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Manifold Method (MM) is a newly developed numerical tool in analyzing both
continuous and discontinuous problems. By employing the concept of cover and two
sets of meshes, MM can simulate the small and large-scale deformation of materials
as well as the failure and movement of block system. In the present paper the original
MM is extended by adding the consideration of crack propagation in failure process
into the numerical procedure. The extended version of MM is then applied to simulate
the initiation and propagation of cracks in dam foundation with weak zone such as
faults and joints. The failure process and corresponding bearing capacity are predicted,

and the computed results are compared with those of the experiment. It is convinced
that the extended version of MM can reproduce the initiation of cracks and the failure

process reasonably well.
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1. Introduction

Several numerical methods are used in
simulating the failure and response of structure
and rock foundation with discontinuities. These
methods include the Finite Element Method
(FEM), the Boundary Element Method (BEM),
the Discrete Element Method (DEM) and the
Discontinuous Displacement Analysis (DDA).
Although discontinuities in structure and rock
mass can be modeled in a discrete manner with
FEM and BEM by using special joint elements
(such as Goodman Element), it is difficult to
describe the discontinuities numerically, and
small deformation restriction is usually needed.
And also the number of discontinuities that can
be handled is limited. Therefore, problems of
many discontinuities or large-scale deformation
can not be analyzed by such kind of methods.
DEM and DDA can be utilized to model the
behavior of structure with many discontinuities

or block system, but the stress distribution
inside the blocks can not be calculated properly,
and, therefore, the propagation of cracks
through blocks can not be well modeled.

Manifold Method (MM) proposed by Shi in
1991V is a new numerical method. It provides a
unified framework for solving problems with
both continuous and discontinuous media. The
concept and potential application of this method
have drawn a great attention from international
researchers in engineering fields? ¥ 9978,

By employing the concept of cover and two
sets of meshes, manifold Method combined the
advantages of FEM and DDA. It can not only
deal with discontinuities, contact, large scale
deformation and block movement as DDA, but
also provide the stress distribution inside each
block accurately as FEM can.

In the present paper, the original Manifold
Method is extended to simulate the failure of
existing joints and the propagation of cracks
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inside blocks. As examples, the failure of two
dam foundations is simulated by the extended
MM and the results are compared with those of
the experiment.

2. Basic Concepts of Manifold Method

2.1 Cover and Two Sets of Meshes

The most innovative features of Manifold
Method are the concept of cover and the use of
two sets of meshes. Every cover covers a fixed
area, the shape and size of this area can be
chosen freely according to the problem to be
solved. The covers overlap each other and cover
the whole physical area. In each cover, a local
function is defined. By means of weight function,
the local functions are combined to form the
global function and define the displacement and
stress in the whole region.

The two sets of meshes are physical meshes
and mathematical meshes. The physical meshes
describe the physical domain including
boundaries, joints and the interfaces between
blocks, and define the integration area. The
physical meshes are definitely determined by
the problem to be analyzed. The mathematical
meshes, on the other hand, are closed lines
selected more or less arbitrarily by users. The
enclosed areas by the mathematical meshes are
called mathematical covers, on which the space
function is built. The mathematical meshes
should be large enough to cover every point of
the physical meshes.

The physical and mathematical meshes
intersect each other and form the physical
covers. If the physical meshes divide a
mathematical cover into two or more completely
disconnected domains, these domains are called
as physical covers.

All the closed areas generated by the
intersection between physical meshes and
mathematical meshes are defined as the
calculation elements. One calculation element
may be covered by one or more physical covers,
and its behavior is determined by these covers.

Fig.1 gives an example of general covers of
MM in blocks with one joint. Two circles and one
rectangle (thin  lines) delimit  three
mathematical covers V,, V,and V; to form the
mathematical meshes. The physical meshes
(thick lines) divide V|, into two physical covers 1,
and 1,, V, into two physical covers 2, and 2,,

and V, into two physical covers 3, and 3,. Eleven
calculation elements are generated by the
intersection of two sets of meshes and are
denoted in this figure as 1,, 1,2,, 1,2,3;, 1,2,3,,
etc.

