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1. INTRODUCTION 
 
     After the occurrence of 1923 Kanto Earthquake (Mw= 
7.9), extensive damaged on bridges were observed due to 
inadequate seismic design restrictions. The lack of lateral 
strength design consideration resulted to a major damaged 
caused by tilting and overturning of the bridge deck1). In 
response to that, the Japan seismic design code was revised, 
and seismic isolators were started to be implemented. 
During seismic ground movement, seismic isolators can 
lengthen the natural period of the structure and dissipate 
seismic energy which helped to reduced the structure’s 
damage2). Few years later, the remarkable 1995 Hashin-
Awaji Earthquake (Mw = 7.1) happened, the structural 
damaged and bridges collapsed were caused by the 
insufficient ductility of columns and failure of bearings. 
Steel bearing damages shown its vulnerability under large 
ground motion, thus elastomeric bearings like high 
damping rubber bearing (HDR) and lead rubber bearings 
(LRB) were extensively used afterwards. After the 2011 
Tohoku Earthquake, there were few recorded rubber 
bearings failures and majority of the seismic isolated 
bridges continued their main function3).  
     Therefore, using rubber bearing as seismic isolator 
between the connection of the sub-structure and super-
structure was an effective way to reduced seismic damage. 
The Design Specification for Highway Bridges was 
published last 20123). It was proposed that the seismic 
performance of structural members with seismic isolators 
should be checked thoroughly using reliable numerical 
analysis method.  
     In current design practice, the nonlinear parameters of 
these seismic isolators must be identified. Nonlinearity of 

those bearings were covered by different factors like 
temperature, loading rate, strain rate, deterioration, for 
rubber bearings. Therefore, there were several proposed 
numerical models that covers some of these factors aside 
from the mostly used nonlinear models like Bilinear, 
Ramberg-Osgood, and Bouc-Wen model. First, an 
improved Rheology model that includes the rate-
dependence of the high damping rubber bearings under 
dynamic cyclic loading test was proposed4). Another study 
incorporated the bi-directional behaviour of high damping 
rubber bearing and proposed the modified Park-Wen 
model which includes pinching and stiffness degradation5).  
     In all of the mentioned numerical models, the initial 
procedure during seismic design was identifying the 
nonlinear parameters from experimental loading test, 
however it needs an assumption of initial nonlinear 
parameters input value and optimum algorithm methods 
for curve fitting was commonly used. A proposed 
optimization method called KH method was established, 
which makes the parameter identification curve fitting 
faster and reliable6). However, the initial input value 
assumption doesn’t converged all the time and could be 
time consuming. Nonlinear parameter identification could 
be also be complicated and difficult for some new proposal 
detailed numerical models or new developed devices with 
high performance and complicated behaviors. 
     In relation to this, based on the current standard, the 
method for checking and designing the seismic response 
of seismic isolators on bridges starts from the assumption 
of seismic isolator’s nonlinear properties and the nonlinear 
parameter ranges were prescribed in the Road and Bridge 
Seismic Control Design Method Draft3),however the 
seismic bearing isolator types were limited. Currently, for 
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new types of seismic isolators with no available guide 
specifications in the code, the accuracy of nonlinear 
parameter identification depends on the engineer’s 
expertise, which could be subjected to bias, and becomes 
a trial-and-error process. Also, using optimum algorithm 
method could cause error depending on the initial 
parameter assumptions which makes it trial and error and 
time consuming. Therefore, this study proposed a method 
that will eliminate the initial value assumption problem by 
developing an ANN model that understand and predict the 
nonlinear parameters of a Super High Damping Rubber 
Bearing (HDR-S) cyclic loading test data under Bilinear 
model.  
 
