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Present paper describes characters of bottom boundary layer under irregular waves for
both laminar and turbulent flow conditions, assessed through numerical computation. To
compute flow phenomena in the boundary layer, firstly, irregular waves have been
generated. Then those have been applied at the free surface boundary in Jones and
Launder original low Reynolds number k-£ model. Calculated results indicate that for
laminar flow the bottom shear stress is more dominated by high frequency component
waves. It has also been observed that high flow inertia close to the bottom produces a
double peaked structure in the bottom shear stress in a wave cycle which is unique in
irregular waves. The phase difference between bottom shear stress and free stream
velocity reduces significantly under turbulent flow condition. A phase difference of
about 15 degrees shows a distinct limit between laminar and turbulent regimes. Under
turbulent motions, close to the bottom, the turbulent kinetic energy shows a dual
dependency on bottom shear stress and on free stream velocity indicating high
variability in boundary layer thickness with free stream velocity.
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1 Introduction

Bottom boundary layer under waves
governs different key parameters that control
several physical processes and, as such, it has
been the subject of many theoretical and
experimental studies. Most of these studies,
however, had been restricted mainly to the
boundary layers observed with linear harmonic
wave motion in the free stream. Among the
experimental studies, Jensen” presented the
most recent and detailed investigations, while
Sana and Tanaka® presented a comparative
study on the predictive ability of low Reynolds
number k-€ models. A review on the
developments in the theories of wave boundary
layer can be found in Nielsen”. Several
researchers had also studied nonlinear cnoidal
wave theory, e.g. Nadaoka et al.”, Tanaka et al.”,
Kawamura et al.®, and had contributed towards

the understanding of bottom boundary layer
characters. Although, some very detailed
understanding on near bottom turbulence
generation and its dissipation had been achieved
through these studies, the results still can not be
applied directly to near-shore shallow water
regions. '

Owing to the randomness of ocean waves, it
is of practical importance that the bottom
boundary layer character is investigated under
irregular waves. However, only few studies on it
have been reported in open literature. Madsen et
al.” proposed an analytical model to evaluate the
spectral wave dissipation based on linearized
boundary layer equation, a constant eddy-
viscosity description and directional wave
spectrum. A similar approach was also adopted
by Madsen® for spectral wave current combined
flow. Myrhaug” expressed irregular wave
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bottom friction factor considering that the wave
motion can be expressed as Gaussian narrow-
band random process. The underlying
assumption that the representative maximum
bottom shear stress under irregular wave can be
expressed as that of sinusoidal wave, remains
the same as that considered by Madsen. All
these studies considered representation of
integrated irregular wave properties in terms of
representative spectral properties and, therefore,
did not consider the temporal variation of
turbulence structure and bottom shear stress.

Present paper describes the effects of
irregular waves on bottom boundary layer under
both laminar and turbulent flow conditions
analyzed through numerical computation. Here,
firstly, the irregular wave time series has been
generated from input spectral properties, and
then it has been applied to compute flow in the
boundary layer through Jones and Launder'”
original low Reynolds number k-€ model.

2 Governing Equations

2.1 Irregular Wave

The spectral density for irregular water
surface elevation can be computed using
Bretschneider-Mitsuyasu'”  spectral  density
formulation as given by:

$,(f)=0257H,,' T, f)
exp[— 10X(T;, f)"‘] M

where, H,; and T,; are significant wave height
and period respectively, and f is wave frequency.
Applying small amplitude wave theory,
following relationship can be obtained for
spectral densities of water surface elevation and
free stream velocity '

Su(f)=Hy"(£)S,(f)

2
_ (1]
_(sinh27zh/L) Sa(f)

where, Si(f) and S,(f) are spectral densities for
velocity and surface elevation respectively, H(f)
is velocity transfer function, L wave length, h
water depth, @ (=27f) angular frequency and u
(=vp) is dynamic viscosity.

03

Obtained velocity spectrum has then been
used to generate velocity time variation

considering that irregular waves can be resolved
as a sum of infinite number of wavelets with
small amplitudes and random phases'. The
summation equation stands as:

U(t) = Limi Ay cosaf,t + ¢,) 3)

ke j=1

Ay; = 248y (F)AS; @)

where, U(2) is instantaneous free stream velocity,
Ay; velocity amplitudes of component waves, f;
component frequencies, ¢ time, ¢; component
phases and 4f; is frequency increment between
successive wave components.