Fig.2 FEM type covers of MM in one block
with two joints

Fig.2 gives an example of FEM type covers.
Seven hexagonal mathematical covers around
seven points 1-7 are given in this figure
referring to thin lines. The physical meshes
(thick lines, one block with two joints a-b and c-
d) divide the mathematical cover around point 3
into two physical covers 3, and 3,, divide the
mathematical cover around point 5 into two
physical covers 5, and 5,. Nine physical covers
(1,2,3,,3,,4, etc) and seven calculation elements
(124, 245,, 45,7, etc) are generated.
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2.2 Local Function and Global Function
If the local cover function u,(x,y)is defined on
physical cover U, :

u(x,y) (x,»)elU,

Then the global function u(x,y) on the whole
physical cover system can be defined from the
local cover functions :

u(r,y) = Y w, (6 (5, )

where w,(x,y) is weight function defined as:

w; (x, )20 (x,y)e U,
w(x,y)=0 (xyeU,

with Zwi =1
(x,y)eU;
With the finite cover concept and the

definition of local and global function, manifold
method can model a wide variety of continuous
and discontinuous materials, and FEM and
DDA can be deemed as special cases of it.

2.3 Simultaneous Equilibrium Equations

For structural analysis problem, if the local
displacement function on each physical cover is
assumed to be constant, that is, the local

displacement function on cover U, is:

D = dy| _Jw
u,(x,y)=D, = d, = v,

then the simultaneous equilibrium equations of
a problem with n physical covers take the form
as:

Ku K12 K13 Kln D1 Fl
K21 Kzz K23 KZn Dz Fz
K31 K32 K33 K3n D3 F3
=| - ()
_Knl KnZ Kn3 o Knn_ _Dn_ _Fn_

where K; is 2x2 sub-matrix. Kj;is defined by
the shape and material properties of physical
cover 1, and K;; (i#j) depends on the overlapping
or contact between cover 7 and cover . F; is
the load matrix acted on cover i Equation (1)
was derived by Shi P ? according to minimum
energy theory. Matrix /K] includes the
stiffness of element, inertia matrix, stiffness of
fixed points and contact stiffness. The load
vector [F] includes initial load, point load,
inertia load and contact load etc. The details of
equation (1) can be found in Shi? 2.

3. Modeling the Existing Joint

For an existing joint, there are two
possibilities: 1) unfailed, namely the joint can be
treated as continuous, and it can transfer both
normal and shear stresses. 2) failed, that means
the joint can only transfer normal compression
stress or shear stress if the friction angle ¢ is
not zero.

Modeling of the existing joint considers these
two possibilities. Fig.3 shows schematically the
treatment of the joint by adding normal and
shear springs at the joint. For the former case, if
the thickness of joint layer is idealized as zero,
there must be no relative normal displacement
between two surfaces of the joint since they
keep moving together under load. A very hard
spring p (penalty) is therefore added in the
normal direction to the joint to hold the possible
relative normal displacement between two
surfaces back to zero. In the tangent direction,
however, a small relative shear displacement is
usually permitted, especially when a soft layer
is included in the joint. This condition 1is
satisfied by adding a soft shear spring K| in the
tangent direction. For the later case in which
joint failed, normal penalty and shear springs
are added at the joint when the joint is loaded
by compression and the shear stress is less than
the friction between two surfaces. If the shear
stress is larger than the friction, shear spring is
removed and only normal spring is needed. If
the joint opens, both normal and shear springs
are removed from the joint.
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Fig.3 The normal and shear springs of
contact blocks

In the present paper the failure process of
existing joints is handled in the following way.
Assume that failure of existing joints follows
Mohr-Coulomb’s law with three parameters.
Taking o), as the normal stress and 7,, as the
shearing stress on a joint, the failure criterion is
defined as bellow:

o,=T,, tensile failure

|z';y' =C, 0<0o, <T, shearing failure (2)

IT:'}'J =C-o'tang, o, <0, shearing failure

where Tjrepresents the tension strength of joint,
C'represents cohesion, ¢ is the friction angle.

4. Crack Propagation in Solid Block

In rock foundation or concrete structure,
cracks occur usually from weak zone like faults,
joints and interfaces of different materials. With
the propagation, the cracks break the mass
material and lead to the final failure. Modeling
the failure of foundation and structure must
simulate both the opening of existing joints and
the fracturing of mass materials.

Manifold Method is extended to simulate
crack propagation in the present paper. When a
new crack occurs or an old crack propagates the
physical meshes and the mathematical meshes
that contain this crack should be regenerated. If
no physical cover is broken by the new crack,
then only the physical meshes need to be
reformed, the mathematical meshes keep
unchanged. But if the new crack breaks a
physical cover into two parts, then a new
physical cover is produced, hence both the

physical and mathematical meshes must be
regenerated.

