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The choice of proper time step is very important in solving nonlinear structural dynamic
problems with proper integration precision and reasonable computational efficiency. In this
paper, a program is developed, with MATLAB, adopting an adaptive time integration strategy
to analyze the dynamic responses of bridge piers. The time step in each time instant can be
adjusted automatically according to the modal components of dynamic behavior of the system.
The influences of some important controlling parameters on the computation accuracy are
studied. It can not only assure the accuracy and keep valuable information but also improve the

computational efficiency considerably.
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1. Introduction

Nonlinear dynamic analysis is inherently time-
consuming in ordinary finite element computation
system. When structure is divided into many
elements, the computational efficiency becomes a
major issue. Direct time step integration is one of
the most commonly used methods in dynamic
analysis. Usually the time step in direct integration
should be small enough to obtain good accuracy in
the solution, however, the time step should not be
too small since this would mean that the solution is
more costly than actually required. Therefore
selection of an appropriate time step in direct time
integration is of first importance in dynamic
analysis. ‘

Practically, in addition to considering computing
time, the user may take much time to do some
preliminary analysis in order to determine the range
of frequency response excited by-the loading. This
estimation is related to the natural periods and the
variation of the loading on the structure, and perhaps
to a Fourier analysis of the loading to identify its
significant harmonic components. Especially in the
case of nonlinear dynamic problems, the choice of
time step will be more complicated because the

natural frequency of the structure may vary in
different time transient. And what is more,
conventional nonlinear dynamic analysis programs
usually require the user to re-evaluate the structural
stiffness”. These issues mentioned above not only
take much time of the user, but also demand the user
to have enough experience and relative knowledge to
input data such as the time step in integration
algorithm for good results. The adaptive time step
strategyz)’” is very helpful for relieving the user from
these tasks, and ensuring the computational
accuracy and efficiency at the same time. Using this
strategy, the time step can vary automatically
according to the modal components of dynamic
response and the nonlinear behavior of the structural
system. A good accuracy of results can be obtained
even a rough initial time step is chosen at first by the
user.

Coded in MATLAB environment, the adaptive
strategy in this research includes an automatic time
step determination technique based on the "dominant
frequency" concept, together with consideration of
the real structure’s nonlinear responses. The
nonlinear behavior is also considered through the
determination of time instants with stiffness re-
evaluation resulting from the material deterioration.
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The Newmark method and the Modified Newton-
Raphson (MNR) procedures are used for the
solution of nonlinear equation in order to obtain
reliable dynamic responses. Special attention has
been paid, in the present paper, to the convergence
criteria which play an important role in determining
both the validity and efficiency of a nonlinear
dynamic analysis. If the convergence tolerances are
ineffective, the true conditions might not be
accurately represented. On the other hand, too strict
convergence  criteria may  cause  excessive
computations to be performed.

Effectiveness of the adaptive method is first
checked through a typical dynamic example
compared with the conventional method. A bridge
pier model is then analyzed for structural responses
under the assumption of a bi-linear material
approximation. The influences of some important
controlling parameters on the computation
efficiency of the adaptive method are studied based
on the computation experience in this paper.

2. Description of the Adaptive Time
Integration Strategy

The following special functions are to be included
automatically in adaptive method:
a. controlling the numbers of iteration within a
reasonable range in each time step;
b. re-evaluating the stiffness in each time step; and
. calculating the adaptive time step in each time
instant.

2.1 Estimation of time step

For nonlinear dynamic problems, the
equilibrium equation of motion can be written as :

Mii + Ci+ S(u) = F(t) 1)

where: M is the mass matrix, C is the damping
matrix, S is a vector of structural reactions
containing the nonlinear behavior, i ,u and u are
acceleration, velocity and displacement vectors of
the finite element assemblage, respectively, and
F(¢) is a vector of external loading.

The increment —iteration forms of the Eq.(1) are
simply expressed as:

Mit  +Cit,, + K Au* = F,,, - Su*D)

+At

@

ko _ (k-1 k
Uiar = Uiae +Au

where K, is a tangent stiffness matrix, and At is
the time step.