2.2 k-¢ Model

Flow in the bottom layer can be computed
based on linearized boundary layer equation,
given by:

o pox poaoz )

where, u is velocity in the direction of flow, p
pressure, T shear stress, ¢ time and p is mass
density of the fluid. x- and z- are the coordinates
along and perpendicular to the direction of flow,
respectively. The pressure term is evaluated
from the consideration that outside boundary
layer the shear stress vanishes and the velocity
approaches free stream velocity, U. This
essentially means that the pressure gradient
remains constant throughout the boundary layer
and can be determined from the free stream
velocity variation.

The shear stresses for laminar and turbulent
flows are defined based on kinematic viscosity
and turbulent eddy viscosity, respectively. These
are given by:

T_,%
> % ©
nd T Vi —u'v’
p & )
where, Vv is kinematic viscosity and — v’ s
Reynolds stress, expressed as:
—uvi=v oM (8)
"z

where, v, is turbulent viscosity.
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The closure is achieved through expressing
the turbulent viscosity in terms of the turbulent
kinetic energy, k and its dissipation rate &, such
that,

k2
v,.=C.f, & 9

where C, and f, are parameters determined from
experimental results.

Equations (5) through (9) are solved
numerically along with k and & transport
equations. The later are given as:

k-transport equation:

k_29 (HL]QE +V(&)2
a x|\ o )& &

10
CeeD (10)
&-transport equation:
E:i V+L 28_ +C1f1V:£(@)
a & o, )% k\ dz
) | 11

where, ¢, D, 0, C, f;, C, f, and E are model
parameters.

In the present computation Jones and
Launder original k-€ model has been used. The
selection of this particular model has been based
on the testing of low Reynolds number -
£models by Sana and Tanaka®. For numerical
computation the governing equations have been
made non-dimensional and a Crank-Nicolson
type implicit finite difference scheme has been
applied. In the non-dimensional form of the
governing equations, along with free stream
velocity variation only the Reynolds number
(Re,;;) and the Strouhal (S) number are required
to compute flows in laminar, turbulent or in
transitional regimes. The representative
Reynolds number is introduced later in section
2.3 and the Strouhal number is defined as:

S = Ul/3

12
/32, (12)

where, U,; is significant free stream velocity,
®,; significant angular frequency and z, is an
arbitrary normalizing depth. Further details of
the modeling system can be found in Tanaka and

Sana'¥

For laminar motion it is also possible to
compute spectral density function for bottom
shear stress by applying small amplitude wave
theory'®. The bottom shear stress spectral
density and transfer function are given by:

5.()= H(F)S,(1)
= (V2u) B ()s,(1) Y

and
[0}
H_(H=+2
0 =2pu sinh kh (14
with B=.|2
2v

where, S(f) and H(f) are bottom shear stress
spectral  density and transfer function,
respectively. From k-€ model result the transfer
function can be computed as, H(f) =S{f/S,(f)
and S,(f) can be evaluated using Eq.(2).

2.3 Representative Reynolds number
The wave Reynolds number for sinusoidal

waves (Re) as given by Jonsson'? is:

Ugtn _ Vo

v Vo

Re= (15)
where U, is free stream velocity amplitude and
a,, is maximum bottom orbital displacement.

The irregular wave Reynolds number has
been defined in terms of significant wave
properties and analogous to Re, given by:

U2
Re,; =—2 (16)
V@, 3
with
0y, =2
S an

where T, is significant wave period.
3 Results and Discussions

Test runs have been carried out to cover both
laminar and turbulent flow regimes. Spectral
properties from laminar computation results
have been compared with analytical solutions to
validate model performance. Then the
simulation has been extended to turbulent
computation.

The input wave parameters specified for
laminar computation have been the significant
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wave height, H,;=50cm and significant wave
period, T,,;=10sec with a water depth (k) of 10m.
An arbitrary normalizing depth value of
z,=100cm has also been used to amplify the
results within the boundary layer. In order to
facilitate comparison between laminar and
turbulent flow properties, generated laminar
velocity time series has been multiplied to
produce flow in the turbulent region. This has
resulted in a significant wave height of,
H,;=500cm. The corresponding Reynolds
numbers (Re,;) in laminar and turbulent regions
are 7.28x10" and 7.28x10° respectively.

3.1 Irregular Wave Simulation

Simulation of irregular wave has been
performed to generate sufficiently long time
series to use in the k-€ model. Number of waves
thus generated were over 175 to facilitate
computation of spectral properties. A total of
250 component waves have been considered for
which randomly generated frequencies have
been used".

