橋梁・高架橋群における下部工単体の 固有振動数同定法の解析的検証

和田 一範1・坂井 公俊2

 ¹正会員 修士(工) 鉄道総合技術研究所 鉄道地震工学研究センター 地震応答制御 (〒185-8540 東京都国分寺市光町2-8-38)
²正会員 博士(工) 鉄道総合技術研究所 鉄道地震工学研究センター 地震応答制御 (〒185-8540 東京都国分寺市光町2-8-38)

1. はじめに

道路や鉄道の橋梁・高架橋は、上部工(桁)や支 承を介して複数の下部工(躯体~基礎)が連続した 群を構成しているため、振動計測から得られる固有 振動数などの振動特性は、隣接構造物の振動の影響 を含んだ構造全体系としての値である.これは、道 路橋を対象とした橋脚単体と構造全体系の実測比較 ¹⁾や鉄道構造物群の連成に関する実測および解析的 検討²⁾などの研究事例を見ても明らかである.

振動計測で得られる構造全体系の振動特性は,構造物の健全性判断に活用されてきた.特に鉄道分野では,橋梁・高架橋の着目構造に衝撃加振を行い,得られる波形から構造全体系の固有振動数を評価して,下部工単体の健全性を評価する衝撃振動試験^{3),4)}が長年に亘り活用されている.下部工の損傷や安定性の低下は,構造全体系の固有振動数の低下を招くため,本手法は有効な非破壊検査法の1つといえる.その一方で,隣接する構造物の違いによっては,構造物間の連成の影響が支配的となり,局所的な下部工の損傷が構造全体系の固有振動数の変化に与える影響が限定的となり,下部工単体の特性を明瞭に評価できない場合も考えられる.そのため,下部工単体の固有振動数を直接評価できるようになれば,より正確に健全性を判断できる可能性がある.

上記背景を踏まえ,著者らは上部工,支承を介し て複数の上部工・下部工が連続した橋梁・高架橋群 をばねマスモデルで表現し(図-1),構造全体系の 固有振動数や固有モードから下部工単体の剛性に直 接関係する下部工単体の固有振動数を同定する手法 を提案している⁵⁾.既往研究⁵⁾では図-1(b)に示すば

ねマスモデルを対象に提案手法の妥当性検証を行っ ているが、橋軸方向に多数の自由度を持つ実際の上 部工やラーメン高架橋の挙動を想定した手法の検証 は十分には行われていない.また,提案手法で必要 な構造全体系の固有振動数や固有モードといったモ ーダルパラメータは,橋梁・高架橋群の上部工,下 部工の複数点にセンサを配置した地震観測や微動観 測等を行い,得られた応答波形に対してFDD

(Frequency Domain Decomposition)法⁶等を適用することで算定できると考えられるが、そのような実測および実構造を想定した検討は行われていない.

そこで、本稿では実測および実構造を想定した条件下における提案手法の妥当性を解析的に検証する. 具体的には、橋梁・高架橋群の挙動を精緻に表現可能な3次元骨組モデルを構築し、そのモデルに微動を想定したホワイトノイズ入力の線形動的解析を実施した.そこで得られる応答波形にFDD法のを適用 してモーダルパラメータを評価したうえで,提案手 法により下部工単体の固有振動数の同定を試みた.

2. 下部工単体の固有振動数同定法の概要

本章では,文献 5)で提案した固有振動数同定法の 概要を述べる.提案手法は下記前提条件のもと理論 展開を行っている.

