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A finite element formulation for the large displacement analysis of thin-walled beams is
presented. The degeneration approach is taken in this formulation, so that the nodal degrees-of-
freedom in the beam element thus developed are all vector quantities. It is also noteworthy that
the concept of bimoment which is significant in the classical theory of thin-walled beams needs
not be referred to. The present formulation is therefore simple and straightforward. Numerical
examples are solved and excellent agreement with analytical solutions is obtained, confirming

the validity of the present formulation.
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1. Introduction

Because of their structural effectiveness, thin-
walled members are used extensively in steel
structures. Therefore, much research has been
conducted and now we may state that the theory is
well established”®. The theory is, however, rather
involved and only simple thin-walled structural
problems can be solved analytically. For practical
problems, we must resort to a numerical method to
obtain solutions. In this conjunction, the finite
element method has been used exclusively.

In the classical finite element approach, the
governing equations in the theory of thin-walled
beams are discretized. A typical beam element thus
derived has two nodes and- seven degrees-of-
freedom are assigned to each node™®: a derivative
of rotation with respect to the longitudinal direction
of a beam, three translations and three rotations. The
derivative of rotation is associated with the so-called
bimoment that causes the warping of a thin-walled
cross-section.

There exists another class of finite element

formulation, which is called the degeneration
approach”'”, This approach treats structural
member as a special case of continuum: the
governing equations for continuum are directly
discretized by the finite element method and the
characteristics of a structural member are
implemented only in the discretization procedure.

Since finite rotations are not vector quantities, the
large displacement analysis of three-dimensional
beams is not a simple task, as far as the nodal
variables of a beam element include rotations. To
this end, various techniques such as Euler angles
have been devised'?'). Because of its consistency
with three-dimensional solid mechanics, the
degeneration approach enables us to exclude
rotations from nodal variables. In fact, for the large
displacement analysis of three-dimensional solid
beams, we have developed a degenerate beam
element which has no rotational degrees-of-freedom
at nodes'".

The objective of the present research is to present
a simple and accurate finite element formulation for
the large displacement analysis of thin-walled

- 329 —



Fig. 1 Coordinate systems

beams. To this end, we extend our previous
work™'" in which the degeneration approach is
employed and rotations are excluded from nodal
variables. The proposed formulation is free from the
difficulties associated with finite rotations and also
does not require the concept of bimoment, the
physical meaning of which is not always obvious.

2. Formulation

We utilize two sets of coordinate systems in the
present formulation: spatial coordinates and material
coordinates'. In what follows, x, y and z denote
the former while X, Y and Z the latter. The tensor
notation is also employed in the present description,
so that we may use x; and X, to represent spatial

coordinates and material coordinates, respectively.
Furthermore, we let the lower-case and upper-case
subscripts designate the association with the spatial
and material coordinate systems, respectively. We
set the X ( X;)-axis in the longitudinal direction of
a beam, as is shown in Fig. 1.

We resort to the total Lagrangian formulation in
the present study'®. Therefore, the description
would be in terms of the 2nd Piola-Kirchhoff stress
Sy and the Green strain £, .

2.1 Basic Assumptions
In the present study, we employ the following
beam assumptions:

a) cross sections do not deform in their respective
planes:

b) the cross section of each constituent plate of a
thin-walled beam remains plane; and

c) only three stress components are significant.

Using the Green strain components, we can

(b) 12-node solid element

Fig. 2 Finite elements
mathematically express Assumption a) as
Eyy =Ezz =Eyz =0 M

Assumption b) is implemented by devising a new
finite element, which we shall describe in the
subsequent section.

Assumption ¢) means

Syy =Szz =Syz =0 (2

The remaining stress components Syy, Syy and
Syz are related to the three nontrivial strain
components Eyy, Eyy and Ey,, respectively,

through Young’s modulus £ and the shear modulus
G.

2.2 Beam Element

To implement Assumption b), a beam element is
developed from a 12-node three-dimensional
isoparametric solid element. These two elements are
illustrated in Fig. 2. The beam element consists of
twelve nodes: three reference nodes on the beam
axis (Nodes 1 to 3) and nine relative nodes on the
beam surface (Nodes 4 to 12).

We assign three displacement components to each
of the reference nodes as nodal variables while we
assign to each relative node three components of the
relative displacement with respect to the reference
node located on the same cross-section. No rotations
are involved in nodal variables. As a consequence,
the present beam element is free from the
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complexity due to finite rotations.

