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The boundary-type integral formulations of domain variables were presented explicitly for
three-dimensional initial strain problems using boundary element method. The domain
variables were first represented by complete series of polynomial expansions, then the
related domain integrals were transformed into the boundary ones with the aid of the
intrinsic correlation among the integral kernels as well as the high ordered fundamental
solutions. The applicability of the formulation was discussed briefly.
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1. Introduction

The boundary element method has pronounced
merits characterized by dividing elements only at
the boundaries and with high precision of
solutions, which reduces data preparation and
saves computing timeD. The internal cells in the
domain, however, are usually indispensable if the
problem under consideration is inhomogeneous or
nonlinear. There have been many attempts and
developments in order to overcome this limitations

in recent years, such as the dual reciprocity

method?, the multiple reciprocity method® and the
computing point method#-5. One of the key point
in the multiple reciprocity method was the
transformation of domain integrals into
boundary-type via high ordered fundamental
solutions?. In the computing point method, the
inhomogeneous term in the mnonlinear Poisson

equation was represented by polynomial

expansions and then the domain integrals were
transformed into the boundary-type therefore the
solved without domain

problem can be

discretizations®®. All of these work show the

effectiveness of the transformation in getting rid
of the domain discretization.

In a general sense, the initial strain problems
include the problems such as the thermo-elasticity,
the residual stress problem®, the creep problem
and the elasto-plasticity in initial strain algorithm.
Some of them belong to the material nonlinearity.
The applicability of the procedure lies in how well
the domain variables, the initial strains, can be
described by polynomial approximation in terms of
the space coordinates and how the transformation
can be realized from domain type into boundary
one. '

In the previous work, the domain variables were
assumed to be representative by polynomials and
the transformation from domain into boundary-
type integrals was realized via the intrinsic
correlation among the integral kernels for two-
The
extended the transformation to three-dimensional

dimensional problem?. present work
case, which were realized, similarly, with the aid
of both the intrinsic correlation among the
the high

The formulations was

integral kernels and ordered

fundamental solutions.
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given explicitly and discussed briefly.
2. Basic Equations
The initial strain problems can be described by

the
displacement equation and the stress equation for

two  boundary integral equations,

a domain Q with boundary I as follows?D:

1
;u,-(p) = £ T(q)u*; (p, 9)dl(q)
- [I_uj(Q)T *,‘j (P, Q)dF(Q)

+[£4@)0 % (p, Do) o

o,(p)= ; T (Qu*y (p, 9)dL(q)
- { %(9) (P, 9)dl(q)

+ | eylg)o *i (P> 9)AQ(q)
Q-Q

+é&y (P)O,jk/ (P (2)

where
p— source point

g — field point

Q, — tiny zone centered at p
u;~ displacement

7, traction at the boundary

o; stress

& initial strain or initial strain increment

u*; — fundamental solution of elasticity

* * * * * -
T O o U T, 0 % Oy derived

fundamental solutions
In the above two equations there are domain
integrals of the initial strains generated owing to

material nonlinearity. If the initial strain & is

replaced by the term afs; the two equations can

be used for thermo-elasticity, where a is the
thermal expansion coefficient of the material and
@ is the temperature. The effects of the domain

variables on the displacement and the stress
equations have conventionally to be evaluated by
numerical calculations over divided internal cells
in the domain. Suppose the initial strain can be
described by polynomial approximation in terms of
the spatial coordinates as follows:

m+n+i=N

OS> Oc,;?’"’x,"’ (@)% (9)%3(q) 3)

m=0, n=0, =

where N is the highest order and C,.jml the

coefficients to be determined of the polynomials.
Insert the above expression into the displacement
and the stress equations, respectively, and replace
the spatial coordinates by the two point variables
between the source and the field points:

X, =X, (@) - X (p) C)]

then any term of the polynomial expansions for
the domain integrals in the displacement and the
stress equations can be expressed as

i gfz x' (@)% (9)x3(q)0 * 5 (p,g)dAq)

m!n!l!
5=0 (=0 u=0 (m ~ s)tst(n ~ £)161(/ - u)tu!

