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1. INTRODUCTION

Structural control technology has been studied to
be effective in reducing seismic responses of
isolated bridges'”™. When isolated bridges are
subjected to ground motions with large intensity or
unexpected characteristics, not only the isolators but
also the columns undergo high hysteretic behavior
such that the resulting displacements of the decks
become excessively large, which may result in the
higher-than-expected seismic force due to the
pounding of decks and the P—& effect’. In the
previous studies™, semi-active control systems
were studied to effectively reduce seismic responses
of isolated bridges. However, the isolators were
regarded as either nonlinear elements or hysteretic
elements in only several studies with all the columns
being assumed to behave linearly. In reality, the
columns may exhibit hysteretic behavior under
extreme excitations. Hence the objective of this
study is to reduce the deck displacement of isolated
bridges with nonlinearity at both the columns and

isolators by using semi-active control technology.
One means of achieving a semi-active control is to

adopt a variable damper, in which the damping
coefficient can be regulated. The linear quadratic
regulator (LQR) optimal control algorithm and
sliding mode control algorithm are selected to
command the variable damper herein. A five-span
viaduct with high-damping-rubber isolators is
analyzed to evaluate the control effectiveness. The
results reveal that the variable damper can trace
most of the control forces demanded by the LQR
control algorithm as well as the sliding mode control
algorithm. The control performance in reducing the
deck displacement is outstanding using the sliding
mode control algorithm as compared with the LQR
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optimal control algorithm.

2. NONLINEAR ISOLATED BRIDGES

Assuming the deck of a typical isolated bridge is
rigid in the longitudinal direction, a column with the
effective deck mass on the top can be taken apart as
a unit for seismic analysis, as shown in Fig. 1. For
study of control effectiveness, the column-isolator-
deck system may be idealized as a two degree of
freedom lumped-mass system. A control device is
set between the deck and the column where the
isolators are installed.

The column and isolator are assumed to behave
nonlinearly, and the damping of the system is
assumed as linear viscous herein. The equations of
motion of the isolated bridge system may be
expressed as

Mi(r) + Cx(r) + FIx(1)] = Wi (0 +HU@®) (1)

in which x(7),x(¢),X(¢) are the displacement,
velocity and acceleration vectors; 5c'g(t) is the
absolute ground acceleration; M and C are mass
and damping matrices, respectively; F[x(7)] is the
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device

Fig.1 Analytical idealization - 2DOFs system.
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nonlinear stiffness vector; U(?) is the control force
generated by the control device, and 1} and H are
the location matrices of the excitation and the
control force, respectively.

The equations of motion by Eq. (1) can be written
based on a state space formulation as

L(1) = glZ(®)]+BU@)+ Wi, (1) ()

where Z(t) =[x(r) X(t)]T is the space-state vector;
g[Z(1)] is a nonlinear function of Z(z) . g, B and
W are defined as follows:

X
20— ;
glZ()] I:__M“I[Cj((t) +F[x(¢ )]J

B=| * w2’ 3
L ®)

3. CONTROL STRATEGIES

(1) LQR Optimal Control

In this algorithm, the control force U(¢) in Eq. (1)
is selected by minimizing the quadratic function,
over the duration of the excitation, as

7= ['12" )z + RU )

in which Q is a (4x4) symmetric positive
semidefinite weighting matrix and R is a positive
weighting scalar.

The optimal solution that minimizes the
performance index, as shown in Eq. (4), is obtained
under the constraint of the state equations of motion
by Eq. (2) as follows

U@ = -0.5RBPZ(=-GZ1t) (5

in which P is the solution of Ricatti equation
ASP+PA,-0.5PBR'B'P=-2Q . Note that the
constant Ricatti matrix P is obtained by linearizing
the structure at Z=0 as Ag=0g(Z)/0ZL|z-¢ ,
neglecting the earthquake excitation X,(¢t) and
assuming the transient part P equal to zero%).

(2) Sliding Mode Control

In sliding mode control, the response trajectory is
driven into the sliding surface where the motion is
stable”. In this study, sliding surface, S, is defined
as a linear combination of state vector Z such that

S= PZ@) (6)

For nonlinear structures, the nonlinear stiffness

vector F[x(¢)] in Eq. (1) can be separated into two
parts as

Fix()] = Kx(1)+Fx(1)] (N

in which K = pre-yielding stiffness matrix and
F[x(¢)] = nonlinear restoring force vector. The
space-state motion equations by Eq. (2) can be
written as

Z(t) = AZ®) - f[Z(O]+BU®) wag(t) (8)

where

A=t e Oy o] ©)

In the design of the sliding surface, the nonlinear
force vector f[Z] and the external excitation WX
are neglected. However, both f[Z] and Wi, are
taken into account in the design of the controller.
Sliding surfaces can be determined using pole
assignment method or LQR method”.

