# 落橋防止構造および横変位拘束構造の取付部の 付着性能に関する実験的検討

廣江 亜紀子1·中尾 尚史2·大住 道生3

| 1正会員 | 修 | (工) | 国立研究開発法人土木研究所  | 構造物メンテナンス研究センター | 主任研究員 |
|------|---|-----|----------------|-----------------|-------|
|      |   |     | (〒305-8516茨城県- | つくば市南原1-6)      |       |
| 2正会員 | 博 | (工) | 国立研究開発法人土木研究所  | 構造物メンテナンス研究センター | 専門研究員 |
|      |   |     | (〒305-8516茨城県- | つくば市南原1-6)      |       |
| 3正会員 | 博 | (工) | 国立研究開発法人土木研究所  | 構造物メンテナンス研究センター | 上席研究員 |
|      |   |     | (〒305-8516茨城県- | つくば市南原1-6)      |       |

# 1. はじめに

地震による上部構造の変位を制限するために,落 橋防止構造や横変位拘束構造を設ける場合があり, これらは作用する水平力に対して弾性域に留まるよ うにすると現行の道路橋示方書V編<sup>1)</sup>には規定され ている.下部構造前面に取り付ける落橋防止構造は 引張力が卓越する構造であり,取付部にアンカーボ ルトを用いる場合には付着やコーン破壊等に対する 検証が必要となる.

しかし,既往の研究は埋込長の短い小径のアンカ ーボルトによる検証<sup>2)3)</sup>が多く,現行の道路橋示方書 Ⅲ編<sup>4)</sup>におけるアンカーボルトの適用範囲に合致し た,落橋防止構造の取付部を想定した既往の実験例 が少ない.

また、横変位拘束構造として用いる鋼棒はせん断 力が卓越するが、押し抜きせん断耐力とコンクリー トの埋込長に関する検討<sup>5)</sup>や縁端距離との関係を検 証した実験<sup>6</sup>が報告されているものの、実際に発生 する応力状態や定着部におけるコンクリートの圧壊 の影響についての検証が十分されていない。

本研究では、実験により引張抵抗型の落橋防止構 造に用いるアンカーボルト及びせん断抵抗型の横変 位拘束構造として用いる鋼棒に着目し、応力状態の 確認や付着の評価を行う.

# 2. 異形棒鋼の引き抜き試験

# (1) 試験概要

# a)供試体

図-1に示すような幅2300mm,奥行1500mm,高さ 550mmのRCブロック(設計基準強度24N/mm<sup>2</sup>,材 齢27日の圧縮強度30.3N/mm<sup>2</sup>)に埋込長10Dと15D の異形棒鋼(SD345,D32)を各1本設置した供試体 を作製した.下部構造前面を模した配筋を行い(図 -1右側),コンクリートを打設した後, φ40mmの 削孔を行った.孔内に異形棒鋼を設置し,エポキシ 樹脂で定着した.あと施工アンカーは,埋込長の下 端から45°の角度をもって引き抜きによるコーン破 壊が発生するとされていることから<sup>7</sup>,異形棒鋼を それぞれの埋込長に応じたコーン破壊の影響範囲が 重ならない位置に配置した.

異形棒鋼のひずみゲージの設置位置と試験におけ る変位計測位置を図-2に示す. 異形棒鋼には,あら かじめひずみゲージを設置した. 異形棒鋼のコンク リート埋込部には,異形棒鋼のリブに溝を切ってひ ずみゲージを設置した. 異形棒鋼は埋込長以深のコ ンクリートと異形棒鋼の付着を切ったうえで下端を RCブロックの底部と一致させ,下端の変位を変位 計により計測できるようにした. また,異形棒鋼の 頂部はボルトによる固定を行うため,M30のねじ切 りを行った.

