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1. INTRODUCTION 
 

During the 2011 Great East Japan Earthquake, few 
rubber bearings and dampers of some bridges designed 
by post-1995 code were found to be broken as first time 
in highway bridges1). Though, numerical simulation of 
both structural seismic response analysis and ground 
motion simulation have been conducted for those bridges, 
it was very difficult to predict the behavior of both 
ground shake and structural response due to lack of 
instrument measured data. Therefore, it is realized that 
without such a record, neither damage and behavior of 
structures during strong earthquakes can be compared to 
the seismic design criteria nor proper decisions 
concerning rational repair and reconstruction could be 
made. However, traditional displacement measurement 
system, combined with displacement transducers, data 
log, hard disk, computer, power supply, modem and 
network connection, is high cost and difficult for wide 
application in structures. 
   Meanwhile, having significant computational power, 
large memory resources and wide functionality, modern 
smart devices could be realized to be one of the possible 
methods to measure structural vibration. Smart devices, 
with their on-board computational and communication 
capabilities, improvements in built-in sensors and easy to 
offline or online programmable functionality, simplifies 
the collection of information about existing 
infrastructures and thus offer new opportunities in the 
field of seismic and structural response measurement with 

extremely low initial and maintenance cost. Built-in 
camera of smart devices is one of the most developed 
devices providing higher resolution and higher speed 
video features. Their powerful processors and memory 
allows on-board processing capabilities, eliminating the 
need for additional computers to perform extensive image 
processing. However, such advanced vision and 
embedded processing capabilities of smart devices have 
not been effectively utilized for dynamic displacement 
monitoring applications yet.  
   Indrawan et al2) studied the effectiveness of 
implementing real time image and video processing on 
mobile devices. In the study some of the emerging image 
and video-processing algorithms used on the smart 
devices such as face detection and augmented reality are 
highlighted and the challenges for implementing them are 
described. Min et al3) developed smartphone application 
to measure absolute dynamic displacement in real time 
using state-of-the-art smartphone technologies; such as 
high-performance graphics processing unit (GPU), 
embedded high-resolution camera and open source 
computer vision libraries. Indoor and outdoor testing of 
the measurement application were conducted using 
shaking table and the results were compared with the 
conventional laser displacement sensor. 
   Most of these past researches involved in using smart 
devices for displacement measurement, however, 
provides less information about the reliability and range 
of using such devices. The frequency and amplitude 
domain still needs to be clearly identified. Therefore, this 

- 531 -

第19回性能に基づく橋梁等の耐震設計に関する

シンポジウム講演論文集（2016年7月）



study attempts to illustrate the effectiveness of the 
proposed approach in more detail by utilizing such 
advanced vision and embedded processing capabilities of 
smart devices for dynamic displacement monitoring 
applications, which is very unique and most advanced 
method in this area. Real-time structural displacement 
measurement methods by applying digital image 
processing techniques and using built-in camera of smart 
devices have been developed. The effectiveness of 
measurement using smart devices in more detail is also 
verified by clarifying the reliable domain for frequency 
and amplitude measurement by performing shaking table 
tests for sine wave loading using different smart devices 
and the advantages and limitations of the proposed 
methods have been summarized. 
 
2. MEASUREMENT APPLICATION 

DEVELOPMENT FOR SMART DEVICES 

   Smart device based iOS application has been developed 
for real time measure of dynamic displacement using the 
rear camera of smart device and three most common 
image processing methods: Motion Detection, Corner 
Tracking and QR Code Tracking which enables easy and 
low cost monitoring of absolute dynamic displacements. 
The displacement measuring application program 
performs the task of absolute displacement measuring, 
recording, storing and data synchronization with the 
cloud server via Dropbox4). The object of interest 
detected in video sequence is tracked by implementing 
suitable image processing algorithm and with difference 
in the coordinate of target object in respective frames 
displacement measurement is obtained. 
 