In solving these equations, the Newmark
integration method and MNR iterative method are
employed in each incremental iteration. In this study,
two types of convergence check are performed
simuitaneously. First, the Euclidean norm of the
incremental displacements is required to be within a
specified tolerance of the current displacement:

norm( Au* )

norm( ut ,,

< displacement tolerance value (3a)

In the conventional method with a constant time
step, convergence of the incremental displacements
usually provide a reliable indication of whether the
current displacements are sufficiently close to their
equilibrium values. In our previous computations
with the adaptive method, however, the check
through only Eq.(3a) did not necessarily give
converged solutions. Therefore the second
convergence criterion is introduced in this study,
requiring the Euclidean norm of the current residual
force vector Ar to be within a specified tolerance of
the current external loading:

_morm(Ar) . force tolerance value (3b)
no m'l( F;+AI )

ko (k=) k
then Up,, = U, +Au,

. 4
Upr = Uy

iit+Ar = aO(ut+Al - ur) - azur - a3ﬁ'r C))

ul+Al = ut +a6u: + a7u':+At
where ay, a, as as and a; are Newmark constants.
An estimation of the dominant frequency” at

t+Atis:

Au" K, Au
2 T (&
a)u-m Au?‘ MAu )

This value reflects the modal components of the
response at present time step. A corresponding
characteristic period value can be calculated from:

=2t ©)
wH'AI
In order to adequately integrate all available

components of the response in this time instant,
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an estimation of time step can be obtained as a
fraction A of the characteristic period T*:

T
A== | 0

the lower limit value of A is decided by the
correlation between time step estimation and error in
the solution obtained by the direct time integration
algorithm. The finite element idealization has to be
chosen in such a way that the lowest p frequencies
and mode shapes of the structure are predicted
accurately, where p is determined by the distribution
and frequency content of the loading. So in direct
integration method, we are only interested in the first
p order mode responses, and it is known that a time
step Ar=T,/10, where T, is the natural period of

p-th mode response, will generally give reliable

result. T is the characteristic period which is
normally greater than 7;,, therefore if the lower

limit of A values is equal to or greater than 20 in
Eq.(7), a good accuracy could be expected for
Newmark method.

The time step for each discrete time instant of
the integration process has to be estimated because
the modal components of dynamic response of the
structure are variable in different time transient
according to Eq.(7). But the equation may lead to
the time steps in an unreasonable range, either to
sharp alterations or to very small and unnecessary
alterations. Furthermore, the choice of the time step
will affect the re-evaluation and decomposition of
the effective matrix in each time instant. In order to
avoid such difficulties for keeping new time step
estimated in an effective range, the following rules
are employed”:

At
= 8
Ar (3)

If £, <& <&,, then maintain A, ,, = At,;

se At,, = At

+At

If & < émin then Att+At = éminAtl

If é > émax then AIH-AI = gmaxAtl

The above rules are merely heuristic, and
therefore the parameters &, ., &,, €,and &, may
be adjusted for different nonlinear problems. Typical

values of these parameters have been given ¥, for
example, as &,, =0.5, &£,=0.625, &£,=1.6 and
& =1.8, respectively. Through the limited number
of applications studied by the authors, those
parameters were found to be rather insensitive to the
analysis results. Variation of the time steps were
constrained in a reasonable range although the initial
value of the time step was a very rough estimation in
the subsequent examples.

2.2 Influence of the nonlinear behavior

Consideration of the nonlinear behavior in
adaptive time strategy focuses on two aspects: the
first is calculation of the time step, and the second is
determination of time instant with stiffness re-
evaluation. :

The effect of the nonlinear behavior on the

calculation of time steps is reflected by varying the
A parameter. The variation of A is automatically
performed by monitoring the number of iterations
N, required for iterative convergence of the MNR
process at each time step. The general rules for
defining the variation of A are as follows:
(a) At time instants when the iterative MNR process
requires more iterations for convergence, the value
of A is increased; (b) Conversely, when nonlinear
effects are less severe, the value of A is reduced; (c)
The value of A can not be either reduced beyond
Amia OF increased beyond A . The effect of the A
parameter in the adaptive time step strategy,
including the choice of Ani, and A, are discussed
in detail in the following examples.

Since the change of the dominant frequency
reflects not only the variation of the modal
composition of the response, but also the variation of
the stiffness of the structural system, the re-
evaluation of the effective stiffness will affect the
estimation value of the new time step remarkably.