#### b)試験装置

試験装置は,写真-1に示すように,ジャッキにより 男形棒鋼を引き抜く構造とした.異形棒鋼頂部お よびRCブロックとの境界位置には、変位計測のタ ーゲットを設置し、載荷試験中のそれぞれの点の変 位を計測できるようにした(図-2).試験装置の治 具については、それぞれの埋込長に応じたコーン破 壊の影響範囲外と考えられる位置に設置した.









# c) 載荷方法

載荷はジャッキによる鉛直方向の一方向載荷とし, 異形棒鋼の破断またはコーン破壊,付着破壊に至る まで載荷することとした.載荷中にRCブロック表 面にひび割れが発生したときには,載荷を一時停止 し,ひび割れ状況の確認を行った.

# (2) 試験結果

表-1に異形棒鋼の埋込長毎の試験結果を,図-3に荷 重と変位の関係を示す.なお,図-3(a),(c)は異形 棒鋼破断以降に計測値の電気的なノイズが発生した と考えられる.



(a) 埋込長10D
(b) 埋込長15D
図-2 ひずみ及び変位の計測位置

表-1 異形棒鋼の引き抜き試験結果

| 埋込長 | 最大荷重<br>(kN) | 最大変位<br>(mm)<br>異形棒鋼<br>頂部 | 最大変位<br>(mm)<br>RCブロッ<br>ク界面位置 | 最大変位<br>(mm)<br>異形棒鋼<br>底部 | 破壞形状          |
|-----|--------------|----------------------------|--------------------------------|----------------------------|---------------|
| 10D | 359          | 37.4                       | 5.71                           | 0.41                       | 破断<br>(ねじ切り部) |
| 15D | 358          | 34.1                       | 3.92                           | 0.12                       | 破断<br>(ねじ切り部) |









埋込長10D,15Dともに、最大荷重に達した後, 異形棒鋼頂部のねじ切り部が破断した.図-3(a), (b)は、載荷開始から異形棒鋼が破断するまで、ほ ぼ同様の荷重-変位関係にあることが分かる.本試 験で用いた異形棒鋼と同種の鉄筋について引張試験 体3体を作製し、別途材料試験を行ったところ、降 伏強度および引張強度はそれぞれ3体の平均で 385N/mm<sup>2</sup>,566N/mm<sup>2</sup>となった.降伏耐力をD32の 公称断面積にて算出すると306kNとなり、図-3(a),(b)における降伏点の荷重とよく一致した.し かし、破断は異形棒鋼のねじ切り部で発生したため、 最大荷重は、D32の公称断面積により算出した引張 耐力(450kN)とは一致しなかった.

引き抜き試験におけるひび割れ発生を試験時に撮 影した動画で確認し,試験開始からひび割れ発生ま での時間をもとに,動的計測をした試験値からひび 割れ発生荷重を推定した.埋込長10Dの場合荷重が 323kNのときにコンクリート表面にひび割れが発生 し,ひび割れは写真-2(a)のように円形に進展した. 埋込長15Dでは,荷重が308kNのときにひび割れが 発生し,同様に円状に進展した(写真-2(b)).試 験後に計測したところ,ひび割れはコーン状であり, 最深部の深さは埋込長10Dでは30mm,埋込長15Dで は26mmであった.



(a) 10D
(b) 15D
写真-2 コンクリート表面のひび割れ

#### (3) 考察

# a) 各文献による耐力との比較

コーン破壊に対する耐力,付着破壊に対する耐力 について,道路橋示方書Ⅲ編<sup>4)</sup>の照査式(以下,道 示式)と土木学会によるコンクリートのあと施工ア ンカー工法の設計・施工指針(案)<sup>7</sup>による算定式 (以下,土木学会式)のそれぞれから求めた耐力と, 試験においてコーン状のひび割れが発生した荷重,

試験での最大荷重を表−2に示す.道示式,土木学会 式による耐力の算出にあたっては,コンクリートの 圧縮強度に材齢27日の強度(30.3N/mm<sup>2</sup>)を用いた. 道示式におけるコーン破壊の特性値はコンクリー

