain

J(@(®) = [ 3w B, (e (e (15)

By minimizing the quadratic functional J(a(X)),

we can obtain

P(D)a(%) = Q()d (16)
where
P(x)=[F,] tY)

P, = LE(«», (6, X)W, (X)o, (), (x, ¥))dx  (18)

Q(x) =[Qi(*), Q, (¥, Quc (¥)] 19)

Qi (x ) = [Qlk; ] (20)

where

Oy, = f ¢, (x, X)w; (i)w_i (X)¢s, (x,0,)dy (21)

k,=01,,n,

t

d=[d1T’d2T""achT]T (22)

Since

w,(x)20 ,

¢,,i=0L---,n, are linearly independent, the

w,(¥X)=z0 , and

determinant of P(X) is always positive and P(X)
is always invertible; therefore, the unknown vector
a(x) is uniquely determined,

a(¥) - P (©)QE)d @3)

Substituting (23) into (7), the approximation around
X can be written as

u(x) = u' (x,%) = gP 7 (X)Q(X)d (24)
Now the global approximation can be defined as

a(x) = limu' (x,%) = pO)P ()Q(x)d (25)

Note that x in (18) and (21)'is a dummy vaiable,
(18) and (21) can be rewritten as
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P, (x) = [ 3 (8,3, X)w; (x)0; () b, (3, X))y
i (26)

Oy, = f ¢, (¥, X)w, (X)w,(¥)¢s, (»,0,)dy (27)

k,=01,--,n,

3 13

(25) can be expressed as a shape function
expression.

d(x) =¢(O0)P™ (x)Q(x)d =Nd = 2 Nd, (28)
where
N(x) = 40)P™ (1)Q(x) 29

The partial derivatives of shape functions can be
obtained as follows.

N.(x) = (0)P".Q+P7Q,)

(30)
= &0)-P"'P,P'Q+P"Q,)

The index following a comma means a partial
derivative.

P, =[F,,] (1)

P, = [ 3 (5. @87 0)0:(5) (5 %)
+ W,(X)0; (YN B (3 X) B0s (3 X) + 61, (7,X) b (v, X))y

(32)
Q,.\'(x) = [Ql.s(x)’QZ,s(x)’""QNC,s(x)] (33)
Qi,s = [Qlk,-,s] (34)

Ou, s = [Orw,,(x) + B, W, (X)), (¥)Ps, dy (35)

3. Multi-resolution Voxel Data Based Cover
Distribution

The covers are distributed based on voxel data and
the density of cover distribution is controlled by voxel
size. A voxel here is a rectangular parallelepiped in 3D
or a rectangle in 2D. The multiresolution voxel data

consists of groups of voxels, and each group of voxels
has the same size.

The multi-resolution voxel data can be generated
through the following process. The analysis domain
€2 s given as figure 1(a), as an example in 2D.

(1) Give a rectangular parallelepiped in 3D or a
rectangle in 2D including the analysis domain £2
completely as Figure 1(b), for example a
circumscribed one. This rectangular parallelepiped or
rectangle is called O-level resolution voxel.

(2) Divide the O-level resolution voxel into some
smaller uniform rectangular parallelepipeds or
rectangles by regular grid as Figure 1(c). Leave only
those that have common field with the analysis domain
€ as Figure 1(d). These left rectangular
parallelepipeds or rectangles are called 1-level
resolution voxels.

(3) If necessary, certain field covered by l-level
voxels can be divided into smaller uniform rectangular
parallelepipeds or rectangles by regular grid as Figure
1(e), and leave those that have common field with the
analysis domain €2 as Figure 1(f). These smaller left
rectangular parallelepipeds or rectangles are called
2-level resolution voxels.

(4) Recurringly, n-level resolution voxels can be
created. It should be moted that the size of i-level
resolution voxel must be integral times of the size of
the i+1-level resolution voxel.

"""" @) o)
© @
© ®

Figure 1 Multi-resolution voxel data

After the multi-resolution voxel data is generated,
the covers can be distributed on it by the following
way. For simplicity, formulae are given only for 3D.
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An example of 2D is given asshown in Figure 2.
Corresponding to each voxel vortex, one
mathematical cover is allocated. The cover origin

Oi (x;,¥;,2;) is allocated at the vortex. Each voxel
is defined as an element, and all the cover origins on

its sides are said belonging to it. The cover field is
determined as a rectangular parallelepiped