We describe geometry of the beam element by a
set of natural curvilinear coordinates (r,s,¢). The

displacement vector u; of a point at (r,s,f) in a

beam element can be expressed in terms of nodal
variables as '

12
uj= ZNa(r,s,t)U;’

a=1

3)

where U;-’ denotes the absolute displacement vector

at Node "g" for a=1~3 and the relative
displacement vector at Node "g" for a=4~12.

The shape function N? consistent with this
definition of U;-’ is derived in the way similar to
that of the degenerate shell element due to Kanok-
Nukulchai et al.” and given by

-

%rar(1+rar) fora=1,3
1-r2 fora=2
1 a a a a
—2—r r(1+r r)(s s+t t) fora=4,6,7,9
Ne(r,s,t) =
(1—r2)(sas+tat) fora=5,8
—;—ts(1+rar) for a = 10,12
Lts(l—rz) fora=11
4)
where
-1 a=1,4,7,10
r¢ =40 a=2,58,11
1 a=3,6,9,12
« |0 a=1~3,7~9
s° = 3 &)
1 a=4~6,10~12
sa_ 0 a=1~6
1 a=7~12

This element is isoparametric provided that
relative position vector is input for each relative
node. The relative position vector is therefore
defined in the same way as the relative displacement
vector and we have

s\\\\\)\\\\\\\\\\\‘\\\\\\

&\\\\\\\\\\\\W

(a) I-section

(b) Box-section

Fig. 3 Integration zones

12
X =ZN“(r,s,t)X;’

a=1

(6)

where X7 with a=1~3is the position vector of a

reference node while Xj-’ with a=4~12 is the

relative position vector of a relative node with
respect to the reference node located on the same
cross-section.

The beam element in Fig. 2(a) is solid. To analyze
a thin-walled beam with this element, the technique
that was employed in the linear analysis of thin-
walled beams by conventional brick elements” is
utilized herein: for instance, in the analysis of a
typical thin-walled beam with an I-section or a box-
section, only the shaded zone shown in Fig. 3 is
assumed to have rigidity and therefore the
integration for the construction of an element
stiffness matrix is carried out over the shaded zone
only.

2.3 Governing Discretized Equations

For the basis of finite element formulation, we
employ the principle of virtual work derived from
the governing equations for three-dimensional
continuum'. In order to impose Eq. (1), we further
resort to the penalty method'®. Hence, we start the
formulation with the following equation:

W= Ls ox OF g dV + Lzs vy OE xydV
0 1}
. LZszéE g dV - L pob;udv
[} 0
- | wjomat LkEyyaEyde
o, 4

N LkE 77 6E 77dV + LkEyzéEYZdV ~0
0 0

(N
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where p the mass density, b; the body force, ¢);
the prescribed traction, SE;; the virtual strain, du;
the virtual displacement and & the penalty number.
Vo is the body under consideration and 4, the

boundary surface with the prescribed traction. The
subscript 0 indicates the original state.
Employing the same shape functions for &u; as

those for u s We arrive at

w=> W =0 (8)
e=1
where
12
_ b xb _ pb
We_Zé‘Uj[Kj——Rj] 9)
b=1

b b
Kj = L[SXXFJXN,X
]
b b
+SXY(FjXN,Y +FjYN,X)

+Sxz(Fix N% + FizN%) (10)

+ kEnyij,l;/ + kEzszzN’bZ
) .
+ EkEYZ(ijN’bZ + Fiz N5 av

b b b
R = Loepobjzv v + L&tOjN dd (11

where F; is the deformation gradient, and » in Eq.

(8) stands for the number of elements.

We evaluate Eqs. (10) and (11) for each element,
and assemble all those individual element
contributions. Since the nodal virtual displacement
is arbitrary, we end up with

K-R=0 (12)

where K and R are the assemblage of K? and Rj?,

respectively.