トの表面からアンカーボルト径の2倍の深さを起点 としたひび割れが発生し、表面のコンクリートが可 逆性を有する限界の状態に至ることを想定して設定 された値であり,付着破壊の特性値はコーン状の破 壊が生じた後に付着破壊が発生することを想定して 設定されている. そのため, 付着破壊の照査式では, コーン状の破壊(2D)分を差し引いた有効埋込長を 用いることとされている(図-4).一方,土木学会 式では、アンカーボルトの下端から45°の角度をも って引き抜きによるコーン破壊が発生することを想 定して式が作られている(図-5).このような式の 成り立ちの違いにより,道示式と土木学会式では, コーン破壊の耐力が大きく異なる結果となっている. なお、道示式は先付アンカーを対象とした式である が、ここでは接着剤を用いてあと施工をした異形棒 鋼に対して道示式を適用した.また、本試験で使用 した異形棒鋼の径D32に対して、土木学会式は適用 範囲がD25までであるため、土木学会式を外挿した 計算結果を掲載している.

| 表−2 各種耐力の比 | 北較 |
|------------|----|
|------------|----|

| 埋込  | 破壞形式  | 道示式 | 土木  | ひび割れ  | 最大荷重  |
|-----|-------|-----|-----|-------|-------|
| 長   |       | kN  | 学会式 | 発生荷重  | (実測値) |
|     |       |     | kN  | (実測値) | kN    |
|     |       |     |     | kN    |       |
| 10D | コーン破壊 | 29  | 254 | 323   | 250   |
|     | 付着破壊  | 77  | 229 | -     | 539   |
| 15D | コーン破壊 | 29  | 572 | 308   | 259   |
|     | 付着破壊  | 125 | 350 | -     | 220   |
|     |       |     |     |       |       |



図-4 道示式によるコーン破壊,付着破壊の考え方



図-5 土木学会式によるコーン破壊の考え方

今回の試験のひび割れ発生の状態は,道示式の考 え方に近いが,実測したひび割れ発生荷重は道示式 を大きく超過していた.また,今回の試験結果にお いては,RCブロック表面の破壊面の深さは,埋込 長10Dでは30mm,埋込長15Dでは26mmであり,2D には満たなかった.また、半径2Dの円よりも大きい 範囲でひび割れとコンクリートの剥離が発生していた.最終的には異形棒鋼が破断することで試験は終 了した.

b) 試験における異形棒鋼のひずみ分布の変化

載荷試験の進捗に合わせた, コンクリート表面か ら深さ方向のひずみ分布の変化を,図-6および図-7 に示す.図には降伏ひずみ(1923µ)も図示する. ここで,降伏ひずみは異形棒鋼の材料試験による降 伏強度を道路橋示方書<sup>4)</sup>における鋼のヤング率で除 した値とした.



図-7 深さ方向のひずみ分布(15D)

深さ方向のひずみ分布をみると,埋込長10D, 15Dともに,ひび割れ発生以降,表面からの深さ 64mm (2D)までは10000µを超えるひずみが発生し ており,それ以深のひずみは小さいことが分かる. 埋込長10Dの場合は深さ160mm (5D)以深,埋込長 15Dのときは112mm (3.5D)以深において,異形棒 鋼破断後に除荷した後は,ひずみが減少し0に近い 値となった.図-3(c)においても,異形棒鋼底部の 変位は小さいことが確認できる.これらのことから, RCブロックの深部においては本試験終了後も異形 棒鋼はコンクリートに定着していると考えられる.

今回の試験結果において, RCブロックの深部では,引き抜きによりひずみが発生しても除荷後には

0に戻っており、大きな変位も発生しなかった.

