落橋防止構造に適用されるゴム緩衝材に 対する重錘落下実験

菅原 達也¹·大住 道生²·余野 智哉³

¹正会員 (国研) 土木研究所 構造物メンテナンス研究センター 交流研究員 (〒305-8516 茨城県つくば市南原1-6)

²正会員 博(工) (国研)土木研究所 構造物メンテナンス研究センター 上席研究員(同上)

3正会員 (国研)土木研究所 構造物メンテナンス研究センター 元交流研究員(同上)

(現:株式会社ビー・ビー・エム)

1. はじめに

1995年兵庫県南部地震では,落橋防止構造におい て衝撃的な力の作用が原因と推測される被害が多く 見られた.これにより,平成7年に出版された「兵 庫県南部地震により被災した道路橋の復旧に係る仕 様」の準用に関する参考資料(案)¹⁾(以下,「参考資 料」と呼称)を参考に設計された緩衝材が,一般に 落橋防止構造に用いられている.また,参考資料で は材料にゴム材を使用していたことから,ゴム製の 緩衝材が広く使用されることとなった.

一方,道路橋示方書²⁾では構造設計上の配慮事項 として,落橋防止構造の耐衝撃性を高める構造とす るため,緩衝材の使用が要求されているが,使用材 料や断面積,厚さ等の具体的な基準が存在しない. しかしながら,緩衝材は落橋防止構造を構成する一 つであると考えられることから,地震による衝撃的 な力を緩和したうえで,規定された水平力に対して 弾性域に留まるようにする必要がある.

そこで本研究では、参考資料を参考に緩衝材を製作し、供試体に対して重錘の落下実験を行うことで、 一般に緩衝材として使用されることの多いゴム板の 限界状態や緩衝性能について検討した.

2. 実験概要

(1) 供試体諸元

参考資料を参考に製作した実大供試体,および, 縮小供試体の諸元を表-1に示す.実大供試体は実橋 を想定して設定した平面形状とした.縮小供試体は, 厚さのみを変更した3種類の形状率を設定した.形 状率は,載荷面積を自由表面積で除して算定する (図-1).

参考資料では、緩衝材の材料としてクロロプレン 系やネオプレン系の合成ゴム、および天然ゴム等が 例示されているが、一般に広く使用されているクロ ロプレンゴムを用いた.緩衝材の厚さとして50mm 程度以上の確保とされていることから、50mmを標 準とした.また、緩衝材の硬度はA55°±5°程度、平 面積は許容支圧応力度12MPaを目安と示されている ことから、これに従った.

表-1 供試体諸元

	材質	硬度 (°)	平面形状 (mm)	厚さ (mm)	形状率
実大 供試体 A	CR	A55±5	200 × 200	50. 0	1.0
縮小 供試体 B	CR	A55±5	50 × 50	50. 0	4. 0
縮小 供試体 C	CR	A55±5	50 × 50	25. 0	2. 0
縮小 供試体 D	CR	A55±5	50 × 50	12. 5	1.0

(2) 試験機

重錘落下実験では、実際に想定される上部構造に 対応する重量の重錘を用いることが困難である.そ こで、重錘の衝突速度を設定し、衝撃により入力さ れる運動エネルギー量を調整することで、支点反力 等に対する相関関係が成立することに期待した.異 なる重量の重錘を落下させるため、使用した2種類 試験機の模式図を図-2に示す.

本実験に対応できる市販の衝撃荷重測定用ロード セルがないため新たに製作した.組立て図の例を写 真-1に示す.ロードセルの材質はS45Cにより製作し, 400kN程度まで測定可能容量を確保するための90kN 級(F特 7kHz),および,2,000kN程度まで測定可能容 量を確保するための490kN級(F特 3.5kHz)ロードセル を1個または4個用いた.