3. Examples and Discussions
3.1 A simple example

A simple nonlinear structural dynamic problem is
chosen to check the performance of the strategy.
The physical model is shown in Fig.1, which is a
circular elastic bar with lumped masses. The length
of the beam, L, is 4(m), the radius is 0.05(m) and the
Young’s modulus is 2X 10'°(kgf/m?); the density is
7.85 % 10°(kg/m’). F(t)=Fsin(107t) is an external
force acting on the tip of the cantilever beam, K is
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stiffness of the springs which are not initially
connected to the beam, C is the damping, and
mi (i=1, 2, 3, 4) are concentrated masses.

Assumed nonlinear relationship between force
and displacement at the beam tip is shown in Fig.2,
in which k; is the stiffness of the beam itself and k,
indicates the combined stiffness of the beam and
spring.

F(t

K <V K
:»—/m“
C @m;
L T"“
¢n

e

Fig.1 A physical model

Force

A

~1 ki

5 >

Displacement

Fig.2 Conceptual relationship between
force and displacement

To study the difference between the conventional
method (keeping constant time step) and adaptive
strategy, a reference convergent solution is taken as
the comparison criterion. The reference convergent
solution is obtained when the problem is solved by
smaller and smaller time steps until the response
converges to a fixed-time curve in conventional
Newmark method.

In this work, the cantilever beam is divided into
four beam elements. The mass matrix is deduced by

adding concentrated masses on consistent mass
matrix. Damping is added on the beam tip. For this
system /i = 0.03 is chosen as the damping ratio.

(1) Results comparison between conventional
method and adaptive strategy

The results of the adaptive strategy and the
conventional method are compared in Fig.3, where
the initial value of adaptive time step is 0.01(s), and
the constant time step in conventional method is
(0.0001(s). Although the initial adaptive time step is
rather rough, it can be seen from Fig.3 that the
accuracy of results is very similar, but the adaptive
strategy is more effective than conventional method
for the time steps can be adjusted to the proper
values automatically.
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— conventional method as time step is 0.0001s
- - adaptive method as initial time step is 0.01s

Fig.3 Results comparison between adaptive
method and conventional method

Fig.4 gives out the variation of adaptive time
steps. It can be found that in adaptive strategy, the
time steps are controlled according to the dominant
frequency of the nonlinear structural dynamic
response in every time instant, in such a way the
variations of the time step are limited in a reasonable
range. The losses of the valuable components or
waste of computational time can be avoided.
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Fig.4 Variation of the adaptive time steps
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Fig.5 Variation of numbers of iterations in
adaptive time step strategy
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Fig.6 Variation of numbers of iterations in
conventional method -

Since the time steps are adjusted to the proper
values, the numbers of iterations decrease sharply,
therefore the computational efficiency is
considerably improved as it can be seen from the
comparison between the following Fig.5 and Fig.6.
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Fig.7 Comparison between convergent solution
and that with rough time step in conventional method

Fig.5 and Fig.6 give out the variations of
numbers of iterations for the convergence at each
time step in adaptive strategy and conventional
method during the time history, respectively. The
numbers of the iterations range from 30 to 60 times
in conventional method, much greater than those of
less than 10 times in most cases in adaptive step
strategy.

Under the same condition, - the results indicate
that different initial values of time step give out the
very similar results in the adaptive time step
strategy, and the good accuracy can be obtained
although the initial value of time step may be rather
rough. Namely, the user doesn’t need do much work
for choosing a proper time step in advance for
adaptive method. However, if the time step is a
roughly estimated value in conventional method,
good results can not be obtained, as shown in Fig.7,
where the constant time step is 0.01(s).

From this example, it is also found that a good
accuracy can be obtained by adopting two
convergent criteria expressed in Eqgs.(3a) and (3b)
simultaneously.
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(2) Effect of the A parameter in adaptive time
step strategy

The choice of the A,;, parameter is also very
important for a good accuracy in Newmark adaptive
time step strategy. In this paper, the results with the
different A,,;, values are compared, in which the A,,;,
are 20, 30 and 50, respectively. The results with
different A,;, values are very similar if the value of
Amin is greater than 20. A good accuracy can be
expected in Newmark adaptive step strategy if the
value of the A, is limited less than 500. The choice
of the A, is dependent on the estimated response
extent of the structure.