- ・橋梁・高架橋群は弾性挙動をする
- ・剛性の振動数依存性は考慮しない
- 減衰は Rayleigh 減衰等の比例減衰型の特性とする

図-1(b)に示す下部工 n 基のばねマスモデルの減 衰自由振動問題を考える.この問題の運動方程式は 下記となる.

$$\boldsymbol{M}\boldsymbol{\ddot{X}}(t) + \boldsymbol{C}\boldsymbol{\dot{X}}(t) + \boldsymbol{K}\boldsymbol{X}(t) = \boldsymbol{0}$$
(1)

ここで, *M* は質量行列, *C* は減衰行列, *K* は剛性行 列を表し, *X*(*t*)は各質点の変位ベクトルである.上 式の解として調和振動解を仮定すると, *X*(*t*)は下記 の形で表せる.

$$\boldsymbol{X}(t) = \{ \boldsymbol{r}_1 \quad \boldsymbol{r}_2 \quad \cdots \quad \boldsymbol{r}_{2n+1} \}^T e^{\lambda t \pm j \phi}, \lambda = -\sigma \pm j \omega_D(2) \}$$

ここで j は虚数単位である.また、 λ は固有値であ り、構造全体系の減衰固有円振動数 ω_D とモード減 衰定数 σ で表される.また、 $r_1 \sim r_{2n+1}$ は各変位振幅、 ϕ は位相角である.式(1)に式(2)を代入して、整理す ると下式が得られる.

$$\sum_{i=1}^{n} (\lambda C_i + \Omega_i^2) M_i R_i = -\lambda^2 \sum_{i=1}^{2n+1} M_i R_i$$
(3)

ここで,1を着目する下部工の添え字として

$$C_i = \frac{c_i}{m_i}, \Omega_i^2 = \frac{k_i}{m_i}, M_i = \frac{m_i}{m_l}, R_i = \frac{r_i}{r_l}$$
 (4)

と表現している.なお、 Ω_i は下部工 i単体の固有円振動数に相当する.式(3)について式(2)で表される λ を代入すると複素数の方程式が得られるが、その方程式が成立するための条件である実部=虚部=0の条件を適用すると j 次モードに関して次式が成り立つ.

$$\sum_{i=1}^{n} \Omega_i^2 M_i R_{ji} = \omega_j^2 \sum_{i=1}^{2n+1} M_i R_{ji}$$
(5)

なお,上式の整理においては j 次の減衰固有円振動 数 ω_{Dj} およびモード減衰定数 σ_j に関して,非減衰固 有円振動数 ω_j と減衰定数 h_j を用いた次式の変換を適 用している.

$$\sigma_j = h_j \omega_j, \quad \omega_{Dj} = \omega_j \sqrt{1 - h_j^2}$$
(6)

式(5)を見ると、未知数は $\Omega_i(i=1,2,...,n)$ のn個であり、 質量比 M_i は設計図書等から算定することができる. そのため、n組の非減衰固有円振動数 ω_i と固有モー ド R_{ji} を何らかの方法で評価できれば下部工i単体の 固有円振動数 Ω_i を求めることができる.なお、通常 想定される橋梁・高架橋の減衰定数(数%)であれ ば、非減衰固有円振動数は減衰固有円振動数に置き 換えても同定精度への影響が小さいことを別途確認 している.

3. 橋梁・高架橋群モデルへの手法の適用

(1) 検討概要

本章では実構造での微動観測を想定した条件下に おける提案手法の妥当性を解析的に検証する.検証 に用いる橋梁・高架橋群の3次元骨組モデルを図-2 に示す.直接基礎形式のラーメン高架橋3連(R1~ R3)と橋脚1基(P1),調整桁3連(Ct1~Ct3)から 構成される群を対象とした.柱,梁,橋脚,桁など は全て線形の梁要素でモデル化し,地盤抵抗および 支承部の橋軸方向,橋軸直角方向の抵抗は線形のば ね要素でモデル化した.なお,本モデルの各構造諸 元については,表-1に示す通りである.このモデル について,各下部工単体の固有振動数(式(4)の Q_i を2 π で除したもの)の同定を試みる.

各下部工単体の固有振動数は図-2のモデルの上部 工および支承を除いた個々のモデルを構築し,固有 値解析を実施することで算出した.一例としてラー メン高架橋R1の橋軸方向および橋軸直角方向の1次 モードを図-3に示す.また,各下部工単体の橋軸方 向および橋軸直角方向の固有振動数を表-2に示す. このように算出した下部工単体の固有振動数を提案 手法で同定すべき正解値とみなすこととした.

