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The purpose of this paper is to present an attempt at a numerical treatment of a kind of
under-determined problem of the Laplace equation in two spatial dimensions. A resolution
is sought for the problem in which the Dirichlet and Neumann data are arbitrarily imposed
on each part of the boundary of the domain. This new problem can be regarded as a
boundary inverse problem, in which the proper boundary conditions are to be identified
for the rest of the boundary. The solution of this problem is not unique. The treatment
is based on the direct variational method, and a functional is minimized by the method
of the steepest descent. The minimization problem is recast into successive primary and
dual boundary value problems of the Laplace equation. After numerical computations by
using the boundary elements, it is concluded that our scheme is stable, but the numerical
solutions converge to the nearest local minimum.
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1 Problem of the
equation

Laplace

Let @ C R? be a domain bounded by a
smooth curve I' with the rectangular coordinates
x = (z1,22). We consider the Laplace equation

Au(z)=0 in Q. (1)

Let nn denote the outward unit normal to the bound-
ary I', and let ¢ = a—z on the boundary.

Assume that the Dirichlet data % are prescribed
on a non-zero measure part of the boundary T, of
T, and the Neumann data g are prescribed on other
non-zero measure part of the boundary I'y of I'. We
notice that 'y, and I'y are taken arbitrarily. Here we
consider the case when data are contaminated with
measurement errors. We notice also that, even if

the data @ and § are exact, the solution u(x) of the
Laplace equation is not uniquely determined pro-
vided that ['v NTy = ¢. We consider such new
problem by reflecting a real situation in practice of
the measurement. We call the problem of this kind
boundary inverse problem, because the problem falls
essentially on identification of the proper boundary
values.

Basic idea for resolution of the problem consists
of identifying a proper boundary value u = w for the
rest of the boundary I'S = I'\T',, so that the solution
u(z) of the Laplace equation also satisfies the bound-
ary conditions ¢ = g givenon I'y. f ', UL, =T,
then the corresponding problem is the conventional
boundary value problem of the Laplace equation.
When T, coincides with Iy, the corresponding prob-
lem reduces to the conventional Cauchy problem of
the Laplace equation, whose variational approach
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was investigated in [1]. The problem considered in
this paper is a relaxation of those two problems, and
we follow the approach presented in [1] in order to
resolve this relaxed problem.

2 Direct variational approach

We write u(x) = u(z;w) to stress explicitly the
dependence of the solution of the Laplace equation
Eq.(1) on the boundary value w to be identified on
I':. By the words proper boundary values, we mean
the boundary values w which minimize the object
functional

Jw) = /P lg(z;w) — g(=)Pdr (@)

+77/ |Vu(z;w)|2dQ
1]

with u|p, = @.

Here we insist J : HY/3(T'¢) 3 w — Ry = [0, +00).
The Dirichlet integral added in Eq.(2) as a regular-
izer with the regularization parameter n > 0 guaran-
tees existence of the local minimum of the functional
J(w).

In fact, let the variation éw of w(x) on I' be of the
form w(z) = w(®(z) + ew)(x) with arbitrary real
number ¢, where w(9(z) = @(z) and WM (z) = 0
on I'y. The solution u(z) of Eq.(1) must satisfy the
Green’s identity

WO = - [uDgm@OrE O

Ju
+/Pa—n(m)a(m;5)dr(m), teQ,

and the boundary integral equation
U0+ [uemis@orE@ @
2 r on(z)" "’

= [ 5 @06@oIr@, e,
where G(z;€) is the fundamental solution to the
Laplacian A; —AG(=;€) = é(z — §) with the Dirac
measure 6(-) at the point £. Due to the variation
bw = ew® on T we assume that u(z) = u(®(z) +
eulV(x) on Q. Substituting this expression into Eqs.(3)
and (4), and noticing the arbitrariness of €, we obtain

u(E = — [ 42128 (. \dT(
(©) = - [ 1@ 50 (@6 ()
+ [ Bl @) odE),  ceq,
r

10O + [[w(a) 5 (5 0d1(@)