2. ANN BASED STRUCTURAL ANALYSIS AND 
CONTROL 
 
     Recently, the application of machine learning in 
structural design were rapidly increasing. A study used 
artificial neural network to develop a semi-active 
controlled based neural network of a magnetorheological 
(MR) damper for a based-isolated building. The developed 
model replicated the dynamic behaviour of the MR damper 
which helped to automatically predicted the force needed 
to resist the seismic forces7). Another study used neural 
network to estimate the restoring force of an HDR bearing 
based on seven input parameters: maximum displacement, 
maximum load, displacement turning point, load turning 
point, displacement increment, load increment, and current 
displacement. The trained neural network model 
understand the nonlinear behaviour of the HDR bearing 
and predicted the restoring force without relying to any 
numerical model under dynamic loading, but the HDR 
parameters was fixed and cannot be generally used8). 
Lastly, a developed neural network model was used to 
assess the seismic response analysis of laminated rubber 
bearing supported bridge. It was found that initial stiffness 
and coefficient of friction using Bilinear model were the 
critical key factors of the bearing’s properties under 
seismic evaluation9).  
 
3. PROPOSED METHOD 
 
     This study developed an artificial neural network 
(ANN) model that can predict the parameters of an HDR-
S Cyclic Loading Test data under bilinear model. This 

study used Artificial Neural Network (ANN) for the AI 
model development as shown in Figure-1. 

 
Figure-1 Proposed Methodology 

 
     Neural Network had the capability to learn the 
relationship between the input and output data with the 
proper setting of layers and hyperparameters. The 
methodology of this study were as follows: 
(1) The shear stress from an an actual Super High Damping 
Rubber (HDR-S) bearing loading test result was 
normalized and numerically simulated using the emperical 
formula of bilinear model, each parameter range was 
decided based  from the standard released by the Road and 
Bridge Seismic Control Design Method Draft.  
(2) The AI model was trained using the shear strain data 
and the numerically simulated shear stress data using 
artificial neural network with specified hyperparameters, 
activation functions, and customized layers.  
(3) After that, the trained AI model has been able to predict 
the nonlinear parameter of an HDR-S bearing loading test. 
The outputs were initial stiffness, stiffness ratio, and 
yielding force.  
(4) It was later compared using optimum algorithm (KH 
Method) for parameter prediction and a combination of AI 
model and refining the KH method which eliminated the 
initial value assumption problem.The enhanced AI design 
process can be considered to make the seismic deisgn more 
efficient.  
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4. BILINEAR MODEL 
 
     This is the most used nonlinear model to interpret the 
seismic isolator’s hysteretic behavior due to its parameters 
simplicity. This model coverered change in stiffness from 
linear to plastic state which undergoes to yielding and 
unloading state as shown in Figure-2. 

 
Figure-2 Bilinear Model 

     The elastic stage consist of the force, Fe, ranges from 
the initial displacement at zero, upto the yielding 
displacement dy and - dy, with the initial stiffness k1. The 
current displacement represents d.  
 

𝐹𝑒 = 𝑘!𝑑                                 (1) 
 

     After that, yielding happens wherein the initial stiffness 
changes to secondary stiffness, k2 during the plastic status. 
𝛼 was the ratio of the secondary stiffness and the initial 
stiffness as shown in equation 2. 

𝛼 =	 "!
""

                                                         (2) 

      The restoring force, F was expressed as a combination 
of elastic and inelastic state as shown in equation 3.  

𝐹 = (1 − 𝛼)𝑘!𝑑                                             (3) 
 
      The yielding and unloading state was bounded by the 
condition of the elastic and plastic state changes, in which 
the yielding force qc, had an important role. 
 
5. DATA GENERATION 
 
     The shear strain data came from an actual HDR-S 
loading test result at 23 °C as shown in Figure-4. The data 
was originally in terms of force and displacement but was 
converted to shear stress and shear strain to make it 
universal without the effect of the bearing’s cross section. 
The data consist of five different amplitudes ranging from 

50%, 100%, 150%, 200%, and 250%, and each amplitude 
had five loops. 

 
Figure-3 Loops Separation by Shear Strain 

     The loops were separated and normalized to 60 
datapoints each as shown in Figure-3, to fit in the training 
and testing input data for ANN training. The normalization 
method used was nearest neighbor and the sample adjusted 
data in loop 1 was shown in Figure-5. 60 data points was 
the optimum size that was decided through trial and error 
training of the neural network model. The input data size 
was 120 due to the combination of 60 shear strain and 
numerically simulated 60 shear stress. The numerically 
simulated shear stress was based from the emperical 
formula of bilinear model and the range of each parameter 
was based from the Road and Bridge Seismic Control 
Design Method Draft. The numerical simulation at each 
amplitude produced an iteration of 1500 sets which makes 
it a total of 7500 dataset. It was separated to training and 
testing. 5000 was set to training and 2500 for testing. The 
data size and data values had a high impact on the training 
process and normalization should be done. The platform 
used for data generation was python and run at google 
colaboratory. 

