SBHS400を用いた十字断面柱の 耐荷力特性に関する実験的研究

安宅 俊樹1・小野 潔2・宮下 剛3

¹学会員 早稲田大学創造理工学術院 建設工学専攻(〒169-8555 東京都新宿区大久保3-4-1)
²正会員 博士(工学) 早稲田大学創造理工学部教授(〒169-8555 東京都新宿区大久保3-4-1)
³正会員 博士(工学) 長岡技術科学大学工学研究科准教授(〒940-2188 新潟県長岡市上富岡1603-1)

1. 研究背景および目的

橋梁用の高性能鋼であるSBHS がJIS 化された¹⁾. SBHSは高降伏点を有し、溶接容易性、耐候性、じ ん性に優れ、SBHSを鋼橋に活用することで建設コ スト縮減の可能性が期待されている. SBHSが一般 的な鋼橋に対して幅広く使用されるためには, SBHSの材料特性を明らかにするとともに、SBHSを 使用した鋼部材の耐荷力特性等を明らかにし, SBHSを用いた鋼部材の具体的かつ汎用的な設計手 法の開発が必要となる. そのような状況下, SBHS500およびSBHS700については、引張試験、繰 り返し材料試験が実施され、材料特性の把握、構成 則の提案等が行われている²⁾. また、SBHS500を用 いた鋼部材の耐荷力については、SBHSを用いた鋼 桁や、SBHSを用いた自由突出板を対象とした実験 的研究3)が実施され、その耐荷力に関する情報が得 られつつある.他方、SBHS400はJIS化された時期 が遅く、基本的な情報が少ないことが実情として挙 げられる、既往の研究によるとSBHS400の材料特性 に関する研究は実施されているものの⁴, 耐荷力特 性に関する研究は行われていない.本研究は、我が 国における土木構造物の設計基準にSBHSを規定す るため、軸方向圧縮力を受けるSBHSを用いた鋼部 材の強度特性を明らかにし、基礎的データを蓄積を することを目的としている. そこで, SBHS400製鋼 部材の圧縮強度特性を調べるにあたり、把握すべき 耐荷力特性のうち, 自由突出板の座屈耐力に関する 基本的なデータを得ることを目的に、SBHS400製の 十字断面短柱を用いて軸圧縮試験を実施した.

2. 実験供試体および実験方法

SBHS400を用いた自由突出板の耐荷力特性を明ら かにすべく,SBHS400製十字断面柱の圧縮試験を行 った.図-1に既往の研究成果によるSBHS400と従来 鋼SM490Yの応力-ひずみ関係の比較を表す.また, 表-1にこれら鋼材の機械的性質を表す.同図表より, SBHS400は従来鋼よりも高い降伏応力を持っている ことがわかる.図-2に実際に実験で用いた実験供試 体を,図-3に実験供試体の概略図を,表-2に全4体 の実験供試体の寸法詳細を示す.本研究で用いた実 験供試体は、幅厚比パラメータRgの影響による耐荷

図-1 SBHS400と SM490Y の応力-ひずみ関係の比較

表-1 SBHS400 と SM490Y の機械的性質

鋼種	降伏応力	弾性係数	引張応力	降伏比
	σ_y (MPa)	E (GPa)	σ_u (MPa)	σ_y / σ_u
SBHS400	457.6	203	540.7	0.85
SM490Y	410.3	204	572.5	0.72

力特性を調べるため、*R*_R=0.4, 0.7, 0.9, 1.1の条件 のもと、設計を行った.また、全体座屈を防止する ため、供試体の細長比パラメータ元は0.05程度となる ように断面および供試体長の寸法決定を行った.以 下に幅厚比パラメータと細長比パラメータの式を示 す.

$$R_{R} = \frac{B}{t} \sqrt{\frac{\sigma_{y} 12(1-v^{2})}{E k_{R}\pi^{2}}}$$
(2.1)
$$\bar{\lambda} = \frac{1}{\pi} \sqrt{\frac{\sigma_{y} l}{E r}}$$
(2.2)

ここに, b:板パネルの幅, E:鋼材の弾性係数 (=2.0×10⁵N/mm²), σ_y:鋼材の降伏点, k_R:座屈係数 (k_R=0.425), n:補剛材で区切られるパネル数, μ:ポア ソン比(=0.3), r:断面二次半径, l: 有効座屈長.

各実験供試体にはひずみゲージを設置し,変位計 を水平,直角方向に導入した.これらの実験供試体

図-2 実験供試体

図-3 軸圧縮試験の様子

を用いて、早稲田大学が所有する5000kN大型構造物 試験機により、変位制御の条件のもと、およそ 0.005mm/secの載荷速度で軸方向圧縮試験を行った. 試験前には弾性域内で予備載荷を行い、各辺に均等 に圧縮力が加わっていることを確認し、本載荷試験 を行った.