The accuracy of generated velocity data has
been checked against the input spectrum. Figure
1 shows the comparison of input (Eq.(2)) and
generated velocity spectra. It can be seen from
the figure that the generated velocity spectra is
in very good agreement with the input spectra.
The wave energy is spreaded in the frequency
range of 0.05Hz to 0.40Hz or equivalently
within the period of 2.5sec to 20.0sec.

3.2 Laminar boundary layer properties
k-€ model result for laminar computation has
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Fig.1: Input and generated wave velocity

spectral density.

first been compared with the spectral properties
obtained analytically. Figures 2 and 3 show the
comparison of spectral density and transfer
function of bottom shear stress from simulated
results with those from analytical solutions
(Egs.(13) and (14)). Both the figures show
reasonably good agreement with computed
results, however, the simulated transfer function
is slightly under estimated. Although bottom
shear stress spectral density shows similar trend
as that observed in velocity spectrum, in Fig.3 it
can be seen that the time variation of bottom
shear stress is more dominated by high
frequency component waves. As such the peak
of the transfer function appears at a higher
frequency (f=0.12Hz) than that corresponding to
significant wave period (f=0.1Hz).
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Fig.2: Bottom shear stress spectra from
generated data and k-€ model result.
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Fig.3: Comparison of bottom shear stress
transfer functions.
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Computed time variation of bottom shear
stress and corresponding free stream velocity
variations are shown in Fig.4. Generally the
domination of high frequency wave components
can easily be visualized comparing bottom shear
stress peaks with that of the velocity. A few
interesting variations in the bottom shear stress
can be observed at locations marked with an
arrow in the figure. The bottom shear stress is
dependent on flow acceleration and inertia. This
contributes to occasional appearances of a
second peaks in a wave cycle as can be seen in
wave W3. At smaller velocity magnitudes it

cycles W1 or W4 the shear stress shows a
further loop indicating a reversal in bottom shear
stress although the free stream velocity remains
unidirectional. Wave W3 shows a ‘heart’ like
shape representing a double peaked structure in
bottom shear stress as discussed before.

Vertical velocity distribution at selected
phases are shown in Fig.7. It is observed that at
similar free stream velocity magnitudes the
vertical velocity distribution is much different in
two opposite phases. It is clearly seen between
phases A and E or between B and F. Although
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Fig.4:Simulated velocity and bottom shear stress for laminar flow.

even causes reversal in bottom shear stress
where no such change can be seen in free stream
velocity (wave W4 and W5).

Similar variation in bottom shear stress has
been observed under cnoidal waves as reported
by Tanaka et al.” and is shown in Fig.5. It can be
seen that due to high flow deceleration and
inertia, a trough peak appears in the bottom
shear stress at #7=0.070 while no such peak can
be seen in the free stream velocity.

Figure 6 further illustrates this complicated
behavior of bottom shear stress for individual
waves marked in Fig.4 along with that for
corresponding sinusoidal wave. Here the bottom
shear stress is correlated with free stream
velocity variation. Such a correlation of bottom
shear stress for sinusoidal wave follows an
elliptic path as can be seen in the figure.
However, for irregular wave when these
quantities are correlated in an individual wave
cycle, the behavior is much different. For wave

the free stream velocity magnitude is different
between C and G, the difference in velocity
overshooting can easily be visualized.

3.3 Turbulent behavior in the boundary layer
Generation of turbulent velocity has been
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Fig.5: Bottom shear stress variation with free
stream velocity under cnoidal wave.
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Fig.6: Bottom shear stress and free stream
velocity correlation under laminar flow.

achieved by multiplying the generated laminar
velocity time series. This has been done mainly
to facilitate comparison between laminar and
turbulent flow characteristics.

Time variation of free stream velocity and
corresponding bottom shear stress are presented
in Fig.8 along with the variation in turbulent
kinetic energy, k. Here the bottom shear stress
shows a more regular variation unlike as
observed for laminar flow. The near bottom
turbulence dissipation significantly reduced the
flow inertial effects and, therefore, no reversal in
bottom shear stress can be observed. The phase
difference is also much reduced making the
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Fig.7: Vertical velocity distribution: Laminar
flow.

shear stress almost simultaneous with free
stream velocity.

Figure 9 shows the correlation of bottom
shear stress with free stream velocity for
individual waves as indicated in Fig.8. The
bottom shear stress shows a rapid variation with
free stream velocity similar to that from a power
function. Due to the decrease in phase difference
it also has a much narrow band extent.