なお、490kN 級ロードセル1個を用いる場合には、 直行する曲げ成分を除去するために,各方向ごとに ひずみゲージのブリッジを組み、最終的な反力は両 者を平均して評価した.ひずみゲージは衝撃荷重載 荷時に剥離が生じないように焼き付け処理を施した. また履歴荷重に対して線形性を保証するために、校 正係数決定のための載荷実験では定格までの載荷と 除荷を3回繰り返すことにより確認を行った.4個の ロードセルを用いる場合,各ロードセルからの出力 波形を合算することにより評価した.反力波形は3 点の矩形移動平均法により平滑化を行った. ロード セルの上下定盤には、荷重を均等化してロードセル に伝え、ロードセルで確実に衝撃反力を検知できる ように50mm厚の鋼板を用いた. 重錘が直接載荷さ れる載荷板は、供試体への載荷時に変形したゴムが はみ出さないように設定した.また、載荷時の四方 には載荷板や供試体の飛び跳ね防止用にガイド棒お よびバネを取り付けた.

図-2 試験機の模式図

写真-1 ロードセル・治具(490kN級×4) また,それぞれの試験機は着脱時等に摩擦によっ て落下速度が抑制される.そこで本実験では各重錘 に対して予備試験を行い,落下高さと衝突時におけ る落下速度との校正曲線を求め,その校正曲線に則 り所定の衝突速度に達する実落下高さから重錘を落 下させることとした.速度実験の結果を図-3に示す.

a) 試験機A(寒地土木研究所)

試験機Aは20kNまたは30kNの重錘を吊り上げて いるワイヤーロープを脱着装置で切り離し供試体に 自由落下させ,供試体に衝撃を与える構造とした. 重錘重量が20 kNあるいは30 kN であることより,落 下高さに拘わらず最大2,000 kN 程度まで測定可能な 様に,定格容量490 kN のロードセルを4 個用いて計 測を行った.実測速度は,摩擦による影響を受ける ため,重錘に貼り付けたマーカーを高速度カメラで 撮影することにより算定した.マーカー関しては端 側で大きな差異がないことより,中央点の値を採用 した.

b) 試験機B(室蘭工業大学)

試験機Bは3kNの重錘を支持架台上にロードセル 固定治具,ロードセル,供試体,鋼板を順に設置し, 鋼製枠に設置されたリニアウェイレールに沿って落 下させ,供試体に衝突荷重を与える構造とした.実 測速度は,校正曲線に従って実験を実施した場合に おいても温度や湿度,あるいは潤滑油の程度による 誤差が生じることから,実験終了後にレーザー光を 用いた速度計測装置を用いて,衝突時における速度 を測定した.

(3) 実験ケース

実施した実験ケースを表-2に示す. 落下高さの設定は, 重錘衝突速度が0.5m/s間隔となる離隔を標準とした.ただし,最小の供試体Dでは荷重の影響が大きくなることを考慮し,低速時は0.25m/s間隔となるケースを追加した.また,試験機Bでは設定の上限となる高さから,衝突速度の最大値を3.2m/sとした.

実験結果および考察

(1) ゴムの限界状態の推定

実験では、ゴム緩衝材の載荷面および側面に、目 視による確認が可能な損傷が確認された.損傷の判 別は**写真-2**の例に従い、変状または裂傷に大別した. 側面変状には、拭き取りによる除去が不可能なレベ ルのこすれ跡のような状態も含めた.**表-3**に供試体 ごとの損傷の判別の結果を示す.

別途実施している静的載荷試験では、本実験で製 作した供試体と同様の製造プロセスで製作されたゴ ム材に支圧応力度100MPaを載荷した場合でも亀裂 や破れといった損傷は見られなかったが、落下実験 においては、支圧応力度100MPa以下のケースにも 少数ながら損傷が確認された.反対に、静的載荷試 験では縮小供試体BやCと同じ諸元のゴム材に対し 100MPaを載荷した場合、圧縮載荷による変形の残 留が確認されたが、落下実験では100MPa程度の反 力が載荷した場合でも形状に残留はなかった.この ため、衝撃荷重による支圧応力度の制限値は単純に 静的載荷試験に基づいて設定することはできないこ とがわかった.