3. 実験結果および耐荷力に関する検討

図-5に圧縮試験後の残留たわみ測定結果を示す. また,図-6に残留たわみの状況図を示す.本稿では,

表-2 各実験供試体の寸法詳細								
諸元		B04	B07	B09	B11			
幅厚比パラメータ R_R		0.4	0.7	0.9	1.1			
幅	b (mm)	109	184	234	283			
長さ	l (mm)	200	262	337	412			
厚さ	t (mm)	9						

a) 側面図

b) 断面図

図−4 実験供試体概略図

紙面の制約の都合上,座屈モードを種別し,B04と B07の一面の残留たわみ測定結果のみを示す.残留 たわみ測定によって,B04では2波の座屈モード, B07,B09,B11では1波の座屈モードが得られた.

さらに、図-7に各実験供試体の軸圧縮試験から得られる無次元化した軸力-鉛直変位関係を示す.各軸は軸力を降伏軸力で除した P/P_y ,鉛直変位を降伏鉛直変位で除した δ/δ_y としている.同図から明らかなように、B04は他の実験供試体とは異なり、鋼材の応力-ひずみ関係の影響を受ける挙動となっている.幅厚比パラメータが限界幅厚比パラメータ($R_R=0.7$)よりも小さかったことで、最大耐力が降伏耐力以上となったことが原因であると考えられる.その一方で、幅厚比パラメータ $R_R \ge 0.7$ の実験供試体B07、

B09, B11は限界幅厚比パラメータ以上の幅厚比で 各面が構成されているため,降伏耐力付近,もしく はそれ以下で最大耐力を迎えたため,応力-ひずみ 関係の影響を受けない挙動となっていることがわか る.

最後に,図-7に最大耐力Pmaxを降伏軸力Pyで除したP/Pyを耐荷力曲線と比較したものを示す.これら耐荷力曲線を以下に示す.

a) 道路橋示方書の耐荷力曲線⁵⁾

$$\frac{\sigma_{cr}}{\sigma_y} = 1 \quad (R_R \le 0.7), \quad \frac{\sigma_{cr}}{\sigma_y} = \frac{0.5}{R_R^2} \qquad (R_R > 0.7) \quad (3.1)$$

b) 福本らの耐荷力曲線^の

$$\frac{\sigma_{cr}}{\sigma_y} = 1 \quad (R_R \le 0.7), \quad \frac{\sigma_{cr}}{\sigma_y} = \left(\frac{0.7}{R_R}\right)^{0.64} \ (R_R > 0.7) \quad (3.2)$$

c) Euler Curve

$$\frac{\sigma_{cr}}{\sigma_y} = 1 \quad (R_R \le 1.0), \quad \frac{\sigma_{cr}}{\sigma_y} = \frac{1}{R_R^2} \qquad (R_R > 1.0) \quad (3.3)$$

式(3.1)は道路橋示方書,式(3.2)は福本らの 提案した耐荷力曲線,式(3.3)はEuler Curveを表す. 本実験で得られた4つの点は,これら3つの耐荷力曲 線よりも上側にプロットされる結果となったため, SBHS400を用いた自由突出板の耐荷力は,現行の耐 荷力曲線を用いて設計をすることができる可能性が あることを示している.しかし,圧縮試験によって 得られる最大耐力はばらつきを持ちやすいために, 今後さらにデータを蓄積する必要があると考えられ る.

a) B04の残留たわみ

b) B07の残留たわみ

図-5 各実験供試体の残留たわみ

図-6 圧縮試験後の残留たわみ

まとめ

本稿ではSBHS400を用いた自由突出板の軸圧縮試 験を行った.本稿の実験結果によれば,SBHS400の 自由突出板の耐荷力は,現行の耐荷力曲線で適切に 評価することができる可能性があることが示された. 今後,実験的研究に加え,実験結果を再現すること ができる弾塑性有限要素解析を用いた数値計算によ って,残留たわみ測定の結果も交え,データ数の蓄 積を行うことを検討している.

謝辞:本研究の一部は、(一社)日本鉄鋼連盟の鋼 構造研究・教育助成事業(一般研究テーマ)によっ て実施したものであります.さらに、研究を実施す るにあたり、加藤健太郎氏(研究当時:大阪大学大 学院工学研究科)にご協力頂きました.ここに記し て謝意を表します.

参考文献

- 1) JIS G 3140: 橋梁用高降伏点鋼板, 2012.
- Keita Hamamura, Kiyoshi Ono, Seiji Okada, Shinji Ymada, Nobuo Nishimura(2013). "Mechanical Properties and conxtitutive equation under cyclic loading of higher yield strength steel plates for bridges SBHYS700", Proceedings of the 6th International Symposium on Steel Structures, pp.268-269, 2013.11.

- 松村政秀,小野潔,中川翔太:SBHS500および SM490Yからなる十字断面柱の圧縮試験,第17回性能 に基づく橋梁等の耐震設計に関するシンポジウム講 演論文集,pp.307~310,2014.
- Kiyoshi Ono, Hiroyuki Aizawa, Takeshi Miyashita, Shinji Yamada, Yasuhiro Miyazaki. "An Experimental study of constitutive equation of SBHS400 under cyclic loading", Proceedings of the 14th East Asia-Pacific Conference on structural Engineering and Construction, 2016.
- 5) 日本道路協会:道路橋示方書·同解説II鋼橋編, 2014.
- 福本 (研究代表者):鋼骨組構造物の極限強度の 統一評価に関する総合研究,科学研究費補助金研究 報告書(総合研究A,研究課題番号:62302040),平 成2年.