<[] @] ]

X £ X x5x50 %, (p,q)dq) (5)

Cﬂ"’ [Ixf" (Q)x; (Q)x§ (q)o'*,j/{/ (p.q)d(q)
Q

+37(P)x3 (P)X}(P) 0y ()}

_ mnl m
= Ci {Eo =0 u=0 (m — s)1si(n = £)eY(1 - u)tut

minil!

<[5 ] [R®] @] ™

x |2} x3x50 * 4, (P,q)dQAq)
aQ iy
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+ 3 (P (P (PO ()} ®)

respectively, where m, n, [,s5,t and u are all
integers. The transformation in the above two
equations is linear and performed with a short
subroutine. The domain integrals in the right
hand side of equations (5) and (6) can then be
transformed into the boundary integrals via the
correlation between the kernels?”, the Cauchy’s
relation and the equilibrium equation shown as
follows:

o*u (P P (@) =1 (p, q) (M

o *ux (P, @) +6;6(p, q)=0 8)

where #,(g) is the outward normal. The derived
fundamental solution o *; (p, g) is the stress at

g when there is a unit force acting at point p in i

direction. And represents the

¥ (P 9)

corresponding traction at the same point.

3. Formulations for Displacement Equation

The derived fundamental solutions o *, (p, ) in

the domain integral of the displacement equation is
presented here explicitly in the three-dimensional
form for clarity:

o*u (P, @)= ——
e (P 4 87(1 - v)r
x{(l - 2")(5fk’,i ~ 0l - ‘S'J'r,k) - 3r”r=fr"‘} )

where Vv is Poisson’s ratio and » the distance

between the source and the field point

r= ,[xkxk

The boundary-type formulation of the zeroth order

(10)

term of the polynomials is as follows:

(Iz o *; (b, 9)dQq) = { x, 7%, (p, )dU(q) (11)

which has been derived under the state with a
definite physical meaning, that is, the state of a
traction free domain with a uniformly distributed
initial strain of unity over the domain?. This
equation can be extended to a general form with
the Cauchy’s relation (7) and the equilibrium
equation (8) as follows:

m-1_n | m n-1_1 m n -1
[[mx)  xyx38), +mx)'x; %38, +Ix)"x; x4 53k]

X%y (P, ) = [xxpx37 %, (P, 9)T(Q)

(12)
Then all the boundary-type formulations, except a
special one, of integral kernels in boundary-type of
the three-dimensional initial strain problem for
the
explicitly:

displacement equation can be obtained

m n_|

(I)x, Xy %30 %1, dQ(q)

1
= —-[x,'"”x;x;r*” dr'(q)

= (13)
m+n+l+1r

lemxgxga *520 dQ(q)
Q

1 1
Tmentl+l !x{"x;'* X7 A()

(14)

!
(j}xl'"x;x30' *133 dQ(q)

1
=[x %, dT ()
m+n+l+1r .

(15)

é[)x,'"xgxga * 12 dQq)

! 1.1
- m+n+l+1 ixl'"x;” x3r*” a(q)

(16)

I
(I)xl'"x;'x3a * 53 dQ(q)
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1 m n_I+1

T e d@ an
m n |
é[)xl X3%30 *33, dQ(q)
1 7 n 1
T e @ 09
n 1
(])xlmxzx30' * 13 dQ(q)
1 n
rrrern Ll AT
!
(szlm";xsa 2 dQ_(q)
1 m n 1
T e L
(j}x{"x;x;a *130 dQ(q)
1 m n
= [ x| xzﬂx;f*n dr(q) (21)

m+n+l+1r

1

m n | m_n+l |
[ x)'xyx30 * )5, dQ(q) = [x]'xy " xy7 %, dT'(q)
Q n+lr
m m-1_n+2 |/

_(n+l)(m+n+1+l)r] 2 T A(g)

/ m_n+t_1-1

Xy Xy Xy 0%y dQ(q)

(22)
n+la

1

! m n_ 1+1

Ix]'"x;xp *,33 dQ(g) = — [ x"x; x3+ T*,, dl(q)
o) I+1r

) (1 + 1)(”1 Z n+l+ 1) rx;"x;'_lx;”r "2 ()

__m m-1_n_Il+1

(J;xl xyx3 0 %53 dCA(q) (23)