表-3より、衝撃的な力の作用を原因とする裂傷や 変状が生じる手前の状態を限界状態1と仮定すると、 参考資料で示されている制限値である支圧応力度 12MPa程度が載荷したケースでは、全ての供試体で 判別が可能な損傷は生じなかった.したがって、参 考資料を参考にして製作されたゴム緩衝材本体は、

表-2 実験ケース 試験機

供試体- No.	重錘質量 (kN)	設定離隔 (mm)	実離隔 (mm)	実速度 (m/s)	厚さ(mm)	面積 (mm2)
A-1		51.0	76.0	1.06	51.00	40000
A-2	20	114.7	148.0	1.58	50.90	40000
A-3		204.0	238.2	2.03	50.90	40000
A-4		318.6	344.0	2.51	50.90	40000
A-5		458.7	465.2	2.93	50.80	40000
A-6		624.6	632.0	3.45	50.80	40000
A-7		51.0	87.0	0.99	51.23	39975
A-8		114.7	150.2	1.49	50.94	40118
A-9		204.0	240.7	1.99	50.76	40113
A-10	30	318.6	359.0	2.51	50.91	40090
A-11		458.7	505.1	3.00	50.98	40103
A-12	1	624.6	679.0	3.46	50.98	40070
A-13	1	815.8	881.0	4.03	50.98	40102
A-14	20	815.8	821.0	3.88	50.79	40171
B-1		204.0	237.0	1.97	51.26	2544
B-2	1	204.0	240.0	2.01	51.02	2547
B-3	1	204.0	240.0	2.01	51.30	2576
B-4	1	51.0	72.0	1.02	51.00	2568
B-5		114.7	143.0	1.52	51.01	2575
B-6	3	318.7	360.0	2.45	51.25	2565
B-7		521.9	586.0	3.19	50.93	2570
B-8		51.0	72.0	1.01	50.20	2605
B-9		114.7	143.0	1.51	50, 25	2598
B-10		204.0	240.0	2.01	50.84	2582
B-11		51.0	87.0	1.07	50, 22	2604
B-12	30	114.7	150.2	1.60	50.09	2576
B-13		51.0	76.0	1.00	50.92	2564
B-14	20	114.7	148.0	1.52	50.16	2599
C-1		204.0	237.0	1.97	24.79	2601
C-2		204.0	237.0	1.98	24.85	2570
C-3		204.0	237.0	1.98	24.48	2545
C-4		51.0	72 0	1.02	24 71	2518
C-5		114 7	143 0	1.53	24.88	2565
C-6	3	51.0	72 0	1 00	24.38	2577
C-7		114 7	143 0	1.53	24 49	2580
C-8		204 0	240.0	2 02	24.39	2577
C-9		318 7	365 0	2.51	24.30	2587
C-10		521.9	586.0	3 23	24.66	2582
C-11		51.0	87.0	1.06	24.00	2607
C-12	30	114 7	150 2	1.48	24.40	2584
C-13		12.7	52 0	0.71	24.45	2632
C-14		51.0	76.0	0.88	24.42	2583
C=15	20	114 7	148.0	1.44	24. 14	2582
D-1		204.0	237 0	1.99	12 00	2600
D-2		204.0	237.0	1.90	12.00	2501
D-3		204.0	237.0	2.00	12.10	2615
D-4		114 7	147 0	1 54	12.40	2606
D-5	3	114.7	145.0	1.54	12.27	2580
D-6		114.7	143 0	1.52	12.00	2563
D-7		51.0	72 0	1 02	12.40	2563
D-8		51.0	72.0	1.02	12.21	2629
D-9		204 0	237 0	2 00	12.12	2577
D-10		3.2	5.0	0.20	12.00	2612
D-11		12 7	15.0	0.29	12.04	2570
D-12		28 7	30.0	0.33	12.13	2653
D=12		51.0	72 0	1.01	12.27	2000
D-13		114 7	142.0	1.01	12.00	2577
D-14		210 7	265 0	2 51	12.22	2570
D-15		204 0	303.0	2.01	12.30	20/0
D-10		Z04.0	237.0	2.00	12.09	2002
D-17	30	114 7	150.0	1.11	12.20	2009
D-18		114.7	150.2	1.58	12.28	2594
D-19		12.7	52.0	0.62	12.16	25/5
D-20		204.0	241.0	2.02	12.2/	2581
D-21		12.7	26.0	0.30	12.06	2593
D-25	20	51.0	/6.0	0.96	11.97	2582
D-24		51.0	/6.0	1.00	12.13	2582
D-22		51.0	/6.0	1.00	12.14	2590
D-23		114.7	148.0	1.54	12.48	2579
D-26		204.0	238.2	2.03	12.07	2548

※着色部は重錘を直接供試体に落下させたケース

(a) 裂傷有り

(b) 変状有り写真-2 供試体の損傷の有無

- 36 -

(c) 目視での判別不可

設計で規定された水平力が載荷した場合でも、限界 状態1以下の範囲に留まると考えられる.