(1) Application Development Environment 
   Application programs were developed based on 
programming language of Objective-C and developing 
environment Xcode for iOS application development. An 
open source iOS framework library known as GPUImage 
library5) was used that applies GPU-accelerated filters 
and other effects to images, live camera video, and 
movies. The combination of using these filters and 
processing them on GPU allowed complex image 
analysis algorithms to run at much higher speed. 

(2) Application User Interface and Proposed Methods 
   Three different object tracking methods described  
below have been explored within the image-processing 

 

Figure 1. Measurement Application Program Development  

                using Smart Devices 

 
environment in order to effectively detect the target of 
interest and track its centroid movements at each frame to 
obtain displacement response of the moving target. This 
started with examining the filters included in the 
GPUImage library. Each filter in GPUImage process the 
incoming image and produces a resulting image that can 
be extracted from the GPU and presented to the user. 
a) Motion Detection Method 
   The motion detection and tracking is actually the 
process of keeping tracks of the moving object in video 
sequence i.e. position of moving object at certain time etc. 
Motion tracking method try to estimate the displacement 
and velocity of features in a given video frame with 
respect to the previous one. It does frame-to-frame 
comparisons, based on a low-pass filter, and can identify 
the number of pixels that have changed between frames 
and the centroid of the changed area. Because it relies on 
pixel differences and not optical flow or feature matching, 
it can be prone to inaccurate tracking of desired object as 
they move in a frame. 
b) Corner Tracking Method 
   The corner tracking method applied in this study is 
basically an improvisation to motion detection method 
for obtaining displacement measurement. In case of 
motion detection method, the movement of all the objects 
in a video sequence was considered due to which tracking 
the movement of a specific target object in the scene 
become difficult. However, tracking only the meaningful 
features of the video for example the corners allow a 
robust solution for accurately obtaining the movement of 
a desired feature target. In this study, Harris corner 
detection6) and tracking algorithm have been 
implemented in the application program to track the 
motion of detected corners in real time. 
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c) QR Code Tracking Method 
   The corner-tracking algorithm applied in this study 
localizes only the most significant corner in the scene, 
and such set up to localize only the desired corner target 
is generally possible only in the controlled environment. 
However, in real field applications, using the corner 
tracking method to obtain displacement response is not 
always possible. There may be several other corner 
features apart from the installed target that are more 
significant due to which identification and localization of 
desired feature becomes difficult. Therefore in this study, 
for more practical applications, one more possibility of 
object tracking using QR code has been introduced. 
   A QR code is actually a two-dimensional (2D) barcode 
that consists of black modules (square dots) arranged in a 
square grid on a white background and contains a variety 
of encoded information such as URL, phone number, 
simple texts, etc. However, in this study any encoded 
information stored in the QR code is not used. Instead, 
the QR code is used as a target feature, which is first of 
all identified, by using smart devices and then tracked for 
its movement to obtain displacement response. 
 
(3) Displacement Measure 
   Figure 2. shows the flowchart for displacement 
measuring application using the above proposed methods. 
With detection of moving objects in the scene on every 
incoming frame, different filters implemented under the 
GPUImage framework gives the centroid of movement 
(in normalized X, Y coordinates). From the next frame 
onwards the movement of centroid in terms of co-
ordinate geometry is tracked, as pixels positions in an 
image can be treated as a 2D graph. The new centroid 
position is recorded. This process continues until the 
object disappears from image frame or if user stops the 
recording. After that, the total displacement of the object 
is obtained. However, this displacement is only in the 
image domain in pixel unit and after multiplying with a 
suitable scale factor real displacement measurement is 
obtained. 
 