Q A )| =P <X =Xi < 0 s Py <Y =i < Py (36)
P SZ=Zi < PP P s Pyt P pys Pz s P 20}

pmx’ ppx’ pmy’ ppy’ pm.z and ppz are
determined by the following rules, in which S, is a
set consisting of all the cover origins that belongs to

the same element with O,(x,,y;,2;).

min - (-%) P30,(%.Y02)ESu Yy = Yol = 2% <X, (37)
Ye=YoZa 2 e
—n}u(x, -x.) otherwise

o Jpenanass

min (5, =x) f30,(%.502)ESY = Yor2s = 2%, > %, (38)
{ n}a:(x, -x)

otherwise

min (y,-y,) iBOM.¥2)

45243 D,
_m"(yk ¥:)

€S, % =X,2, =Y <Yi (39)

Pry= otherwise

) B0V 2)ESi% = %02 22,3 >V, (40)

otherwise

%6245 0%,

mmk -¥)

min (z-z) iA0X.5,2)ES% =%, =Yo7, <5 (41)

o Jasanas

- n}i 1z, -2) otherwise

{
|

(42)

ez

maxz -2)

Min (3 -2) iBO,(%,:Y,,2)ES % =X,¥, =52, >,
Pre otherwise

If the mathematical cover field €2, is divided into

K, sub-field €, by the

interface  of

boundary and

discontinuous analysis  domain,
corresponding to K, sub-field €2, , K, physical
covers with the same locations as the mathematical

cover Q are allocated.

Mathematical Cover field

Boundary of analysis domain
Figure 2 Cover distribution

4. Implementation for Linear Elasto-statics

4.1 Interpolation by CLSA
The interpolations for the

displacements
u,, k=123, of the direction x, y and z are given in
by CLSA as (43).

= Ed"N,f , k=123 (43)
in which, k is the index for direction x, y and z; i
is the index of covers; and j is the index of
unknowns of each cover function. The superscript

means the direction x, y and zby 1, 2 and 3.
The displacement vector can be expressed as

U
u=_u,
Us
dl
' t d2
=[N1 t Ny t Nve e (44)
ch
=Nd
where
No Ny = Nyt 0 i 0
N, = 0 \Ny Ny = N | 0
0 | ) N, N, - N,
1—1,2 --NC
¥

d =l dy o dl, Vd oAl o 4k ldY dy - d]
i=12,---NC

Then assuming that the initial stress and strain are 0,
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the strain and stress can be written as

¢ =Bd
. . , (45)
=[B1 i Bz T BNC]d
o=De=DBd (46)
where
D s the stress-strain matrix, and
B, =
%_ Ny aN”‘I: 0 Il 0
ax ax ax E :
0 1 N, &N, W, ! 0
R y
0 | 0 VN, N, W
H "] & &
Wy N, W N, Wy W 0
y ¥ | a |
0 W, W, W W, N, W,
e & n Ly ¥
Ny N, W, 0 N, W, W,
-1 & H: "B a
47

4.2 Principle of virtual work
Consider a general elasto-statics problem with the

body force b acting in the domain V with the
boundary S =8, +5,. On the boundary S, the
traction is equal to t, and the displacement on the

boundary S, isequalto .

o;;=b in V+S (48)
t=t on S, (49)
u=u on S, (50)

By the principle of virtual work, the elasto-statics
problem can be described as the following equation, in
which the virtual displacement Ou is arbitrary
satisfying the condition (50) and &g is the virtual
strain caused by Ou .

f{ée}T odV = fouids + faquv (51)
v S, v

Substituting (44), (45) and (46) into (51) and
considering that the virtual displacement is arbitrary,
we have

fBTDBdV *d = fNEds + JfNBdV (52)
1% S 1%

As same as FEM, we define

K = (B"DB4V (53)
[?

F- ! Ntds + [NBdV (54)

Then the stiffness equation can also be written in the
same format as FEM, but d does not mean the node
displacement vector.

Kd =F (55)

4.3 Element stiffness matrix
Since the voxel data based elements are available,

the integrals of (53) can be evaluated simply on each
element. Moreover, because the support of every cover
is defined as element-wise, the shape functions are
also limited as element-wise. That is, on each element
only the covers distributed on its sides are involved in
the evaluation of the element stiffness matrix. This
implies that the global stiffness matrix is banded just
like FEM.

NE NE
K = (B'DBaV - 2 B DBV = ng'*) (56)
v ] o

V'(t)

where NE is the total number of elements. V, is the

physical domain of the /th element .

T
K = J‘B,‘e) DB dv (57)
V[(ﬂ)
4.4 Handling of bads

The load vector can also be evaluated at the level of
element. Since the shape functions are limited as
element-wise as discussed above, when integrating on
the load boundary within one element only the covers
allocated on the sides of the element are involved. It is
the same for the body force.