Huld)
:/ —(2)G(z;€)dT(z),  EET
. T

for j = 0,1. This implies that ¢(z) = g—Z(m) onT
has the form ¢(®(z) + e¢(!)(z), and we can see that

J(w + bw)
- /F 109(=) + e¢(z) - g(z)|PdT

40 [ 19 (u9@) + eu(a) a0

/ 149 (z) - g(z)|2dT + 7 / [Vu® (z)Pde
T, a

+2l [ {49 - 2w)} o (a)ar
+77/n'§7u(°)(:c) 'Vu(l)(a:)dQ]

7] / l¢O(=)[2dT + 7 / Vu (z)Pda)
r, )
Jw)+ < J'(w),bw >
+e2] / ¢ () [2dT + 7 / Vul)(z) 48]
r, o

For n > 0, the term involving €2 is always positive.
This guarantees that J(w) has at least one local min-
imum.

With a suitable choice of positive real numbers
ap for £ = 0,1,2,--- , we consider the minimizing
process;

wi1(®) = wi(z) = o J' (W) (5)

with some given initial wg, where the gradient J/(w) €
H-Y%(T¢) is defined from the first variation;

Jw+bw)—J(w) = < J'(w),bw > + of]| bw ||) (6)

with a real-valued function of|| éw ||) of higher order
than || 6w ||, as it tends to zero in the L?(I'$)-norm;

1/2
el = { I wczr}
rs

We insist J'(w) € HY/?(T¢). To seek a concrete
expression of J'(w), we notice

J(w + bw) — J{w)
[ {i@io + ) - g
Ly
- lg(@;w) — §(@)|’ } dr

40 [ {Ivu@io + )l - [Vu(ziw)?} do

/F {e(z;w + bw) + g(z;w) — 24(x)}

{e(z;w + bw) — ¢(z;w)} dT
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du Ou
+n/ﬂ[{ —E(z,w + bw) + %—I-(E;w)}
d o
{—aTul(:c;w + éw) — %u;(z,w)}
ou du
+ {%(m,w + 60.1) + %(m,w)}

Ou Oou '
{a—mz(m,w + 6wv) - %(m,w)}]dﬂ

/ {e(z;w + bw) — g(z;w)

Ty

+ 2g(z;w) - ()]} 4(2;w)dT |
= [{g%<m;w)+z§g;<m;w>} P )
+ {g—%(m;w) + 2—6(25—2(:13;@} g%(m,w)] dQ
/F {ba(;w) + 20a(2;w) — §(2)]} Sg(2; w)dT

- [ / {%@;umg_:(x;w)}am;w)dr

’ —/{; {Abu(z;w) + 2Au(z;w)} du(x; w)d)

| 2atzio) - d@)entai)ar
+/P |6g(x;w)[*dD
+n /Fc 2%(@';w)6w(m;w)df

.5.77/1‘c bg(x;w)dw(z;w)dl . (M)

Here we put du(z;w) = u(z;w + éw) — u(x;w), and
accordingly 6g(z;w) = q(z;w + fw) — ¢(z;w). We
notice that A(du) = 0 in ©, éu = 0 on [y, and
du=dwon I'].

We now consider v(z) € H%(Q) as a solution of
the Laplace equation

Av(z) =0 in £, (8)

subject to the boundary conditions
olr, = 2{e(z;w) - (=)}, )
vlre = 0, (10)

where I'; = I'\I'y . From Green’s integral formula,

/(Av)&udﬂ = /—g—z&zdr‘
7] r

dbu '
- v—dF+/ vA(Su)dQ
" on A (bu)

we have

0=/ a—véde‘—/ %q—sgdl. (1)
s On r

C
v q

Consequently we know that
J(w + bw) — J(w)
- / OV swdl' + 1 / 29% 5dl + of|| 6w ||
r re 0

on n

c
u

Ov Ou
‘_(a—n”"a_n’ 6w)mm)+ o) 6w ) -
(12)

Therefore we obtain the explicit form
Ov du
! — (- el P ¢ .
J(w) = an(:::,(.u) + 2nan(m,w) on Tf. (13)
Our algorithm can be summarized as follows:
Algorithm
Given wolrs .
Fork =0,1,2,. -, until satisfied, do:
Solve Aug(z) =0 in Q with ug|r, = 1,
uglre = wi to find qi(x;wi) on Ty.
Solve Avg(z) = 0 in Q with vi|r,
= 2{q(z;wi) — @)}, vilps =0
6vk 6uk

to find J'(wy) = Bn +217—a—n on I'S.