(4) Scaling Factor Determination 
   In order to obtain real structural displacements from the 
captured video images, relationship between the pixels 
coordinates and the physical coordinate was established 
(e.g., in units of mm/pixel). Figure 3. illustrates the actual 
distance calibration method using smart devices. As 
shown in Figure 3, when the image plane is parallel to the 

 
Figure 2. Displacement Measurement Application Flowchart 

Figure 3. Actual Distance calibration using smart devices 

object surface, the scaling factor in the translational 
direction (x-axis) can be determined by applying simple 
trigonometry geometry. 
“N pixels” in device view corresponds to  in real 
view. Therefore, scaling factor (SF) is given by: 

 

D is the distance between target object and camera 
 is the Field of View (FOV) of camera device 

(standard value for each device as shown in Table 1) 
 
(5) Sensor System and Specification 
   The displacement measuring sensor system used in this 
study, consist of a high quality laser displacement sensor 
as a reference sensor and three other widely used brands 
and generation of iOS smart devices with different 
processing capabilities and camera resolution. The basic 
specification of each of these smart devices is shown in 
Table 1. Three different brands and generation of iOS 
smart devices were used for the study. In particular, the 
focus of this study is related with the smart device camera 

- 533 -



Table 1. Hardware and camera performance of smart devices 

Property iPod Touch iPhone 5s iPhone 6 

Release 
Date 

10/11/2012 9/20/2013 9/19/2014 

CPU 
Apple A5: 
800 MHz 
dual-core  

Apple A7: 
64-bit 1.3 
GHz dual-

core 

Apple A8: 64-bit 
1.4 GHz dual-

core 

Memory 
512 MB 
LPDDR2 
DRAM 

1 GB 
LPDDR3 

RAM 

1 GB LPDDR3 
RAM 

Rear 
Camera 

- 5MP 
  iSight 
  camera  
- Autofocus 
- f/2.4 
Aperture 
- LED flash 

- 8MP iSight 
camera with 
1.5μ pixels 
- Autofocus 
- f/2.2 
Aperture 
- True tone 
flash 

- 8MP iSight 
camera with 1.5μ 
pixels 
- Autofocus 
- f/2.2 Aperture 
- True tone flash 
 

HD Rear 
Camera 
Capture 

-1080p@ 
  30fps 

 

-720p@ 
 30/60/120 
1080@30fps 

 

-720p@ 
30/60/120/240 
-1080@30/60fps 

 

GPU 
SGX543M

P2 
(2-core) 

Power VR 
G6430  

(4 cluster @ 
450 MHz) 

Power VR Series 
6 GX6450  
(4 clusters) 

FOV 54.40002° 58.040001° 58.080002° 

 

Figure 4. Variation in sampling rate (fps) for iPhone 5s smart  

                device 

Figure 5. Sampling Time Accuracy in GPU Implementation 

and on-board processing performance. For example, the 
older model of iOS smart device such as iPod Touch 
supports up to 30 fps at 1080p resolution while newer 
model such as iPhone 6 supports up to 60 fps at 1080p 
resolution. Moreover, the integrated graphic processing 
unit (GPU) can rapidly manipulate and alter memory to 
accelerate the creation of images in a frame buffer 
intended for output to a display. These smart devices can 
measure the displacement time history data in two 
orthogonal directions (in the plane of sight of camera). 
Using these smart devices a maximum sampling 
frequency of 30 fps was set in the application program, 
which is generally sufficient for most of the engineering 
applications such as ground motion displacement 
measurement or long period vibration measurements. 
 
(6) Sampling Time Accuracy 
   Figure 4. shows the example record of the sampling rate 
for iPhone 5s set to 30 fps. Over the entire measurement 
little inconsistencies are observed, as sometimes the 
actual sampling rate goes higher while sometimes it goes 
lower than the standard set fps. This may be due to the 
consequence of multitasking system that image frame 
output data are not sampled at exactly equal intervals. 
Nevertheless, such inconsistencies are minimum, and 
when we correct the sampling frequency by taking the 
average value of actual sampling rate measured by the 
device, it does not greatly affect the measurement as can 
be seen from Figure 5. It is observed that iPhone 5s and 
iPhone 6 have a constant average sampling frequency of 
around 30 fps with very small deviation (in the order of 
less than 0.2%). However, due to low GPU capabilities of 
iPod Touch device, it is observed that output data are 
sampled at a constant average frequency of around 15 fps 
but with small deviation (in the order of less than 0.8%). 
This suggests that the sampling time accuracy offered by 
smart devices is quite consistent and reliable for 
measurement purpose. 
 