1

Ix]'"x;x;a *1dQUg) = Ix,"”lx;xér *,, dl(q)
Q m+1r
/ -
- hxpx ey, dr(g)
(m+l)(m+n+l+1)r .
n m+l_n—-1_1 o
- X; Xy X,0 %5, dQ(q) (24)
m+1¢

/ 1 I
(sz]'"x;xp * 133 dq) = —1 " lj:xl'"x;'x;'r *5 dl(q)

- (1+ l)(m:-nn+l+ ]) rx"'"lx;x;+2r*1| dr(q)

h m_ n-1_I+1
-——[x"xy x; 0%, dQ(q)

(25)

n 1 n |
Sfle’xzxgo_ *an dAq) = j’x,'"”xzxf*z, dr'(q)

m+1r

- n m+2 _n-t I o dr
(m+)(m+n+1+1)7" %2 %37 d(9)

1 m n -
[x ' x0xy o * 5 dQUg) (26)

m+1la

1
j'xl'"xgﬂxgr *, dL(q)

fx]'"x;xéa *5 dQg) =
0 n+lr

—(n+l)(m+n+1+])l[

m_n+2 -1

X Xy Xy t¥%5dl(q)

m m-1_n+1 1
——— x| Xy x30* 5 dQ(q)
n+la

27)

All of the above formulations have the similar
form with that in the two-dimensional case” so
that they can be reduced to two-dimensional ones,
but a special term o *),; of the domain integral
appears at the right hand side in some of these
formulations (Equations (22)-(27)), which can be
transformed via the high ordered fundamental
solutions of elasticity as shown below.

4. Formulation of the Special Term

Let us start with the Galerkin tenser of the zeroth
order for the three-dimensional elasticity):

G*=G*" =5 (28)

VT

where U is the shear modulus. It is not difficult to

write out the N -th ordered Galerkin tenser for
elasticity:
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2N +1
r

G =——s,
47zu(2N +2)!

y

(N=0,1,2, --) (29)
which has the recurrence relation of
G =GN (30)

Then the corresponding high ordered fundamental

solution or Kelvin’s solution can be deduced:

u* N oM _

N ———— M)
’ 20 -wy 0 MY
2N-1
,

i 167u(1 - v)(N + D2 N)!
x {[4(1 — V(N + 1) -1, - @N - l)r,l.r’j}

(N=0,1,2, ) (31)

With the constitutive relation of elasticity, the
corresponding high ordered derived fundamental

solution

in the displacement equation can

therefore be obtained:

(M) (N) (N) (N)
o ¥ = ﬂ[ﬂé‘jku*il,l oty Uty )]

2N-2
r

" 162(1- )N(N + 2N —2)!
{20~ N + 1) = 1)Ers + 8,
s[2vN + 1) = 1)8,r - @N =7 1}

(N=1,2, -+) (32)

where f is a material constant defined by

_2v
1-2v

(33)

It is noticed that the equilibrium equation is no
longer hold for the derived fundamental solution
in their high ordered counterparts, but it has the
following simple form:

2N-3
v F

B T —
Wk amaN -2y
(N=12, ) (34)

And the outward normal directional derivative of
the derived fundamental solution is

2N-3
io-*(’v)_ r

on % " 16x(1- v)N(N + 2N -2)!

o
x {(21\/ - 3)5—;([2(1 — VN + 1) =1](8r, + 8,7 )

+[20N + 1) =18, - @N =) r)
~ QN =+ 2t

+ (Gm +8un) [20- YN +1) - 1]
+[2vv 4 8m )}

(N=12, -+) (35)

The transformation of the special term from the
domain type into the boundary one can then be

realized by the recurrence formula using Gaussian
divergence theorem:

gj}xl'" Xy xga *fjkN) dQ(q) = (J;x{" x, xéa *;-2,,::) dQ(q)
=[x - 4™ dr(g)
- lj_%(x,'"x;x;)a *f.jf“) dr(q)
+ (I)(xl'"xgxé)’“a *f.j,}:m) dQ(q)
(N=12, --) (36)

The explicit forms of the two high ordered kernels
of the special term are:

SN -@N -3
g3 T ri\rats
162(1— V)N(N + DN - 2)!
(37)
2w _ -@N =37
on "B 16z(1- V)N(N + D@2N - 2)!
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or ‘
x [(ZN ) e O S R I R R R A
on 2R TN 2, 3