 

Figure-4 HDR-S Bearing Data at 23 °C 

 
Figure-5 Adjusted Stress and Strain Data 
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6. TRAINING OF NEURAL NETWORK 
 
     The  neural network model was under supervised 
learning therefore the hidden layers and hyperparameters 
needs to be carefully specified and will highly affect the 
training result. The developed AI model consist of a two-
layer neural network with input size of 120, the hidden 
layer was 5000, and an output data of 3 was shown in 
Figure-6. The input size was combined with 60 data points 
of shear stress and 60 data points of shear strain thus the 
input layer is 120. The output layer, with size of 3, was 
representing the parameters of Bilinear model: initial 
stiffness, stiffness ratio, and yielding force.  
 

 
Figure-6 Neural Network Model 

 
     Since the ANN model focused on regression problem, 
the activation function used was rectified linear activation 
function (ReLU) as shown in Figure-7, was selected as the 
activation functions for both hidden layer and output layer, 
which output’s a value from zero to any positive number. 
Therefore, the output values does not have any limitations 
on the positive values compare to other hyperparameters 
that was commonly used for classification that limits the 
values from zero to one.  

 
Figure-7 ReLU Activation Function 

 
     Root Mean Square Propagation (RMSProp) was used 
an optimization technique to eliminate the vanishing 
gradient problem. The initial learning rate was set to 0.001. 
It uses an adaptive learning rate which normalize and 
balance the momentum step size depending on the value of 
loss to avoid skipping the optimum gradient. This 
optimizer was highly recommended for development of 
neural network that involves regression problem.    

     The neural network continously updates each 
parameter weights all throughtout the training process 
until the loss approached to zero. The optimum loss 
depends on the human’s tolerance and can be visualized 
during the prediction process.  The loss function for 
training was mean square error (MSE) and mean average 
error (MAE) for the validation training were shown in 
equation 4 and equation 5.  
 

MSE = !
#
/ (𝑦𝑖 − 𝑦𝑝)$#

%&'          (4) 

MAE = !
#
∑ |𝑦𝑖 − 𝑦𝑝|#
%&'             (5) 

     where in n is the total number of data, yi is the actual 
value, and yp is the predicted value. 
 
7. AI MODEL EVALUATION  
 
     The validation was split to 90% training and 10% 
validation so that even if the model is on the training stage, 
it was already validated. The total training input was 120 
by 4500  and  the validation consist of 120 by 500 dataset. 
The testing data was 120 by 2500, and was tested 
separately after the training.  

 
Figure-8 Validation Loss and Error 

 
     After 2500 epochs, the testing data mean average error 
was 0.08 and the mean absolute error was 0.26. This 
indicates a good AI model because both the losses was 
close to zero. The visualization of the loss and epochs was 
shown in Figure-8.  
 
8. HDR-S NONLINEAR PARAMETERS 
PREDICTION 
 
     After the development of the AI model, an actual HDR-
S bearing cyclic loading data was used to test the model. 
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The first loop at each amplitude was predicted which was 
shown from Figure-9 to Figure-13. 
 

 
Figure-9 Bilinear Paratemer AI Prediction of Loading Test Data 

at 23 °C,50% Amplitude, Loop 1 

 
Figure-10 Bilinear Paratemer AI Prediction of Loading Test 

Data at 23 °C,100% Amplitude, Loop 1 

 
Figure-11 Bilinear Paratemer AI Prediction of Loading Test 

Data at 23 °C,150% Amplitude, Loop 1 

 
Figure-12 Bilinear Paratemer AI Prediction of Loading Test 

Data at 23 °C, 200% Amplitude, Loop 1 

 
Figure-13 Bilinear Paratemer AI Prediction of Loading Test 

Data at 23 °C, 250% Amplitude, Loop 1 

 

     The predicted HDRS nonlinear parameter values was 
shown in table 1. The visualization of each parameter with 
respect to the amplitude was shown in Figure-14 to Figure-
16. The yielding force prediction increases as the 
amplitude increases.  After the 100% amplitude, the 
stiddness ratio decreases while the initial stiffness 
increases. 