3. EXPERIMENTAL VERIFICATION USING 

SHAKING TABLE TESTS 
 
   In order to identify the reliability and range of using 
smart devices for image process based displacement 
measurement, laboratory tests were carried out using 
shaking table. Uniaxial shaking table (APS-113) was 
used to simulate sinusoidal oscillation. The SVA-ST-30 
amplifier amplified the input excitation of the shaking  
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Figure 6. Instrumentations involved in using laser displacement 

                Sensor 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
table and WF-1974 function generator was used to 
generate sinusoidal waveform with different frequencies.    
To compare the performance of the developed iOS app 
with that of a conventional displacement sensor, a laser 
displacement sensor head7) (KEYENCE, IL-100, 4μ 
resolution) was used as a reference as shown in Figure 6. 
Using IL-1000 multi-function amplifier the laser sensor 
head was controlled and the analog voltage outputs from 
the laser sensor were measured and output by the 
National Instruments’ NI USB-9162 (24-bit ADC 
module) connected to a PC via lab View software. Three 
different models of iOS smart devices with different 
computational and camera capabilities i.e. iPod touch,  

 

Figure 7. Shaking Table Tests Set up 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
iPhone 5s and iPhone 6 was considered for the 
experiment. An artificially designed target object as 
shown in Figure 7 was marked with corner feature in case 
of corner tracking method or QR code feature in case of 
QR code tracking method was fixed on the shaking table 
and driven by sinusoidal signals of different frequencies 
from 0.1 Hz to 5.0 Hz. The time of measurement was 
taken such that there were enough cycles of sinusoidal 
waves for each test. The sinusoidal signals recorded by 
the smart device were compared with that recorded by 
laser sensor in terms of displacement time history record 
and Fourier amplitude. Figure 8. shows the comparison of 
displacement response measurement between smart 

Figure 8. Comparision of time domain and frequency domain plot of sinusoidal signals measured by smart devices and  

                laser sensor at 0.2 Hz test frequency 
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devices and reference measurement at 0.2 Hz test 
frequency for three different methods. It is observed that 
although the trajectory of motion is detected using the 
motion detection method, but tracking the motion seems 
to be less stable and is highly affected by background 
noise. Measurements are unstable in terms of amplitude 
domain, however identification of dominant frequency 
was possible with less error as seen from Fourier 
amplitude plot. In case of corner tracking method and QR 
code tracking method, the motion seems to be much more 
stable and robust to background noise. An excellent 
agreement in the amplitude measurement made by smart 
devices and reference is observed and in all the cases 
identification of dominant frequency was possible. 
   However the corner tracking method may be difficult 
for practical applications in real field displacement 
measurement applications, since the corner targets are not 
unique feature and hence false corners could be easily 
detected due to which error in measurement is bound to 
occur. Nevertheless, QR code tracking method can have 
more practical applications, as this method is highly 
robust to background noise and because of its unique 
target feature, measurement is not affected. Therefore, 
considering QR code tracking method as the most 
accurate and reliable method amongst all the three 
methods, to further illustrate its reliability and range of 
measurement, more experiments were conducted to study 
some factors that might affect QR code detection. The 
effects of variation of following three factors were taken 
into consideration. 
 
1. Effect of variation of test frequency (i.e. velocity of 
    target object in motion) 
2. Effect of variation of target distance (i.e. size of target 
     in the view of smart device) 
3. Effect of variation of amplitude of vibration 
 
   For this purpose, the measurements of two different 
smart devices, having different CPU capabilities and 
camera resolution (iPhone 6 and iPod touch) were 
compared with the reference sensor. The shaking table 
was driven by sinusoidal signals of different frequencies 
from 0.1 Hz to 5.0 Hz and at each frequency, tests was 
conducted with varying amplitude and varying distance 
from target. This test setting is as shown in Table 2. The 
accuracy of displacement measurement by smart devices 
was evaluated in terms of cross correlation between the 
waveform measured by reference and smart devices. A 