Since Eq. (12) is a nonlinear algebraic system, we
must have recourse to some numerical methods. In
the present study, we utilize the Newton-
Raphson technique, and the following linearized
equation is solved repeatedly until convergence is
attained:

KyAU™ = R - K™ (13)

where the superscript (m) denotes the number of

iterations. AU is the iterative increment of the
nodal displacement at the m th iteration. Ky is the

tangent stiffness matrix, which can be evaluated by
taking the derivative of K with respect to the nodal
displacement U. To that end, consistent
linearization”'” is performed and the tangent
stiffness matrix is obtained for an element as

Kb = L[FjXNf’XEFiXNj(
0

+ (FjXNf; + Fy N )G(F,.XN} + ijijv)

+ (FJXNf’Z + FizNb, )G(EXN"’Z + FjZNj}()
+ FjyNYkFEyN% + Fiz N kFizN%
k

+(Fiy N + Fiz Ny ) 2 (F NG + FjZNj/)jldV

+8; J: [SXX NN + SXy(N,bXijz + Nf’yNs’()
;
+Sxz( NS NG + NN )
+kEyy NSNS +kEzz NG NG
; —IZEEYZ(N,I’yN,“Z + NGNS )j|dV
(14)
3. Numerical Examples

Numerical examples are solved to test the validity
of the proposed formulation. In all the analyses, five
beam elements are employed for the discretization
and the calculations are performed on Sun
SPARCstation 2 using double precision.

3.1 Cantilever Beam under End Torque

We first conduct the linear analysis of a cantilever
beam subjected to a concentrated torque 7 at its
free end (Fig. 4). The length of the beam and the
material properties are assumed as: L =150,

E=2.0x10% and G =1.0x10%.

Two different cross-sections are considered: an I-
section and a box-section. Their dimensions are
described in Fig. 5. The magnitude of the applied
torque is 0.04 for the I-beam and 400 for the box-
beam.

As a numerical result, the variation of warping
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Fig. 4 Cantilever beam under end torque
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Fig. 5 Cross sections (end-torque problem)

displacement is presented together with the
analytical solution in Fig. 6. Very good agreement is
observed all along the beam length.

3.2 Cantilever Beam under End Load

The large displacement analysis of a cantilever
beam (Fig. 7) is performed. The length of the beam
and the material properties are: L=10,

E=2.0x10° and G=1.0x10°. This is a well-
known benchmark problem for two-dimensional
large displacement analysis, and the analytical
solution by means of elliptic integrals is available'®.

Two cross-sections given in Fig. 8 are assumed in
this problem. The numerical results for the two
cross-sections, which are depicted in Fig. 9 as the
load P -vertical displacement v relationship, are
very similar to each other. The analytical solution is
also plotted in this figure. As can be seen there, the
present numerical results are in excellent agreement
with the analytical solution all the way to the end of
the computation: the maximum error involved in the
present results is found merely 0.37%.

3.3 Lateral Buckling of Simply Supported I-
Beam
The simply supported I-beam illustrated in Fig. 10
is considered. The conditions are: L=130;
E=93x10%, and G=3.72x10%. In addition
to the vertical load P, a small transverse load of
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(b) Box-section
Fig. 6 Variation of warping displacement

P/2000 is applied to initiate the out-of-plane
displacement.

While the transverse load is always applied at the
centroid of the cross section, three different loading
points are employed for the vertical load P: P is
applied at the centroid of the cross section in Beam
C; at the midpoint of the top flange in Beam T; and
at the midpoint of the bottom flange in Beam B. The
critical loads for the lateral buckling of these beams
have been obtained analytically'.

Due to the symmetry of the problem, only a half
of the beam is analyzed. The load P-transverse
displacement w relationship at the loading point is
given in Fig. 11, in which the critical loads are

indicated by dotted lines and P, is the critical load
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Fig. 7 Cantilever beam under end load
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Fig. 8 Cross sections (end-load problem)
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Fig. 9 Load-displacement relationship
(end-load problem)

of Beam C. In each beam, a sharp increase of the
displacement is clearly observed, as the critical load
is approached.

4. Concluding Remarks

A finite element formulation for the large
displacement analysis of thin-walled beams is
presented. Employing the degeneration approach,
the rotational degrees-of-freedom are excluded from
nodal variables and the formulation becomes simple
and straightforward. Moreover, the concept of
bimoment, which is important in the theory of thin-
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Fig. 10 Simply supported I-beam
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Fig. 11 Load-displacement relationship
(lateral-buckling problem)

walled beams but the physical meaning of which is
not always obvious, needs not be used in the present
formulation.

Three problems were solved. In the linear and the
in-plane problems, the present results are compared
with the analytical solutions and very good
agreement is observed for both I- and box-beams. In
the analysis of the lateral buckling of an I-beam, we
could clearly observe the sharp increase of the
displacement in the vicinity of the respective
buckling load. The validity of the present
formulation is therefore confirmed.
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