(N=1,2, ) (38)

all of the
integrals have been represented by the boundary-

With these formulations, domain

type for the displacement equation.
5. Formulations for Stress Equation

The formulation of the zeroth order term or the
constant term of the polynomials for the stress
equation is deduced also from the traction free
state with a uniformly distributed unit initial
strain over the domain? as follows:

‘I) o * i (P> 9)dAq) + C(p)Oyy, (p)

=[xt %y (p (@) (39)

The term Oy (P) owing't'o the strong singularity

of the kernel appears only in the constant term
and can be contained automatically by the
boundary integral without special consideration in
the programming. C(p) is a coefficient depending

on where the source point is located.

The transformation for the non-zeroth order
term of polynomials is realized by making use of
the derived constitutive relation of elasticity:

* —-— * * *
o ¥ (P @) = ﬂ{ﬂ‘sija swls O T O jkl,i}

(40)
Therefore, the domain integrals of the kernels
relevant to the stress equation can be represented
by the boundary-type as follows:

1

!
P (J;x]"'x;xp' * i AQUq)

= m=1ynyl <% myn=lyl ok
5;/![”“1 XPX307 g HIXP Xy X300
Q

+ 356y o 4y [dg)

+ ,f[(mxl'""]xgxﬁé]j + nx,'"xg'.]xéé'zj +
o)

m_n 1-1

* m-1_n_1
+ Ix; xy x5 531)0' d HOmx] Xy X0, +

m_n-1_1 m_n_I-1

+nx X, X306, + I X x5 85)0 %y, ]dQ(q)

m n |
- * * *
Ij_xl x2x3[ﬂ5,.ja s g T O Ty + 07y ”i] dr'(q)

(mZO,nZO,IZO,m+n+1>0) (41)
The domain integrals at the right hand side of the
above equation can then be replaced by the known
formulations for the displacement equation and
there are eighteen explicit formulations in
boundary-type for the kernels in the stress
initial strain

equation in three-dimensional

problems as follows:

1 m n_| ]
"'le x3X30 %)y, d(q) = —Ixn"’XE’X3
Q r

x[(ﬂ+2)a *111m + o ¥y my + fotyy ”3]df(0)

2
AT, a0
ﬂn(n B ]) m+2 _n-2_1
- (m + l)(m +n+ 1) rx1 %2 %57 A)
ﬂl(l - 1) m+2 n -2 4
- dr
(me)mens)r 22 T d@

:Bn m+t _n-1_1
+——x Xy x;37%, dl(q)
m+lr .

/ -
Pt e v, ara)

+
m+1r

28nl

m+1Q

m+l n-1_1-1
*
X; Xy X3 0¥%,,dQ(q)

(42)

1 m n 1 m n |
— [ % %%30 %55y, dQq) = —lj_xn Xp %3

uo
X [('B+ 2)0' *m My + B0y iy + BTty ]dF(q)
. (ﬂ + 2)n i ,

m+n+lr
-1 m_n -
) (n +f)((r'1+3+1)rxl x2+2x; 2T*33 a'(9)

_ ﬂm(m— 1) m=-2 _n+2 |
(n + 1)(m +n+ l) lJ:x, X2 AT )

m n |
x| Xy X3T %y, dL'(q)
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ﬂl m_n+l I l
+—x x;

32 dr'(q)
n+lr

ﬂm m-1_n+l_ [
xp Xy x37%, dl(g)

n+lr
2ﬂlm m-1_n+1 /-1

- X 1Jc2 ]x3 0 * 1,3 dQ(q) (43)
n+la

1 m n 1 m n 1
‘“le X)X30 *3335 dQ(q) = _l[xl Xy X3

X [(ﬂ+ 2)0 333 13 + PO Y53 1 + fo ¥ my ]dF(Q)

+2
fn”+n3,;xf'x?xéf*aa @

_ ﬂm(m—]) f

(l+l)(m+n+1)r
ﬂn(n 1)

(l+l)(m+n+l)r

m
ﬂ xm 1 ;1 :I;+IT,.:I3 d[-.(q)

-2 n is2
; 3+ ¥, dl'(g)

mn2/+2

x3 7%y, dl'(q)