微動を模擬するために、フーリエ振幅特性が一定 のホワイトノイズ(図-4)を入力した動的解析を実施した.入力方向は、橋軸直角方向または橋軸方向 の2方向とした.また、微動計の設置を想定する箇所(図-2の丸点)の応答加速度波形を評価に用いた. 微動計は各下部工天端に設置して、同時観測を行う 必要がある.特にラーメン高架橋や調整桁について は、橋軸方向に応答が変化するため、起終点端部に 微動計を設置する必要があると考えられるため、そ の方針に沿って評価点を設定した.

得られた応答加速度波形について,FDD法⁶を適 用することで,構造全体系の固有振動数および固有

表−1 構造物諸意	元一覧
部位	寸法, 剛性
ラーメン柱(L*C)	0.9m×0.9m
上層縦梁(幅*厚さ)	0.8m×1.3m
上層横梁(幅*厚さ)	1.0m×1.4m
地中縦梁(幅*厚さ)	0.6m×1.4m
地中横梁(幅*厚さ)	3.0m×1.4m
調整桁(幅*厚さ)	1.4m×1.0m
橋脚柱(L*C*H)	1.9m×4.5m×7.0m
橋脚梁(L*C*H)	1.9m×9.2m×2.2m
橋脚フーチング(L*C*H)	6.5m×8.0m×1.9m
固定支承剛性	1.0×10 ⁸ kN/m
可動支承剛性	6.1×10 ³ kN/m

図-2 実測を想定した骨組モデルでの解析

表-2 各下部工単体の固有振動数

構造物	モード	固有振動数
R1	橋軸方向1次	1.99Hz
	橋軸直角方向1次	1.91Hz
R2	橋軸方向1次	2.29Hz
	橋軸直角方向1次	2.22Hz
R3	橋軸方向1次	1.96Hz
	橋軸直角方向1次	1.89Hz
P1	橋軸方向1次	4.82Hz
	橋軸直角方向1次	6.46Hz

表-3 各構造の重量一覧

構造物 重量 R1 9287kN R2 6875kN R3 9287kN $10^{\overline{0}}$ P1 1382kN 10¹ 時間(s) 振動数(Hz) 1666kN Ct1 (a) 時刻歷波形 (b) フーリエ振幅 Ct2 2002kN 2125kN 図-4 入力波(ホワイトノイズ)の特性 Ct3

モードといったモーダルパラメータを評価するとと もに、それらを用いて式(5)より下部工単体の固有振 動数を同定した.なお、本モデルは下部工が4基あ るため、式(5)より必要なモーダルパラメータは4組 である.また、式(5)では質量比の情報が必要となる が、それは表-3に整理した各構造の重量から算定し た.

動的解析結果の例として,橋軸直角方向にホワイ トノイズを入力した場合の各ラーメン高架橋中間地 点の応答加速度波形および加速度の応答倍率(応答 波形のフーリエ振幅/入力波のフーリエ振幅)を図-5に示す.本図を見ると,表-2で示された下部工単 体の固有振動数に対応した振動数帯では明瞭な変化 は見られず,応答波形だけを分析しても下部工単体 の固有振動数の評価は難しいことがわかる.このよ うな問題設定に対して,提案手法を用いた検証を実 施する.

(2) FDD法⁶⁾を用いたモーダルパラメータの評価

FDD法⁶は評価対象の構造物に関する多点の応答 波形のパワースペクトル行列を特異値分解すること で,固有振動数および固有モードを評価する方法で ある.ここではその手順を簡単に説明する.

n箇所の応答波形の時刻歴データy_i(t)(*i*=1,2,...n)を 取得し,それらを次式で示すベクトルで表示する.

 $y(t) = [y_1(t) \quad y_2(t) \quad \cdots \quad y_n(t)]^T$ (7) 上式をフーリエ変換し、以下のベクトルを各円振動 数 ω_i について求める.