供試体ごとの,損傷が最初に確認された支圧応力 度の範囲を比較すると,実大供試体が22.4MPa~ 25.0MPa,縮小供試体Bが140.5MPa~220.9MPa,縮 小供試体Cが138.2MPa~163.4MPa,縮小供試体Dが 113.4MPa~134.8MPaであった.実大供試体に損傷 が見られた支圧応力度が極端に低くなった要因とし て,縮小供試体と比べ外形が大きいため,ゴム側面 の表面歪み量が大きくなることで,損傷に至りやす いものと考えられる.

また,縮小供試体Dで裂傷が確認された支圧応力 度179.7MPa~189.5MPaの範囲において,縮小供試 体Bおよび縮小供試体Cでは裂傷は見られず,変状 に留まっていると判断できることから,供試体の形 状率が高いほど,損傷が生じるまでの支圧応力度も 増加すると考えられる.

(2) 最大反力に対する形状率の影響

図-4に支点反力と経過時間の関係を示す.横軸は 重錘が供試体に接触した時点からの経過時間,縦軸 はロードセルで計測された平滑化を行った後の支点 反力を示す.図-4(a)のグラフより,重量の異なる 重錘を衝突速度を調整して供試体に落下させた場合, 衝突速度が同じ時,近似した勾配を描いた.衝突速 度が同じであれば,重量の低い重錘を落下させたケ ースが先に最大反力を迎えた.また,20kN重錘と 30kN重錘を落下させ,最大反力が同程度となったケ ースを比較すると,重量の軽い20kN重錘が先に最大 反力を迎えた.反力の減少に関しても,各ケースに おいて,上昇時と逆の勾配となった.また,実衝突 速度が遅いほど,最大反力が生じるまでの時間が遅 くなり,全体の反力も緩やかになることが確認でき た.

しかし, 図-4(c)のグラフ, 1.00m/sのケース等で

表-3 損傷の判別結果

	支圧(MPa)	判別
実 *	5.4	0
	7.4	0
	10.0	0
	13.3	0
	16.1	0
	21.4	0
供	22.4	0
試	25.0	Δ
体	29.0	Δ
A	29.7	Δ
	38.4	0
	39.7	Δ
	47.6	Δ
	59.0	Δ
	14.1	0
	16.1	0
	29.2	0
	33.2	0
670	50.9	0
111	51.3	0
供	51.8	0
試	58.6	0
体	75.7	0
D	132.8	0
	140.5	0
	220.9	Δ
	239.2	Δ
	375.7	Δ
	29.0	0
	33.1	0
	54.7	0
縮小	63.0	0
	86.8	0
	88.1	0
	88.6	0
武	106.0	0
武 体 C	128.2	0
	138.2	0
	163.4	Δ
	211.4	Δ
	255.4	Δ
	297.4	Δ
	413.5	×

	支圧(MPa)	判別		
	6.8	0		
	14.5	0		
	22.4	0		
	37.4	0		
	45.5	0		
	47.7	0		
	57.0	0		
	86.5	0		
	92.1	0		
	92.7	0		
经济	113.4	0		
418	134.8	Δ		
供	139.0	Δ		
試	144.7	Δ		
1本 D	146.3	Δ		
U	146.6	Δ		
	179.7	Δ		
	189.5	×		
	198.9	×		
	210.2	Δ		
	217.4	×		
	335.4	×		
	430.1	×		
	530.3	×		
	581.4	×		
	775.6	×		
	0:	判別不可 変状有り		

図-4 支点反力と経過時間の関係

は、比較的早い段階で上昇の傾向にずれが生じてい ることが確認された.同様に早期の段階で分離が見 られるケースは、衝突速度1.00m/s以下で多く確認で きる.そのため、重錘衝突時の速度が低速の場合、 重錘の重量がゴム緩衝材の圧縮剛性に与える影響が 大きく、重量が軽いほど、ゴムの圧縮剛性が低く、 反力の速度が遅くなり、緩やかな勾配を描くと推測 される.