< U - = 58)
F = [NidS + [NbdV = NOEds + (NOBavy
where § l(f) is the part of load boundary included in
the [th element.

4.5 Handling of displacement conditions
In the curremt implementation, the displacement
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conditions are dealt with by the penalty method having
the physical interpretation of the stiff spring constraint.
Integrating the product of (50) and the penalty factor

k on the displacement boundary S, and adding to
(55), we have

(K +kadS)d =F +fkids (59)
S, s,

It can also be handled at the level of element as

same as the load conditions. Figure 4 Two-level resolution voxel data based model
NE NE As shown in Figure 5 the computed results of
(K+Z J' kN?e)dS)d =F+ Z f kudS (60) displacement is linear and the stress is constant

= o = §o everywhere, and it is proven that the CLSA can give

an exact solution for constant stress problem

where S;_f) is the part of displacement boundary

included in the /th element.

All the integrals are carried out on physical covers.
On the elements not fully inside the physical domain,
the integration is calculated only on the inside part.
The implement detail can be found in Reference 17.

5. Numerical examples

5.1 Constant stress cube
The following conditions are imposed on a cube as

shown in Figure 3 (E =1,v =0.3).

Displacement conditions

Figure 5 Displacement result for two-level resolution
voxel data based model

5.2 Plate with a hole
Consider a 20x20x4 plate with a hole at its center,

whose radius is 2. Uniform traction acts on a pair of
u,= 0 on y=0 opposite sides. Figure 6 shows 1/8 of it. The boundary
conditions are given as

u,=0 on x=0

u,=0 on x=0

u,=0 on z=0

Traction condition u,=0 on y=0

P,=1 on z=1 u,=0 on z=0

o,=1 on y=10

The covers are distributed based on a two-level
voxel data as shown in Figure 4.

Figure 3 A cube Figure 6 1/8 plate with a hole
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Three Models as shown in Figure 7 are calculated.
In the Model a, four-level voxel data is employed to
create the cover distribution. The sizes of four level
voxels are respectively 10/2x10/2x2/2, 10/4x10/4x2/4,
10/16x10/16x2/8 and 10/64x10/64x2/8. In the Model
b, three-level voxel data is employed to create the
cover distribution. The sizes of the three level voxels
are respectively 10/8x10/8x2/4, 10/32x10/32x2/8, and
10/128x10/128x2/16. In the Model ¢, fourlevel voxel
data is employed to create the cover distribution. The
sizes of the four level voxels are respectively
10/4x10/4x2/4, 10/16x10/16x2/8, 10/64x10/64x2/16,
and 10/256x10/256x2/32.

Table 1 Stress values

(b)

©

Figure 8 Computed results of o,

The computed results of o', are shown in Figure 8.

The stress values at point A and B (see Figure 6) are
listed in Table 1 together with the ANSYS results and
the numbers of DOF are listed in Table 2.

®)

o, | o o, Von
” Mises
stress
Modela | ---- 3.269 | 0.382 | 3.092
Point | Modelb | - 3.339 | 0405 | 3.116
A Modelc | -~ 3464 | 0.420 | 3.189
ANSYS | - 3.578 | 0.398 | 3.389
Modela | -1.287 | ---- | -0.387 | ----

Point | Modelb | -1.458 | -— | -0.416 | ----
B Modelc | -1.502 | ---- | -0.428 | ----
ANSYS [ -1488 [ - | -0405 | -—--

Table 2 DOF

Model a b c ANSYS

DOF | 4257 | 101337 | 399966 | 12555
The above results show that a good local

approximation can be achieved by the CLSA with

@
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multi-resolution voxel data based cover distribution,
instead of increasing the number of degrees of




freedom globally. It is demonstrated that the analysis
accuracy can be controlled by locally adjusting the
density of cover distribution.

6. Conclusion

In this paper, the Cover Least Square Approximation
method is implemented for linear structure analysis.
The covers are distributed using multi-resolution voxel
data. Numeric examples show that multiresolution
voxel data based cover distribution can conveniently
guarantee the linear independence of CLSA shape
functions and the approximation accuracy can be
flexibly controlled by locally justifying the density of
cover distribution.

Since CLSA itself is in its infancy, it still requires
considerable improvement. For example, tle a
posteriori error estimation and adaptive refining
process are necessary for fully automatic analysis and
only after the adaptive refining process is implemented
the efficiency ofthe presented method can appear.
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