To design the controller, the following Lyapunov
function is considered

v=058"s (10)
The sufficient condition for the sliding mode to

occur is given by ¥ = 87§ < ¢ . From Egs. (6) and (8),
a continuous controller is given by

U(t) = oG - 84 (11)

where G=-(PB) 'P(AZ-f+E) ; A=S/PB .
Both « and & are specified by designers with
0<a<l.

(3) Saturated Control

When the control force is bounded by a max*imum
value Uy, , the saturated control force U (¢) is
given as

U@
U paxsign(U(1))

in which U(¢) is the active control force required by
Eq. (5) or Eq. (11).

U] < Upnax

U] 2 Upnax (12)

U ()= {

(4) Semi-Active Control

When a variable damper is used as the semi-active
control device, the control force V(¢) from the
variable damper is given by

V()= Sp(t)xp(t) (13)

where &, (¢) is the time-variant damping coefficient
and x,(¢) is the relative velocity of the isolator.

In semi-active control, the variable damper is
expected to provide the demanded control force
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U™ (#) by Eq. (12). Therefore, equating Eq. (12) and
Eq. (13) yields the demanded damping coefficient of
variable damper fb*(t) as®
& ()= Q_LQ
Xy (2)
It is noted that the control force cannot be
commanded directly but viscous coefficient has to
be regulated in the variable damper. The external
energy required for such control is generally much
smaller than that required for the active control.
When the damping coefficient of a variable
damper is bounded by a minimum value &,;, and a
maximum value &, , the viscous damping
coefficient &, () has the following constrains

(14)

gmin fb* s é:min
HEO= 186 fin<& <Cma (15)
gmax ‘fmax < ‘fb*

Therefore, the variable damper not only changes
the damping coefficient depending on feedback
structural responses to resemble an active system
but also functions as a passive energy dissipater.

4. TARGET VIADUCT

An isolated viaduct as shown in Fig. 2, which is
designed based on Japan Design Specifications of
Highway Bridges”, is analyzed here to investigate
the performance of structural control. The
superstructure consists of a five-span continuous
deck with a total length of 5@40 m = 200 m and a

5 x 40m=200m

width of 12 m. It is supported by four 12 m tall
reinforced concrete columns and two 9.5 m tall
abutments. Five high-damping-rubber isolators
support the deck per column and abutment.

For study of the control effectiveness, it is
idealized as a two degree of freedom lumped-mass
system. The effective mass of deck and column are
600 ton and 243.15 ton, respectively. The column
and the isolators are assumed to be perfect
elastoplastic and bilinear elastoplastic, respectively.
The initial stiffness of the column and the five
isolators is 112.7 MN/m and 47.6 MN/m,
respectively while the yielding displacement is
0.031 m and 0.016 m, respectively. The ratio of
post-yielding stiffness to initial stiffness of the
isolator is 0.19. The first and second natural periods
of the isolated bridge with the initial elastic stiffness
are 0.86 sec and 0.24 sec, respectively. The damping
ratios of the system are assumed 2% for both modes.

In simulation, the isolated bridge is subjected to
two near-field ground motions recorded at JMA
Kobe Observatory in the 1995 Kobe, Japan
earthquake and Sun-Moon Lake in the 1999 Chi-Chi,
Taiwan earthquake as shown in Fig. 3. The Bouc-
Wen hysteretic model'® is used to simulate the
restoring force of both the column and the isolator.

As shown in Tables 1 and 2, the peak deck
displacement reaches 0.24 m under JMA Kobe
ground motion and 0.55 m under Sun-Moon Lake
ground motion as uncontrolled. It is important to
note that the isolator exhibits high hysteretic
behavior and that the column has a high ductility of
eight and a residual displacement of 0.11 m under
Sun-Moon Lake ground motion, which results in the

Analytical unit

Fig.2 A continuous elevated highway bridge.
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Fig.3 Ground motion records: (a) JMA Kobe observatory, and (b) Sun-Moon Lake.
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same magnitude of residual displacement in the
deck.

5. SIMULATION RESULTS

With an actuator exerting the active control force
by LQR optimum control algorithm, weighting
matrix Q is diag{l,1000,1,1] with off-diagonal
elements to be zero and R is 3x107" in Eq. (4).
When using sliding mode control algorithm, the
pole assignment method is used to determine the
sliding surface where the poles are -30 and
—-10+25i. With the sliding mode controller given
by Eq. (11), & is set to be one and ¢ is varied to
lead the same peak control force as the LQR
controller. The peak responses for both the active
controllers are presented in Tables 1 and 2. It is
observed that both controllers are effective in
reducing the peak deck displacement under both
ground motions. Especially, the sliding mode
control achieves better control performance in
reducing the peak deck displacement and column
ductility than the LQR optimal control.

Through an extensive parametric study, it is found
that larger control force does not further decrease
even inversely increases the deck displacement and

results in larger column ductility and residual
displacement. To avoid such ineffective control,
saturated control is thus used based on Eq. (11). The
peak deck displacement responses under LQR
control and sliding mode control with saturation of
the control force, U, = 20% deck weight (1.176
MN), are presented in Tables 1 and 2. It is showed
that the peak deck displacement is generally the
same as that under active control  but that the
column residual displacement decreases even
though the peak control force significantly decreases.