3.2 Application of adaptive method to a
bridge pier model under earthquake load

The bridge pier model was divided into four beam
elements as shown in Fig.8. The Hermit beam
element is adopted to represent the beam behavior.

The length of the pier is 4(m) with element beam
length 1(m). Radius of the pier is 0.4(m). A
consistent matrix is used for mass matrix with an
extra lumped mass (20000kg) on the beam tip to
represent  superstructure weight. The damping
matrix is assumed proportional to mass matrix,
where damping ratio h is also taken as 0.03. The
initial Young’s modulus is 2.6x 10° (kgf/m?), and
the yielding stress is 2.6 X 10° (kgf/m®).

F(t)

Fig.8 A concrete bridge pier model

Element stiffness matrix is®

12 6L -12 6L
[k]:M 6L L} -6L 2I? (10)
L |-12 -6L 12 -6L

6L 21' -6L 4L

where E(t,€) is the Young’s modulus, [ is the
moment inertia of the pier and L is the length of
beam element.

Element’s consistent mass matrix is

15% 22L 54 -13L
[m] VAL 2L 4 13L =3P (11)
420 | 54 13L 156 -22L

-13L -3} -22L 4P

in which A is the area of beam element, and Y, is the

density of the material (2.4 X 10’ kg/m®).
The damping matrix is:

lc]=2h o] [m] (12)

with [ @ ] as the natural period matrix of structure.

The material property is shown in Fig.9, which is
a simple bilinear approximation. The ratio of the
stiffness ky/k; is taken as 0.08. When a section of the
beam is in plastic state, the whole beam element is
simply assumed in plastic range, so system stiffness
coefficient becomes a plastic one.

The time history of the horizontal ground motion
inputted is shown in Fig.10, where the acceleration

A O
k2
G, -]
ki
0 A a £
€

Fig.9 Material property of the pier

— 386 —

&N




readings are recorded in a constant interval of
0.01s. The initial time step used is 0.03(s) in the
adaptive method.

(cmvs)

1000

500

Acceleration
=]

Fig.10 Acceleration history of the
horizontal ground motion

(s)

0.03f—

Adaptive time step

Fig. 11 Time step variation in adaptive method

The step variation is shown in Fig.11, from
which it can be found that the adaptive time step can
be adjusted to the proper value automatically in
every time transient.

4x {Oév(kg'f/mz)

Stress

Strain X : ’ 04

Fig. 12 Strain-stress responses of the pier

Fig.12 shows the stress-strain time history of the
pier under the earthquake force. The nonlinear
structural responses show clearly the variation of the
elasto-plastic behavior history of the pier.
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Fig.13 Response of displacements at the pier tip
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Fig.14 Response of accelerations at the pier tip

Fig.13 and Fig.14 give the responses of
displacement and- acceleration to time at the pier tip
in adaptive method, respectively. Our research
indicates that these results have the same accuracy
as those obtained by conventional method with very
small time step even though a rough adaptive step
value is inputted at beginning.

3.3 Discussion on the adaptive method

A rough time step may be inputted at first in
adaptive method, then it can be adjusted to a proper
value automatically approaching to a satisfied
result. This is the most remarkable advantage of the
method. : '

The values of the controlling parameters adopted
in this paper have been proven to be effective for

-~ getting a satisfied result. '
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From two examples given out above, it can be
summarized that;

(1) The adaptive method is very suitable for
nonlinear dynamic analysis. The natural
frequency of the structure will vary in every
transient when the material characteristic of
the structure is in plastic state. The time step in
every transient can be controlled accordingly.

(2) The method is helpful in practical engineering
for sometimes engineers may not know clearly
the characteristic of the structure and excitation
force to choose a suitable time step,
alternatively a rather rough time step is
permitted.

(3) Adaptive method is available for large scale
structure with many elements. The time step
varies automatically to minimize the iteration
numbers and the convergence time.

4. Concluding Remarks

Compared with the conventional method which
keeps constant time step in direct time integration
procedure, the adaptive strategy can give out
satisfied results even though the initial value of time
step inputted is a very rough estimation. This
strategy can not only ensure the integration
accuracy and computational efficiency, but also
save the engineer’s time for analyzing the data and
choosing the proper time step. It can be concluded
that the adaptive time step integration strategy is

very effective for the larger complicated nonlinear
structures.
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