 $y(j\omega_i) = [y_1(j\omega_i) y_2(j\omega_i) \cdots y_n(j\omega_i)]^T$ (8) ここで *j*は虚数単位である.式(8)を基に,以下に示 すパワースペクトル行列*G*(*j* ω_i)を作成する.

$$\boldsymbol{G}(j\omega_i) = \boldsymbol{y}(j\omega_i)\bar{\boldsymbol{y}}^T(j\omega_i)$$
(9)

パワースペクトル行列を特異値分解し、次式を得る.

 $\boldsymbol{G}(j\omega_i) = \boldsymbol{U}_i \boldsymbol{\Sigma}_i \boldsymbol{V}_i^T \tag{10}$

ここで、Σiは対角行列となるが、その成分が最大と なる箇所を1次特異値と呼ぶ.この1次特異値を振動 数ごとに整理したときに、卓越する振動数が固有振 動数に対応する.また、卓越振動数における式(10) の左特異値行列Uiの1次特異値に対応する列ベクト ルが固有モードベクトルに対応する.

橋軸方向または橋軸直角方向へのホワイトノイズ 入力による動的解析で得られた応答加速度波形に FDD法を適用することにより算定された1次特異値 の振動数分布を図-6に示す.本図より,各方向につ いていくつかピークが確認できる.これらの卓越振 動数を縦軸に取り,別途固有値解析で算定した構造 全体系の固有振動数を横軸に取ると図-7に示すよう にFDD法⁶⁰で算定された振動数が固有振動数相当と なっていることが確認できる.

また,各卓越振動数において評価された固有モードの例として,橋軸方向および橋軸直角方向の1,2

次モードを図-8に示す. 図中には固有値解析により 得られた固有モード形状も併せて示している. 本図 より,鉛直軸周りの回転の影響があり,固有値解析 結果と多少の乖離があるが,概ねFDD法^のでも固有 モード形状を評価できていることがわかる.

以上より、微動観測を想定した動的解析結果の処 理からモーダルパラメータが概ね評価できた。

(3) 提案手法による下部工単体の固有振動数同定

FDD法⁰で推定された固有振動数および固有モードから提案手法の式(5)を用いて各下部工単体の固有振動数を同定した結果を図-9および表-4に示す.図中では、個々の下部工の固有値解析を実行した結果を正解値として比較している.本図表より、各下部工単体の橋軸方向および橋軸直角方向の固有振動数が10~15%程度の誤差で推定できていることがわかる.誤差の要因としては、図-8で述べた固有モードの推定誤差の影響や鉛直軸回りの回転挙動を図-1のモデルでは無視している影響と考えられる.

4. 提案手法を用いた健全度評価の手順

最後に提案手法を用いたて健全度評価手順を示す.

- a)下部工単体の固有振動数の初期値Foを把握する. 新設構造については,建設中の桁が載っていない状態で常時微動観測や衝撃振動試験^{3),4}などの振動計測を実施すれば最も正確な値が得られる.既設構造物については,3章で述べたように複数箇所で振動計測を実施し,構造全体系の固有振動数や固有モードを算定して,式(5)から同定する.
- b) 地震や河川の増水等により基礎の健全度低下が

図-9 下部工単体の固有振動数同定結果

(a) 橋軸方向				
構造	正解值	同定値	同定誤差	
R1	1.99Hz	2.05Hz	2.9%	
R2	2.29Hz	1.92Hz	16.2%	
R3	1.96 Hz	1.89Hz	3.7%	
P1	4.82 Hz	5.34Hz	10.8%	
(b) 橋軸直角方向				
構造	正解值	同定値	同定誤差	
R1	1.91Hz	1.99Hz	4.0%	
R2	2.22Hz	2.12Hz	4.7%	
R3	1.89Hz	1.60Hz	15.2%	
P1	6.46Hz	6.05Hz	6.3%	

表-4 下部工単体の固有振動数同定結果の一覧

疑われるとき,再度振動計測を実施し,式(5)か ら下部工単体の固有振動数Fを同定する.

c) F₀に比べてFに顕著な低下が見られた場合,健
全度低下と判定する.