Fig. 4 is given here to illustrate the crack
propagation and corresponding regeneration of
the physical and mathematical mesh system in
the numerical simulation. In Fig. 4(a) a new
crack ab occurs. Since it does not break the
physical cover that contains it into two parts,
only physical meshes need to be regenerated by
adding ab into the physical meshes. The
mathematical meshes keep unchanged.
Whereas in Fig.4(b), new occurred crack bc
together with the existing crack ab break the
cover that covers the area 4-5-8-10-9-6 into two
parts, therefore a new cover must be added to
the previous physical covers, and both the
physical and mathematical meshes need to be
regenerated.

In simulating the failure of solid block,
formula (2) is also taken as the failure criterion.
But in the present study, it is supposed that
new cracks can only propagate along the
mathematical meshes.

Fig.4 The relationship between new crack
and covers

5. Application Examples

The safety of an arch dam depends mainly on
the stability of the arch abutments. The
stability and bearing capacity of the dam
foundation are usually studied by experiment?.
In this section the newly extended version of
Manifold Method is applied to analyze the
stability and bearing capacity of dam foundation
and to simulate their failure process. The
numerical results are compared with the
experimental ones.
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Fig.5 Model of an arch dam abutment!®

5.1 Failure Simulation of an Arch Dam
Abutment with Faults

Fig.5 shows the model of the abutment of an
arch dam in Japan. The location of existing
faults is denoted in this figure as F. 1, F. 7 etc.
The stability and bearing capacity of this
abutment before and after strengthened by
concrete wall were studied by experiment in
Public Works Research Institute Ministry of
Construction, Japan 9. Here, by using the same
model, the failure process and bearing capacity
are simulated by Manifold Method.

The width of faults and the controlling
parameters used in the calculation are listed in
Table 119 'V, The strength of interface between
two different material zones 1s taken as 80% of
the lower one. The arch thrust force along the
direction of arch axis was taken as P=5200
ton/m, calculated according to water pressure
and temperature change. The mathematical and
physical meshes used in MM simulation are
shown in Fig.6, with thin lines referring to the
mathematical meshes and thick lines referring
to the physical meshes. '

Three cases are calculated in the numerical
simulation: (1) no foundation treatment, (2)
foundation strengthened by 2m thick concrete
wall, (3) foundation strengthened by 3.5m thick
concrete wall.

Table 1 Fault width and parameters

Fault | Width E T, C ¢
(m) | (kg/em? | (kg/em®) | (kg/em?)
F-30 5.0 3320 0.52 1.7 30
F-1 3.0 16530 2.87 9.0 30
F-7 2.0 22440 3.89 13.0 30
F-8 30 22440 3.89 13.0 30
F-9 0.5 16530 2.87 9.0 30
Good rock 68240 12.9 40.0 30
Concrete 267000 | 29.0 70.0 30
wall
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Fig.6 Mesh system used in MM simulation

Table 2 Bearing capacity in case 1 of

experiment'?
Number Bearing Number Bearing
capacity capacity
(XP) (XP)
1 0.5 6 1.1
2 0.6 7 1.0
3 0.6 8 1.15
4 0.7 9 1.20
5 0.9 10 1.20

Fig.7 Experimental result of the abutment
failure in case 1'%

Fig.7 shows the experimental result of failing
process and bearing capacity of the abutment
with no foundation treatment. Numbers in this
figure denote the order of crack occurrence, and
the corresponding bearing capacity is listed in
Table 2.
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Fig.8 shows the calculating result of the
abutment failure in case 1. Cracks start
occurring at the fault of F-30, as depicted in
Fig.8(a) by thick line, because the material
strength here is much smaller than that in the
other areas. With the increase of load from 1.0P

in Fig.8(b) to 1.3P in Fig.8(d), the abutment fails
progressively at the fault location of F-7, F-8
and F-9. The computed failure process and the
corresponding bearing capacity agree

reasonably well with the experiment.

(a) Load=0.8P

(b) Load=1.0P

- (¢) Load=12P

(d) Load=1.3P -

Fig.8 Computed failure process of abutment in case 1

Fig.9 gives the experimental result of the
abutment failure process after strengthened by
2m thick concrete wall. Bearing capacity of the
abutment obtained by experiment is listed in
Table 3. From the results it can be seen that
the bearing capacity of the foundation
increases from 1.2P in case 1 to 2.8P after
foundation treatment.

Table 3 Bearing capacity in case 2 of
experiment!?

Number Bearing Number Bearing
capacity capacity

(XP) (XP)

1~5 1.0 10 1.65

7 1.0 12~13 2.65

8 1.25 14~15 2.70

9 1.40 16 2.80

Fig.9 Experimental result of the abutment
failure in case 2'?