縮小供試体ごとの,30kN重錘が衝突速度1.50m/s で衝突したケースにおける,最大反力が生じるまで の経過時間はB:21.6ms, C:17.5ms, D:9.5msとなった. これにより,供試体の形状率が高いほどゴムの圧縮 剛性が低く,衝撃荷重に抵抗する断面積が大きくな ることから,載荷時間が延び,最大反力が低減され ると考えらえる.

以上より,参考資料を参考に製作された緩衝材は, 適切なゴム厚を確保することで,最大反力が生じる までの時間を遅らせることができ,地震による衝撃 的な力をより緩和できると推測される. (3)設計支圧応力度から許容される衝突速度の推定 支圧応力度と衝突速度の関係を図-5,図-6に示す. 横軸は重錘の供試体衝突時の実速度,縦軸はロード セルで計測された最大反力と緩衝材の平面積から算 定した支圧応力度を示す.実験結果から,最大応力 度は衝突速度の二乗に概ね比例していることを確認 した.重錘ごとの衝突速度から,緩衝材から伝わる 支点反力を試算することができると考えられる.

図-5 支圧応力度と衝突速度の関係(20kN重錘)

図-6 支圧応力度と衝突速度の関係(30kN重錘)

ゴム厚が同じ実大供試体と縮小供試体 B を比較す ると, 表-4 より平面積が約 16 倍になったのに対し, 支圧応力度で 20 倍以上の差が生じていた.したが って,最大反力が支圧応力度の制限値 12MPa を超え ている場合等には,平面寸法を確保することで,平 面積の拡大および最大反力の低下が見込めるため, 有効であると考えられる.

	壬任壬日	設定衝突速度(m/s)			
	里 <u></u> 建里重 (kN)	0.0	1.0	1.5	
	(KIN)	支圧応力度(MPa)			
実大	20	0.5	5.4	10.0	
供試体	30	0.8	7.4	13. 3	
縮小 供試体	20	8.0	140. 5	239. 2	
		(x16)	(x26)	(x24)	
	30	12. 0	220. 9	375.7	
		(x16)	(x30)	(x28)	

表-4 主な支圧応力度と衝突速度

実施した全てのケースにおいて最大支圧応力度と 衝突速度に相関が見られたことから,支圧応力度と 運動エネルギーの関係を図-7,図-8に示す.横軸は 重錘の供試体衝突時の実速度から算定した運動エネ ルギー量を示す.図より,重錘の重量によらず入力 された運動エネルギー量と最大支圧応力度には相関 が見られた.また,供試体の外形が大きいほど取付 側に生じる支圧応力度を抑えられることが確認でき た.

図-7 支圧応力度と運動エネルギーの関係(実大)

図-8 支圧応力度と運動エネルギーの関係(縮小)

実験したケースの範囲においては、実大供試体の 支圧応力度と入力エネルギー量には概ね線形的な比 例関係が成立することが確認できた.線形の比例関 係から、実大供試体□200(mm)×50(mm)に参考資料 で示された支圧応力度の制限値12MPaに相当する上 部構造重量480kNが落下した場合、支圧応力度が 12MPa以下となる衝突速度を試算すると 0.436m/sと なった.

4. 結論

本実験で得られた知見を下記にまとめる.

(i)参考資料を参考にして製作されたゴム緩衝材は, 設計で規定された支圧応力度12MPaが載荷したとし ても,損傷がないことから,仮定した限界状態1の 範囲に留まる.

(ii)供試体の形状が同一であることを前提とし,最 大反力が生じるまでの時間に,重錘衝突時の速度が 影響することを確認した.また,ゴム緩衝材の形状 率や平面積が大きいほど,反力が伝わる時間が長く なり,最大反力が小さくなることを確認した.

(iii) ゴム緩衝材側で計測された支点反力から,緩衝 材に入力された運動エネルギー量に相関が見られた. (iv)実験で想定した実大供試体に,参考資料に示さ れた支圧応力度の制限値12MPaを用いた場合,衝突 速度が0.436m/sに相当することを確認した.

参考文献

1)(社)日本道路協会:「兵庫県南部地震により被災した道路橋の復旧に係る仕様」の準用に関する参考資料(案), 1995.6.

(社)日本道路協会:道路橋示方書・同解説V耐震設計編,
2017.11.