The vertical velocity distribution is
presented in Fig.10. Turbulence mixing causes
higher velocities close to the wall, and
subsequent reduction in flow inertia significantly
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Fig. 8:  Simulated turbulent velocity and bottom shear stress.
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reduces velocity overshooting as can be seen in
the figure. However, the effect of flow inertia
can still be observed between phases B, F and
between D, H having similar free stream
velocity magnitudes.

Figure 8 also shows the time vanation of
turbulent kinetic energy at Stokes layer thickness
from the bottom. Stokes layer thickness (&) for
irregular wave has been defined as:

’ 2v
S =
(i o, _ (18)

In Fig.8, bursts in turbulent kinetic energy can
be seen corresponding to peaks or troughs in
velocity or bottom shear stress. At higher
velocity magnitudes it is observed to be in phase
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Fig.9: Bottom shear stress and free stream
velocity correlation under turbulent
flow.
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Sflow.

with free stream velocity variation. But when the
bottom shear stress is much smaller for a
prolonged period (as indicated at locations
marked with an X), the turbulent kinetic energy
closely corresponds to bottom shear stress. Also
it results in a very small turbulent kinetic energy
value like in the case of laminar flow. When the
turbulent kinetic energy is compared with free
stream velocity variation and with bottom shear
stress, as shown in Fig.ll and Fig.12
respectively, the phenomena of dual dependence
can be clearly observed. It can be seen that the
turbulent kinetic energy is closely correlated
with velocity at higher values of k (Fig.11) and it
shows excellent correlation with bottom shear
stress at smaller values (Fig.12). The reason
could be traced to the thickness of bottom
boundary layer, which changes continuously
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Fig.11: Variation of turbulent kinetic energy
with free stream velocity.
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Fig.12: Variation of turbulent kinetic energy
with bottom shear stress.
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Fig.13: Vertical profiles of turbulent kinetic
energy at selected phases.

under the variation in free stream velocity. When
the Stokes layer thickness is located outside
boundary layer turbulent energy is closely
related to free stream velocity. On the other hand,
kinetic energy values within boundary layer
thickness are more dependent on the bottom
shear stress.

Figure 13 shows the vertical profiles of
turbulent kinetic energy at selected phases. High
turbulent kinetic energy values can be observed
corresponding to high free stream velocity
magnitudes. During deceleration generally
higher turbulence can be seen outside the
boundary layer thickness.

It can be observed in Figs.4 and 8 that, the
change in phase angle between velocity and
shear stress is continuous and dependent on
velocity gradient. The phase difference at the
crest of individual waves for both laminar and
turbulent regimes is shown in Fig.14. Here the
phase difference (6) is presented against the non-
dimensional crest velocities (U/U,;). As
mentioned before, in the turbulent regime
turbulent dissipation reduces the phase
difference significantly. It can be seen in the
figure that a phase difference of about 15°
constitutes the limit between the laminar and the
turbulent flow regimes. The average values of
phase difference in laminar and turbulent
regimes are about 35° and 8° respectively. For
laminar flow it is considerably smaller than that
of corresponding sinusoidal wave.
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Fig.14: Phase differences for laminar and
turbulent flows.

4 Conclusions

The oscillatory boundary layer behavior
under irregular wave motion has been
investigated for both laminar and turbulent flow
regimes through numerical computation. The
irregular wave velocity time series has first been
generated and later specified at the free stream
boundary for flow computation in the boundary
layer. The computation has been performed
through Jones and Launder original low
Reynolds number k-£ model.

The generation of irregular wave velocity
shows a satisfactory result when compared with
input spectral properties. Reasonably good
agreement has also been obtained for spectral
properties of k-€ model results when compared
with those from analytical solutions for laminar
flows.

Under laminar motion, it has been observed
from model result that the bottom shear stress is
dominated more by high frequency component
waves. In physical terms it might be explained
as the influence of flow inertia close to the
bottom. This also causes a double peaked
structure and reversal in bottom shear stress,
whereas no such phenomena can be seen in free
stream velocity.

Turbulent mixing causes significant
reduction in velocity overshooting close to the
bottom and reduces the phase difference
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between bottom shear stress and free stream
velocity.

Thickness of bottom boundary layer varies
considerably with the randomness in free stream
velocity variation. While the turbulent kinetic
energy is strongly related to bottom shear stress
inside the boundary layer, it is more dependent
on the free stream velocity outside.

Phase difference at the peaks of individual
waves shows a distinct limit for turbulent flow at
about 15 degrees. The average difference for
laminar flow is considerably smaller than that
from sinusoidal waves.
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