Update wyq1 = wy — o J (wi) on TS,

We shall discuss a suitable choice of the sequence
of positive real numbers {ax}. To this end, we em-
ploy the Armijo criterion in mathematical program-
ming, that guarantees for the sequence {wy} to sat-
1sfy

J(wp —ard'(wi)) < J(we) = o || J'(we) |I?
with a constant £ (0 < £ < 1/2).

Controlling the step size ay

Given parameters 0 < & < %, 0 <7< 1(say,

€=0.1,7=05), and e = 107
If || J'(wk) |I< €, then stop.

else By := 1.
Form=240,1,2,---, do:
IfJ(wk b ﬂmJ'(wk)) )
< J(wr) = EBm || I'(wi) 11,
then ay = By .

else Brmy1 = 70

3 A numerical example

The collocation boundary element method with
CY linear finite element is used for the numerical ap-
proximation of solutions of the first-kind boundary
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value problems of the Laplace equation involved in
the algorithm.

We notice that the function u*(z;,z;) = z?—z% =
72 cos(29) in terms of the polar coordinates (r,9) is
harmonic. Suppose that this function u* is unknown,
and consider the Laplace equation (1) in the unit
circle Q= {(r,9) | 0<r=22+2} <1, 0<9<
27 } with the exact Dirichlet data; & = cos(29) on
r,={(1,9)]0<9< g } and the exact Neumann

data; § = 2cos(29) on Iy = { (1,9) |7 < I < gw }
as shown in Fig.1(a). = The boundary T' is divided
uniformly into 24 boundary elements as shown in

Figure 1. Boundary I'y and Ty (a),

Fig.1(b). As an initial guess, we take

wo = —cos (%(1? - %)

on IS = { (1,9) | % <9 < 27 }. We examine
the results for each n = 0, 0.05, 0.1, 0.15, and 0.2.
Among them we find the best fitted wy at n = 0.15
by inspection. Calculated wy together with the ex-
act boundary values of u* on I'S, is presented in Fig.2.
The numerical process was stable, and the numerical
solutions rapidly converge to a local minimum solu-
tion other than u*.

(b)

boundary elements (b).

15
! S
% —{3—ux*
05 - = = wo
- |——k= 5
0 i |—o—k= 10
—&—k= 15
-1
-15 .

/2 T

3x/2 2

Figure 2. Calculated wy v.s. u* on I'Y.
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We take another initial guess

wo = cos 20 [3%(0— g) {327(0- g) - 1} + 1]

in order to confirm that our numerical solutions are
apt to converge to the nearest local minimum. As
Fig.3 shows, this initial guess is quite in the vicin-
ity of u* on I'. However, we can observe that the
calculated wg at n = 0.2 converges to a curve other
than u*.

4 Concluding remarks

We considered an under-determined problem of
the Laplace equation by the boundary data, regarded
as a boundary inverse problem. The problem is solv-
able , but the solution is not unique. Using the
method of the steepest descent for a functional to
be minimized, our problem is led to an iterative pro-
cess consisting of the solution of primary and dual

boundary value problems of the Laplace equation.
The boundary element method is applied for numer-
ical solution of the primary and dual problems. Sim-
ple numerical examples suggest that our numerical
solutions rapidly converge to the nearest local mini-
mum of the functional, but out result indicates that
scrutiny of the treatment is further required in order
to find the global minimum.
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Figure 3. Calculated wy, , starting with wg in the vicinity of u*.
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