 
Figure-14 Yielding Force AI Prediction at Different Amplitude 

 
Figure-15 Stiffness Ratio AI Prediction at Different Amplitude 

 
Figure-16 Initial Stiffness AI Prediction at Different Amplitude 
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To determine the correlation of the HDR-S bearing data to 
the predicted  nonlinear parameters by AI model and KH 
Method, the contribution rate R, was obtained.  
 

𝑅$ =	 (#
")	(#$"

(#"
  (6) 

     Where in se was the summation of the squared 
difference of the experimental data and the average of the 
experimental data, while sea , was the summation of the 
squared difference of the experimental data and analysis 
data result. Figure-17 shows the HDR-S cyclic loading test 
data and the AI model nonlinear parameter prediction at 
150% amplitude which has the highest contribution rate of 
0.944, compare to other amplitude prediction. The 
parameter prediction using AI model for all the amplitudes 
was shown in Table-1. After that, to solve the initial 
problem assumption using KH method, the nonlinear 
parameter from AI model became the initial input for the 
KH method as shown in Figure-18. The contribution rate 
increased to 2%, however, the step size increased as shown 
in Table-2. On the contrary, using KH Method alone, 
requires an initial parameter value assumption which was 
produced randomly but bounded with the range based from 
the standard. The contribution rate was 0.966, but the step 
size range from 457- 955 as shown in Table-3. The step 
size was highly dependent on the initial random parameter 
assumption which makes this method a trial and error 
process and time consuming. 
 

 
Figure-17 HDR-S Parameter Prediction using the AI Model 

 
Table-1 AI Model HDR-S Parameter Prediction 

Amplitude 
% 

AI MODEL 
𝛼 k1 qc R Step/s 

50 0.100 7.508 0.277 0.920 1 
100 0.114 4.858 0.389 0.932 1 
150 0.090 5.834 0.508 0.941 1 
200 0.071 6.589 0.689 0.935 1 
250 0.057 7.341 0.811 0.909 1 

 

Figure-18 HDR-S Parameter Prediction using  

AI and KH Method 
 

Table-2 AI Model with KH Method Parameter  
Amplitude 

% 
AI MODEL with KH Method 

𝛼 k1 qc R Step/s 
50 0.086 8.157 0.592 0.966 156 
100 0.097 7.188 0.594 0.966 139 
150 0.097 7.188 0.594 0.966 92 
200 0.097 7.188 0.594 0.966 97 
250 0.085 8.223 0.592 0.966 102 

 
Table-3 KH Method Parameter Optimization 

Amplitude 
% 

KH Method 
𝛼 k1 qc R Step/s 

50 0.073 9.655 0.589 0.966 955 
100 0.073 9.653 0.589 0.966 881 
150 0.073 9.651 0.589 0.966 770 
200 0.073 9.702 0.589 0.966 484 
250 0.073 9.671 0.589 0.966 457 

 
9. CONCLUSION 
 
     The study proposed a method to predict parameter for 
nonlinear hysteresis model from raw experimental data 
based on ANN that can predict the nonlinear parameters of 
a Bilinear Model. Setting up of the initial nonlinear 
parameters of the seismic isolator was an important part in 
design specially for the newly developed seismic isolators, 
and usually requires a lot of time and a trial and error 
process. This study concludes that: 
(1) The proposed method shows that it eliminated the 
initial assumption value problem of optimum algorithm 
(KH Method) by the development of an AI model which 
directly learned the hysteretic bahaviour of an isolator 
under Bilinear Model and predicted the nonlinear 
parameters automatically.  
(2) The AI model showed a significant improvement in the 
HDR-S cyclic loading data nonlinar parameter prediction 
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with a contribution rate of 0.94 which was close to KH 
method which had a contribution rate of 0.97.  
(3) The AI prediction method was fast because it only 
required one step compared to KH Method.  
     The use of machine learning enhanced seismic design 
can be considered to make the seismic design more 
efficient and objective. 
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