上述したような固有振動数を用いた健全度評価と しては、衝撃振動試験^{3),4)}が確立されている.ただ し、衝撃振動試験^{3),4)}は、打撃方法の工夫などで下 部工単体の振動を励起できる可能性もあるが、1章 でも述べたように隣接構造の条件によっては明瞭な 評価が困難な場合がある.また、30kg程度の重錘の 運搬、設置、打撃などの作業手間がある.

一方で提案手法では、まずは3章で述べたように 複数の構造物に対して微動観測を行う. 微動計は可 搬性に優れた小型な機器であるため、微動観測は衝 撃振動試験に比べると作業性はよい. ここで,着目 構造物と自然地盤の微動観測で構造全体系の固有振 動数を評価する試みは多数の実績がある^{例えば7)}.提 案手法は,着目構造物の他に隣接構造物も観測する 必要があり、従来の微動観測⁷⁾よりも観測点数が増 えるものの、隣接構造の影響を除いた下部工単体の 特性を理論的に直接評価できるため、局所的な健全 性低下にも適用できる可能性がある. なお、上述の ように提案手法は10~15%程度の誤差が生じる可能 性がある.ただし、従来の健全度評価手法では、実 測で得られる固有振動数が標準的な固有振動数より 3割以上小さい場合を最も健全度が低下した状態と して判定している³⁾. そのため, 上記誤差の影響を 含めても,提案手法が適用できる可能性は十分ある と考えられる.

5. まとめ

本稿では、著者らが提案している構造全体系の固

有振動数や固有モードのモーダルパラメータから下 部工単体の固有振動数を同定する手法⁵について, 実測および実構造を想定した条件下において妥当性 を解析的に検証した.具体的には,橋梁・高架橋群 の3次元骨組モデルに微動を想定したホワイトノイ ズを入力した線形動的解析を実施し,そこで得られ る応答加速度波形にFDD法⁶を適用してモーダルパ ラメータを評価したうえで,提案手法により下部工 単体の固有振動数の同定を試みた.得られた知見を 下記に示す.

- ・3次元骨組モデルの動的解析結果にFDD法を適用して評価される固有振動数や固有モードのモーダルパラメータは、固有値解析で評価される正解値を概ね再現できる。
- ・評価されたモーダルパラメータを基に,提案手 法で下部工単体の固有振動数を同定した結果, 正解値に対して10~15%程度の誤差で同定でき ることがわかった.

今後は,実測データを分析することで,提案手法の適用性をさらに検証していく予定である.

参考文献

- 中島章典、中野喜代美、中村晋:常時微動に基づく 独立橋脚および橋梁完成系の振動特性の把握、構造 工学論文集 Vol.56A, pp.305-315, 2010.
- 徳永宗正,曽我部正道,谷村幸裕,小野潔:常時微 動測定に基づく鉄道高架橋の等価固有周期の推定手 法,土木学会論文集A1(構造・地震工学), Vol.71, No.1, pp.72-86, 2015.
- 西村昭彦,棚村史郎:既設橋梁橋脚の健全度判定法 に関する研究,鉄道総研報告 Vol.3, No.8, pp.118-127, 1989.
- 西村昭彦:ラーメン高架橋の健全度評価法の研究, 鉄道総研報告 Vol.4, No.9, pp.14-21, 1990.
- 5) 和田一範,坂井公俊:橋梁・高架橋群における下部 工単体の固有振動数同定法の提案,土木学会第24回 応用力学シンポジウム講演概要集,S01C-02, 2021.
- Brincker, R., Zhang, L. and Anderson, P. : Modal Identification from Ambient Response Using Frequency Domain Decomposition, *Proceedings of 18th International Modal Analysis Conference*, San Antonio, Texas, pp.625-630, 2000.
- 7) 和田一範,坂井公俊,室野剛隆:実測に基づく鉄道 高架橋の減衰定数の特性把握と低減衰箇所の簡易抽 出法,土木学会論文集A1(構造・地震工学), Vol.74, No.1, pp.1-12, 2018.