# 3. 異形棒鋼のせん断試験

### (1) 試験概要

#### a)供試体

D32およびD51のそれぞれについて,載荷高さを 300mmとした場合と異形棒鋼の直径の1/2とした場 合の試験を行った.各条件の試験体数は1体とした. また,埋込長はすべて15Dとした.橋座部を模した RCブロックに,D32については \otherwide 40mm,D51につ いては \otherwide 65mmの削孔を行ったうえで,異形棒鋼を 設置し,エポキシ樹脂で定着した.使用した異形棒 鋼はSD345とした.頂部にはナットを取り付けられ るよう,D32の異形棒鋼はM30,D51の異形棒鋼は M48でねじ切りを行った.

D32の異形棒鋼による試験については、図-1の供 試体を用いた.D51の異形棒鋼による試験の供試体 は図-8に示す.異形棒鋼には、図-9に示す位置にひ ずみゲージを設置した.



図-8 せん断試験供試体 (D51)

#### b)試験装置

試験装置は、写真-3,4に示すように、厚さ32mm, 幅132mmのSM490材で作製した板状の載荷治具に空 けた φ 35mm (D32供試体用)または φ 62mm (D51 供試体用)の孔に異形棒鋼を通し、載荷治具をジャ ッキにより水平方向に引くことで異形棒鋼を載荷す る構造とした.載荷治具および異形棒鋼の載荷治具 とRCブロック表面との中間位置の変位を変位計に て計測した.





写真-4 載荷治具

# c) 載荷方法

載荷はジャッキによる水平方向の一方向載荷とし, 異形棒鋼が破断するまで載荷することとした.ジャ ッキのストローク限界まで異形棒鋼が破断しなかっ た場合は,そこで試験を終了することとした.

# (2) 試験結果

表-3に試験結果を示す. 異形棒鋼の引張試験の結 果 (D32の降伏強度 $\sigma_y$ =385N/mm<sup>2</sup>, D51の降伏強度  $\sigma_y$ =381N/mm<sup>2</sup>)をもとに算出したせん断耐力 ( $\sigma_y/\sqrt{3}$ として算出)も示した. 図-10には荷重と 載荷位置における載荷治具の水平変位の関係を示す. なお,載荷治具の変位値には異形棒鋼の載荷治具へ のめり込みや載荷治具と異形棒鋼の当たり位置のず れによる誤差が含まれている。

載荷高さが300mmの場合は、D32、D51の異形棒 鋼ともに破壊には至らずジャッキのストロークが限 界に達したため、そこで試験を中止した.載荷高さ がD/2の場合は、D32、D51の異形棒鋼ともに、載荷

表-3 異形棒鋼のせん断試験結果

| 異形  | 載荷        | せん断         | 最大   | 載荷位置の |        |
|-----|-----------|-------------|------|-------|--------|
| 棒鋼  | 高さ        | 耐力          | 荷重   | 最大変位  | 破壞形状   |
| 直径  | (mm)      | (kN)        | (kN) | (mm)  |        |
| D32 | 300<br>16 | 176         | 39.2 | 192   | 破断せず   |
|     |           |             |      |       | (曲げ変形) |
|     |           | 16<br>(D/2) | 139  | 55.8  | せん断+   |
|     | (D/2)     |             |      |       | 引張     |
| D51 | 300       | 446         | 85.3 | 197   | 破断せず   |
|     |           |             |      |       | (曲げ変形) |
|     | 25.5      |             | 428  | 105   | せん断+   |
|     | (D/2)     |             |      |       | 引張     |



図-10 荷重と載荷位置における水平変位の関係



写真-5 試験後の異形棒鋼の形状

位置付近にて,異形棒鋼のねじ切り部が破断した. 試験後の異形棒鋼の形状を**写真-5**に示す.

D51載荷高さ25.5mmの試験において,水平変位 75mm程度で一度荷重が大幅に低下しているのは, ナットの位置の変更に際し,一旦除荷を行ったため である.また,D51載荷高さ300mmの試験において, 水平変位90mm程度で荷重が一時低下したのは,載 荷治具と異形棒鋼のねじ切り部のかみ合わせがずれ たために,一時的に荷重が抜けたものと考えられる.