Bn 1 141
e ,'";x3+123df(q)
I+1r

28mn

1 n=1_I+1 .
- xlm x; 3+ o *1p3 dA(q) (44)
I+1 @

—le'"x;'x3o- 1122 4€q)

m_n
—x x2x3(nr 1 tmT 22)dl"(q)
m+n+lr

m i
- l-[xl x;x3(a *21 0+ 0¥, ”2)dF(Q) (45)

!
_'(lelmxg%o' 2233 4€(q)

1 n
= m+n+lr Xy x2x3(lr n tNT 33)dr(61)
le x2x3(a ¥y + 0 %3 n3)dF(q) (46)

m n

1
=[x x2x30' 3311 4(q)
rxe

1
= — [ x2x3(mr 33 HT* ”)dF(q)
m+n+Ir

Ix]'"x;x3(0' 13 5 + 0 ¥ n,)dF(q) 47

1
;Ix,'"x;'xp 112 4Agq) = Ix,'"x;'xSr*ZI dr'(q)

m+n+l£xm+‘ ; ‘x3(r n =7 )d(9)

_ m n * * )
PI x2x3(o' 1 M+ 0o ¥y n)dl(q)

- lsjlemx;x;—lo' *123 dQ(q) (48)

m_n_|

1 /
;({xl Xy X30 %5553 dY(q) = Ix.”’xé'w*sz dr'(q)

1 -
m+n+l|[xlmx;+x3 (z*n —7*33)dl(q)

m n |
- le x2x3(a 0 My +0 %y, n2)dl“(q)
/
‘”’fxl x2x3a 123 4Q(q) (49)

1
— Ix]'"x;x3a 3331 4QAg) = lemxgxﬂ *,dl(q)

m m-1_n I+1
+ [ x xyxy" (z*;; —7%,)d(q)
m+n+lr

m n_ | * *
- {x, x2x3(0' 333 + 0 733 ”3)dr(q)

—nfx,'"x;' ]x;a 123 9(q) (50)

| S /
;le x;x3a 1113 4€g) = {xlmx;xﬂ *31 40(q)

1. n I-1
m+n+11[xm+ X%y (7% =7 ¥)dl(9)

m n | .
—_ *
le xyx3(0 ¥y g + 0 ¥y "l)dI (@

- nffzx{"x;_]x;a * 123 dQA(q) (51)

m_n

—jxf"x;x30' a1 dg) = Ix, x2x3r 12 dT(q)

m m-1 n+1 !
+ X x3(7 *p —7*)dl(q)
m+n+lr

m n |
—_ * x*
!xl x2x3(a m M+ Np "2)‘{[ (9)
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.y (j) xXxyxy o %, dAq) (52)

1 I i
—‘I)xf"x;x3a *133; dq) = I["nmxgxaf*n dr(q)

n m n-1_I[+1
+———fx"x; x5 (1% -7%,,)dl(q)
m+n+lr

!
- {xl'"x;'x3(a Y3y + 0 ¥y n3')dF(q)

- m(f)x]'"_lx;x;a * 123 dQ(q) (63)

m

1 ! . ~-1_1
—(lel'"x;'xp Y123 dQq) = ”J}xl x;' x30 )53 dQ(q)

m m-1_n_[+1

¥ m+n+1rxl 2% Ty ()
!
- I]_x,'"x;'x3(a Y3t 0 ¥y, ”1)dr(‘l) (54)

1 I /-1
—(I)x]mx;x30' *5a3 dQq) = léx;"x;x3 o *; dQ(q)'

n m+l_n-1_I+1
+——|x X, X3 T*;;dl(q)
m+n+lr

/
- l,[x,'"x;'x3(0' 13 My + 0 ¥y "2)dr(‘1) (55)

1 m n | m-1_n |
—gj;x] X, %30 ¥31, dQq) = m(j}xl ]x2x30' *123 dAq)

) m n+l 1-1
+ X%y Xy %, dl(q)
m+n+lr

I
- [I_xlmx;x3(0' 3y + 0%, n3)df(q) (56)

l ! nl
—"(szlmxg’%a *l23 dq) = -

U (m+D)(m+n+1)

m+2 _n-1_1I-1
x]j:xl X, Xy (7%, +7%33)dl(q)