Table 2. Shaking table test setting to study effect of variation 

               of frequency, amplitude and target distance 
Test 

Frequency Amplitude 
Distance (mm) 

100 200 300 400 

0.1 Hz 

±1 mm  
±5 mm 

±15 mm 

0.2 Hz 

±1 mm 
±5 mm 

±15 mm 

0.5 Hz 

±1 mm 

±5 mm 

±15 mm  

1.0 Hz 

±1 mm 

±5 mm 

±15 mm 

2.0 Hz 

±1 mm 

±5 mm 

±15 mm 

5.0 Hz 

±1 mm 

±5 mm     

±15 mm 

 

 

Figure 9. Effect of test frequency on waveform measurement 

                (at amplitude 1 mm and distance from target100 mm) 

 

 
Figure 10. Effect of target distance on waveform measure  

                (at amplitude of 1 mm and test frequency 0.2 Hz) 
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Figure 11. Effect of amplitude of vibration on waveform 

                  measurement (at constant target distance of 100 mm 

                  and test frequency 0.5 Hz) 

 
Table 3. Effect of test frequency on QR code images captured 

               during video sequence 
Test 
Freq

. 
Images captured in video sequence 

0.5 
Hz 

    

2.0 
Hz 

    

5.0 
Hz 

    

 
good correlation coefficient nearing ±1.0 signifies 
accurate and reliable measurement while a bad 
correlation coefficient nearing 0.0 signifies inaccurate 
and unreliable measurement. The circles marks shown in 
Table 2. signify that QR code was detected under the 
mentioned test settings, while cross marks signify that 
QR code was not detected. Therefore, it is clear that QR 
code recognition depends on all the above-mentioned 
factors. 
   Figure 9, 10 and 11 illustrates the effect of test 
frequency, target distance and amplitude of vibration on 
waveform measurement respectively. It is observed that 
with increase in test frequency, target distance and 
amplitude of vibration the cross correlation between the 
signals measured by smart device and reference decreases. 
This means that at lower frequency of vibration, 
(generally below 2 Hz) measurements from smart devices 

are comparable with that of reference but error increases 
as frequency increases. Similarly, with increase in target 
distance (i.e. decrease in size of QR code target in smart 
device’s view) and amplitude of vibration, error in 
measurement increases. This is because whenever the 
frequency of vibration increases, the real time images 
captured by smart device’s camera lose its focus and the 
images becomes blurred as shown in Table 3. and with a 
blurred image the accuracy and probability of QR code 
recognition decreases due to which error in measurement 
increases. 
 
4. CONCLUSION 
    
   The feasibility of smart device technologies for image 
process based displacement measurement and monitoring 
has been investigated in this study. The task of measuring 
real time displacement response was conducted by 
developing measuring application for three different 
methods of image processing i.e. motion detection; corner 
tracking and QR code tracking. In order to fully utilize 
the GPU capabilities of smart devices, the GPUImage 
library was used in developing the iOS app for motion 
detection and corner tracking methods.  
   Onboard calibration of the image pixel size to a given-
dimension target was implemented in the developed iOS 
apps. Similarly, various features for controlling camera, 
filters, graph settings and cloud transmission of measured  
data were incorporated in the app development. All the 
functions required for measuring the dynamic 
displacements of the target could successfully be operated 
in real-time. The performance of smart devices hardware 
and the iOS app developed herein were experimentally 
validated. 
 
(a) The test results showed that motion detection and 
corner tracking methods are highly sensitive to 
background noise and therefore is very difficult for 
practical applications in real field displacement 
measurement, while QR code tracking method is highly 
robust to background noise and hence has more practical 
applications.  
 
(b) From shaking table experiments, it was also 
confirmed that all these methods of image processing 
used in current study could only be applied effectively for 
long period displacement measurement (frequency 
smaller than 1.0 Hz).  Nevertheless, more study still 
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needs to be conducted in future and various other 
computationally efficient methods for tracking fast 
moving objects should be explored for more robust 
application in real time displacement measurement using 
smart devices. 
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