すべての試験において,異形棒鋼の定着部付近に, コンクリートの圧壊に伴い,写真-5に示した位置に 局所破壊が発生している.局所破壊の深さは,D32 載荷高さ300mmのとき26mm,D32載荷高さ16mmの とき61mm,D51載荷高さ300mmのとき54mm,D51 載荷高さ25.5mmのとき86mmであった.

# (3) 考察

# a) 耐力の比較

表-3よりσ<sub>y</sub>/√3として求めたせん断耐力と比較す ると載荷高さD/2のときの最大荷重の方が小さい. これは、局所破壊に伴う曲げモーメントの発生が耐 力に影響している可能性が考えられる.ただし今回 の試験で破断したのはねじ切り部である.ねじ切り 部の実測径を考慮するとせん断耐力はD32(M30) で103kN,D51(M48)で284kNとなり、最大荷重よ りも小さい値となる.今回の試験においては、最大 荷重に影響を与える要因として、局所破壊とねじ切 りが考えられるため、要因の特定のためには解析に よる検討が必要となる.

## b) 異形棒鋼に発生したひずみ

載荷高さD/2の試験について,異形棒鋼のRCブロ ック表面位置(図-9におけるひずみゲージ5,6)に 発生したひずみと載荷位置における載荷治具の水平 変位の関係を図-11に示す.図中には降伏ひずみも 併せて併記するが,降伏ひずみの算出にあたっては, 道路橋示方書<sup>4</sup>)における鋼のヤング率を用いた.





図-11からひずみゲージ5では圧縮ひずみが,ひず みゲージ6では引張ひずみが発生していることが分 る.このことから,載荷高さD/2の場合でも,せん 断のみでなく、曲げが影響しているといえる.

# 4. 結論

本研究により、以下のことが明らかとなった.

(1)引き抜き試験結果と道示式,土木学会式と比較により,耐力の算定値と実測値に差異があること, 道示式で想定しているひび割れ範囲と試験において 発生したひび割れ範囲が異なることを確認した.

(2) 異形棒鋼の引き抜き試験により, RCブロックの深部においては,引き抜きによりひずみが発生しても除荷後にひずみが0に戻ることを確認した.

(3) 異形棒鋼のせん断試験において、当初の目的 であった載荷高さによる破壊モードに違いを確認す ることができた.また、載荷高さD/2であっても、 曲げが影響していることを確認した.

本試験の破壊メカニズムを明らかにするには、今 後更なる検討を要する.

**謝辞**:本研究の一部はJSPS科研費JP18K04340の助成 を受けたものである.

## 参考文献

- 日本道路協会:道路橋示方書(V耐震設計編)・同 解説,丸善出版, 2017.
- 三倉寛明,田所敏弥,岡本大,笠裕一郎:耐荷機構 に基づくあと施工アンカーの引抜耐力に関する一考 察,コンクリート工学年次論文集,Vol.37,No.2, pp. 505-510,2015.
- 三倉寛明,田所敏弥,岡本大,笠裕一郎:あと施工 アンカーの引抜耐力におよぼすへりあき寸法とアン カー間隔の影響,コンクリート工学年次論文集, Vol.39, No.2, pp. 463-468, 2017.
- 日本道路協会:道路橋示方書(Ⅲコンクリート橋・ コンクリート部材編)・同解説,丸善出版,2017.
- 5) 森北一光・皆川聡一・石崎茂・福富眞:アンカーボ ルトの埋込長とせん断耐荷力の関係について、コン クリート工学年次論文集, Vol.31, No.2, pp. 1489-1494, 2009.
- 6) 安藤祐太郎,中野克彦,松崎育弘,杉山智昭:接着 系あと施工アンカーのせん断耐力に及ぼすへりあき 効果の影響に関する実験的研究,コンクリート工学 年次論文集, Vol.31, No.2, pp. 679-684, 2009.
- 7) 土木学会コンクリート委員会あと施工アンカー小委員会編:コンクリートのあと施工アンカー工法の設計・施工指針(案),コンクリートライブラリー141号,2014