A variable damper based on the LQR control
algorithm or the sliding mode control algorithm is
used to apply semi-active control force to the
isolated bridge. The upper and lower bound of the
viscous coefficient of the variable damper, &, and
&min i Eq. (15), is 1.5 MN/m/s and 0.375 MN/m/s,
respectively. Weighting parameters in Eq. (4) for the
LQR control and the sliding surface and controller
parameters in Eqs. (6) and (11) for the sliding mode
control are assumed as same as those of the previous
active control. The saturation of control force, U
is 20% of the deck weight.

Figure 4 compares the control force and the deck
displacement response of the isolated bridge among
uncontrolled system, active controlled and semi-

max »

Table 1 Peak control force and peak responses under JMA Kobe record.

Deck Isolator Column Column residual
Control force displacement ductility ductility  displacement

Control method (kN) (m) (m)
Uncontrol - 0.24 14 1.6 0.02
Active LQR control 1910 0.17 8 2.0 0.03
Active sliding mode control 1910 0.12 8 1.4 0.01
Active LQR control with saturation 1176 0.18 10 1.6 0.02
Active sliding mode control with saturation 1176 0.12 8 1.3 0.01
Semi-active LQR control with saturation 1176 0.17 9 14 0.01
Semi-active sliding mode control with saturation 1176 0.14 9 11 0.00
Passive control with maximum damping 1658 0.15 8 1.5 0.02

Table 2 Peak control force and peak responses under Sun-Moon Lake record.

Deck Isolator Column Column residual
Control force displacement ductility ductility  displacement

Control method (kN) (m) (m)
Uncontrol - 0.55 25 8.0 0.11
Active LQR control 1951 0.37 11 8.0 0.21
Active sliding mode control 1951 0.31 14 4.5 0.10
Active LQR control with saturation 1176 0.34 15 4.0 0.07
Active sliding mode control with saturation 1176 0.32 16 4.0 0.09
Semi-active LQR control with saturation 1176 0.34 16 34 0.07
Semi-active sliding mode control with saturation 1176 0.33 16 3.1 0.06
Passive control with maximum damping 2045 037 14 49 0.12
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active controlled systems using sliding mode control
algorithm under Sun-Moon Lake ground motion.
The damping coefficient of the variable damper is
also presented here. As observed from Fig. 4, the
control force by the actuator and the variable
damper is virtually the same except at few instants.
The force difference between two devices can be
attributed to two reasons. One is that the variable
damper is intrinsically an energy dissipation device
and cannot add energy to the structural system while
the actuator can generate arbitrary force no matter
how the control force provides energy. The other
reason is that the damping coefficient of the variable
viscous damper is bounded by Eq. (15). In spite of
slight discrepancy, the semi-active control achieves
similar performance to the active control. Under
semi-active control, the peak deck displacement of
the bridge reduces to 0.33 m and the residual
displacement reduces to 0.06 m, which are almost
identical to those under active control.

The peak responses of the semi-active control are
presented in Tables 1 and 2 as well. It is seen that
the semi-active control achieves comparable
performance in reducing the peak deck displacement,
peak column displacement and column residual
displacement to the active control. In addition,

the variable damper is set to maintain the maximum
damping coefficient &, at all times, called
passive control with maximum damping (PCMD).
The results reveal that the semi-active control based
on the sliding mode control algorithm is more
effective than PCMD under both ground motions.
The semi-active control based on the LQR control
algorithm presents better performance than PCMD
under Sun-Moon Lake ground metion but less
performance than PCMD under JMA Kobe ground
motion. However, it is noted that the semi-active
control generally achieves the best control
performance on the column residual displacement.

6. CONCLUSIONS

The effectiveness of seismic displacement
response control was studied for a nonlinear isolated
bridge exhibiting inelastic response at both the
column and isolator under near-field ground
motions. The semi-active control using a variable
damper based on either the LQR optimal control
algorithm or the sliding mode control algorithm,
was investigated and compared with the active
control. Analyzed was a five-span viaduct with

Tables 1 and 2 also show the peak responses while high-damping-rubber isolators. The following
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Fig.4 Comparison of the control force and deck displacement between active control and semi-active control based on
the sliding mode control: (a) control force, (b) damping coefficient of variable damper, and (c) deck displacement.



conclusions may be derived from the results
presented herein.

(1) The semi-active control with a variable damper
based on either the LQR control algorithm or the
sliding mode control algorithm is effective in
reducing the peak deck displacement and provides
comparable control performance to the active
control using an actuator.

(2) The semi-active control based on the sliding
mode control algorithm presents more effective
performance than that based on the LQR control
algorithm.

(3) The semi-active control generally shows better
performance than the passive control with setting
the variable damper to remain at the maximum
damping coefficient. The column residual
displacement is smaller under the semi-active
control than under the passive control with
maximum damping.
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