Fig.10 shows the calculated result of failure

process for case 2. In this case cracks start

occurring at the fault F-30 when load reaches
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0.6P, as shown in Fig.10@). In Fig.10(b) when
load reaches 2.0P almost all the area of F-30
failes, and faults at F-8 and F-9 start opening.
When load further increas to 2.6P, shown in
Fig.10(c), the concrete wall begins to fail,

leading to the failure of the foundation along
F-30 to F-1. Following the failure of foundation,
blocks lose their stability and begin to move.
Fig.10(d) shows the movement of blocks after
the foundation failure.

(a) Load=0.6P

(b) Load=2.0P

(¢) Load=2.6P

(d) The Movement of Blocks

Fig.10 Computed failure process of the abutment in case 2

Concrete Wall

Fig.11 Experimental result after the
foundation treatment by 3.5m concrete wall'®

Experimental result of the abutment failure
for case 3 is given in Fig.1ll and the

corresponding bearing capacity is listed in
Table. 4. The bearing capacity increases to 4.0P
due to the treatment of foundation by 3.5m
thick concrete wall. The simulation result for
the same case is shown in Fig.12. The
prediction of bearing capacity is slightly larger
than the experimental one. The failure process
is similar to the experiment.

Table 4 Bearing capacity in case 3'

Number [Bearing |[Number Bearing
capacity capacity
(XP) (XP)
1 1.3 7~10 2.5
2 1.5 11 3.25
3 1.75 12~13 3.5
4~5 1.8~1.9 14 3.5~4.0
6 2.25 15~18 4.0
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a) Load=1.2P

b) Load=2.0P

¢) Load=3.0P d) Load=4.2P
Fig.12 The failure of abutment after strengthened by 3.5m concrete wall
5.2 Failure of a Dam Abutment with a Set of i
Joints & Sy

Second application of the extended MM is
made in simulating the failure of an arch dam
foundation with a set of joints. The experiment
was carried out by Takano'’. Fig.13 shows the
diagram of the arch dam foundation. A set of
joints exist paralleling to the direction of thrust
force. Water pressure loads at the upper surface
of the arch. The controlling parameters in the

experiment areé listed in Table. 5.

Table 5 Calculation parameters

Fig.13 Abutment with one set of joints

E v Compression Strength To C ¢
(kg/em?) (kg/em?) (kg/cm?®) (kg/em?)
Arch 200000 0.2 250 | e[ meemee f emeeee
Left Abutment 20000 0.2 60 6 20 30
Right Abutment 20000 0.2 30 3 10 30
Joint [ eeeeee e e 0.6 1.2 18
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The experimental result showed that the
abutment failed as shown in Fig.14 when the
water pressure ¢=9.3kg/cm? !V,

Fig.15 gives the simulating result by MM.
Because the strength of joint is less than that of
the mass material, some joints firstly open
because of the tension and shear failure (See
Fig.15 a)). The load conducted by arch is
mainly supported by the blocks contacting with
the arch, and the principal stress is parallel to
the thrust direction (Fig.15 a)). This is the
same with the experimental conclusion. When
the pressure on arch increases to 7.0 kg/cm?,
some cracks occur in mass blocks (Fig.15b)),
and when the load reaches to 7.5 kg/cm?, the
foundation fails (Fig.15 c¢) d)). The bearing
capacity obtained by MM is less than the
experimental result and the failure pattern has
some differences. In the experiment, the failure
is caused by compression but in MM analysis, Fig.14 Experimental result!'’
the failure of the foundation is mainly caused
by shear failure.

900T/m?

(b) Load=7.0 kg/cm?

(¢ Load=7.5 kg/cm? (d) Failure of arch and dam

Fig.15 Computed failure of arch foundation by MM
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6. Conclusion

Manifold Method is a newly developed
numerical tool in analyzing continuous and
discontinuous problems. In the present paper
the original MM was extended by adding the
consideration of crack propagation in failure
process into the numerical procedure. The
extended version of MM is capable of dealing
with the failure of structure or foundation with
joints or faults. Application examples were
given in simulating the failure process of a dam
abutment with faults and a dam foundation
with joints. The prediction results of the
bearing capacity and the failure process are in
good agreement with the experiments. It is
convinced that the extended version of MM can
reproduce the initiation of cracks, the failure
process and block movement reasonably well.
From engineering practical point of view, the
numerical method developed in the present
study would be a very useful tool in simulating
the failure process of structure with
discontinuities.
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