! m+l_n I-1
+ X, Xxy % dl(q)
m+1r

n m+1 _n-1_1
+ X, Xy x37 %5, dl(q)
m+1r

I .
- l[x,'"x;'x3(0'*2“ ny+0 %y ny)dl(q)

_1(1—1)
m+1
n(n-1)

m+1

m+l on 1=2
(])x] Xy%3 0¥ 53 dQq)

[ XXy xia ¥ 0, dO(q) (57)

m_n_| Im

1
- le X3 %30 *3, dQ(q) = -
o

(n+DH(m+n+1)

m-1_n+2 I-1
xlj_xl X, "xy (t*33+7%,)dl(q)

m -1_n+1_1
+ xl'" x; x,7 %, dU(q)
n+lir

/ j-xm n+l /-1

+ 1% X3 7%, dl(q)

n+lr

m n 1
- I»[xl X3 %3(0 *355 1y + T * 5, my)dL(q)

mm=1) . w2 pe1 g
_—n+l (flx]m x;'+ x30 *|5, dQ(q)
(-1
LD g0 69

1 mn
—]x,’"xgx;o- ¥ A= - ———
ua (+D(m+n+l)

m-1_n-1_1[+2
x [x) "y xy (T ¥ +1%,)dl(q)
r

h m _n-1_1+1
+——[x'x; x3 t%;dl(q)
l+1r .
m-1_n I+1

____m *
+ lJ:xl Xyx3 7%, dl(q)

m n | .
- l[xl X, x3(0 %33 1y + 0 *y55 1y )AL (q)

nn-1 _
_ ( ) xlmx; 2)‘_§+I0_,“]23 dQ(q)
I+1
m(m—1 -
S (g v, dg) (59)
I+1 q

(mZO,nZO,lZO,m+n+1>O)

The special term o*,, of domain integrals

appears also in most of the above formulations
which can be evaluated by the boundary-type
recurrence equation (36).

6. Discussions

The applicability of the procedure in getting rid
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of domain discretizations by polynomial
expansions lies in how the transformation can be
realized from domain type into boundary one and
how well the domain variables, the initial strains,
can be described by polynomial approximation in
terms of the field coordinates. In the present work,

the field variable x,(q) has been replaced by the
two point variable x, in the integrals through

transformations (5) and (6), therefore the intrinsic
correlation between the kernels can be made use
of to avoid the term by term integrals except the
special term in the three-dimensional case. It may
be come from the geometrical symmetries.

As stated above, the transformations (5) and (6)
can be performed via a short subroutine. There are

other merits, for example, the term O, owing to

the singularity appears only in the zeroth order or
constant term of the polynomials and will be
embraced in the boundary integral (39) without
special consideration so that the programming can
be simplified.

Even for the zeroth order or constant term of the
polynomials, the order of singularity in the
boundary-type integrals is reduced by one. And
because these formulations are hold no matter
where the source point locates, inside or outside
the domain or on the boundary, they might be
used to evaluate the domain integrals with strong
singularities when domain discretization is
performed.

In performing the computing point methods¥-9,
the polynomial can be expanded to any order
conveniently using these formulations to meet the
precision requirements. The formulations can be
reduced to deal with the problem of thermo-

elasticity by replacing the initial strain ¢; with
the term aé’é}j , for example, suppose
abH*, (p, q) = ab5,5*,, (p, 9) (60)
abH*; (p, q) = abd,0*,, (p, 9) (61)

where H* and H*; stand for the domain

integral kernels in the displacement and the stress

equations, which can be derived by the

combination of 6,0 *; and 5,0 * it > respectively,
for the problem of thermo-elasticity. Then the
boundary-type formulations for the zeroth order
term can be obtained as follows:

(I! H* (p, )dq) =] ;7% (p, dl(g)  (62)

’ !}H *i (py 9)dQ(q) + 640, (p)

= lI_ X7 %5 (s )dT(q) (63)

For residual stress problems®, the initial strains

formed by material nonlinearity can be
approximated by polynomials and expected to be

solved without domain discretizations.
7. Conclusion

With the aid of the intrinsic correlation among
the integral kernels as well as the high ordered
fundamental solutions, the explicit form of
boundary-type integral formulations was deduced
for the three-dimensional’initial strain problems
using boundary element method in which the
domain variables were represented by complete

series of polynomial expansions.
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