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Abstract

A model is presented for three-dimensional pounding
problems with friction. The contacting surfaces are
assumed to be planes and penetrations of contactor
nodes to target surfaces are allowed and utilized for
computing pounding reactions. The rules of relative
surface displacements are imposed directly to satisfy
the compatibility conditions of contacting bodies. On
considering the pounding problems of bridge girders
under earthquakes, the paper implements the model in
a general-purpose dynamic analysis program for
bridges. Experiments of pounding have also been
conducted for verifying this model. The applicability
of the model is illustrated by selected results of
experiments and computations.

Introduction

Unseating of bridge girders/decks during earthquakes
is strongly harmful to the usability of bridges.
Evidence shows that in addition to damage along
longitudinal direction, lateral displacement of bridge
girders caused by pounding can also lead to the
damage of unseating. To take into account of this
effect in analysis, a 3D model of pounding between
girders is needed. :

Several solution methods are available for
contact/pounding problems. According to problems
oriented, the methods can be categorized into two main
groups as follow:

(1) capable of arbitrary contact of bodies/surfaces:
In Reference 1, a solution method of 3D contact
problems with friction has been presented based on
Lagrange multiplier technique. The merit of this
method is that it can be applied to a wide range of
static and dynamic problems with material and
geometric non-linearities. Relatively complicated
algorithm is a demerit. Moreover, the method is

unsuitable to be used directly to a system composed of
bar elements.

(2) to deal with pounding of two prescribed points:
A method for point-to-point pounding problem of
buildings using Lagrange multiplier method is given in
Reference 2. Post-contact conditions of impulse-
momentum relationship have been discussed in this
paper. Reference 3 gives an approach for point-to-
point pounding in buildings on considering energy loss
during impact. The same method has been used for
analysis of pounding between bridge girders in
Reference 5. A method for pounding between two
adjacent bridge segments by applying the law of
conservation of momentum and energy directly to
post-pounding conditions is also presented in
Reference 4. Among this group of method, clear
physical meaning and simple algorithm are merits. The
main demerit is that 3D arbitrary contact cannot be
simulated.

As the common adopted method for pounding between
girders is to use contact elements, which is for 1D
fixed point-to-point case, a 3D contact-friction model
for the pounding problem has been developed by this

paper.

3D contact-friction model for pounding
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Fig. 1 Bridge girders in arbitrary contact
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The problem considered herein is a general case of
pounding by two bridge girders. As shown in Fig. 1,
two girders contact with each other arbitrarily. They
are referred as contactor body and target body where a
contact happens between contactor node and target
surface.

A 3D contact-friction model for the problem is
illustrated in Fig. 2. The target surface, named as abed,
is assumed as a rigid plane (The surface is not
necessary to be a rectangle). OXYZ is the inertial
coordinate system. Vector n is the outer normal vector
of the target surface. Node k is the contactor node at
the contactor body, which penetrates into the target
surface during contact. Point p is the physical contact
point at the target surface abcd.

(o

(a) Sketch of the model
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(c) Contact force at node k by the universal spring
Fig. 2 Illustration of the 3D contact-friction model

During contact the position and velocity at point p are
functions of the target surface, which can be described
in eqn. (1) and (2). The material overlaps at node K, Ay,
and the relative velocity of node k to point p, Vi,, can
be calculated by eqn. (3) and (4) respectively.

p=p(a,b,c,d) (1
V, =V, (Va, Vy, Ve, Vy) @
A, =X, =X, 3)
Vip =V -V, (4)

The model utilizes material penetrations to compute
forces during contact. Upon contact, a universal spring
Kcnt between node k and point p is created to compute
the force of contact. Two dashpots, C and C;, are also
applied to node k for simulating energy loss during
contact (See Fig. 2(b)). The contact force at node K,
F\, can be computed by eqn. (5) and be divided into
normal and tangent components (Fila and Fyl;
respectively) as eqn. (6), where vector n is the outer
normal vector of the target surface and vector t is a
projection vector of Fy to the target surface. (See Fig.

2(c)).

F =Ko - Ak ()

F, =Fk|n+Fk[, (6)

Status of contact

The relative position between contactor node k and
target surface abcd is utilized to identify a contact.
The inside and outside of the target body is determined
by n, the outer normal vector of the plane, which
indicates the outer direction of the target body (See Fig.
2(a)). A contact happens when the contactor node k
passes through (goes inside the target body) the target
surface and ends when node k moves out of the surface
(outside). During contact, status can be divided into
stick contact and slide contact. The condition of stick
and slide contact is decided by the ratio of tangent
component of the contact force |[Fy|{ to the normal one
|Fylal (eqn. (7a), (7b)). The idea is illustrated by Fig. 3.
A cone shows the maximum static friction the target
surface can supply according to the normal force. If
the contact force vector is inside the cone, the relative
movement between the node and the surface is
prevented due to friction force. Therefore the node
sticks to the surface during contact. Otherwise, slide
will happen.

Stick condition: IFk |t| < #S’Fkln! (7a)

Slide condition:

Rlfzefel| o

M - static friction coeff.
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Fig. 3 Condition to decide status of stick and slide

Constraints on surface displacements due to
contact

Geometrical compatibility conditions must be satisfied
when two bodies come into contact. The conditions of
constraints for stick and slide contact are illustrated
with Fig. 4. In case of stick contact, node k will move
towards point p as the action of the universal spring
Kcnt (Which is set between k and p); in slide contact, in
additional to the component of movement towards
point p, node k will have a trend to move within a

plane inside and parallel to the target surface. As a

consequence of slide, the physical contact point p will
be updated to point p”in accordance with the new
position of node k, k', by projecting k” to the target
surface.

c,d c,d
p p’
Kk K_.4P " }p
e . M
a,b ab

(a) In case of stick contact (b) In case of slide contact

Fig. 4 Constraints on displacements.

Contact forces at contactor node

Contact forces are calculated separately for stick and
slide conditions. As shown in eqn. 8, in the case of
stick contact, the force at node k, Ry, consists of the
contact force Fy (by spring K¢n) which is given by eqn.
(5) and damping forces at normal and tangent
directions F¢, and F, (by dashpots C and Cy)
according to eqn. (9a) and (9b). In slide condition, the
force R is composed with the normal component of
contact force Fy,, normal damping force F, and
kinetic friction Fy|, at tangent direction. Fg; is given in
eqn. (9¢) and its direction is at the reverse way of the
tangent component of relative velocity V.

Stick condition: R, =F, +F| +F] (8a)
Slide condition: Ry =F| +F| +F|  (8b)
R, =-C Vip| (9a)
F|=-C V| (9b)
Fel, =4 '|Fk|.. kph (9¢)

ke

M, - kinetic friction coeff.

Contact forces at target surface

Contact forces at target surface are obtained by
applying the force at the contactor node to the target
surface. As shown in Fig. 5, the forces are composed
of forces at the four corners of the quadrilateral (eqn.
(10)). The contact forces at the target surface are given
by eqn. (11), where [T] is a distributed matrix by
linear interpolation according to static equilibrium.

R: 23

Fig. 5 Contact forces at target surface

R,
Rb
Rtargel_surface = R (IO)
c
Rd
thirget_surface = [TI— Ry ) (1)

Governing equations of motion

To apply the model to dynamic time-history analysis,
incremental equilibrium equation of motion for
itcration (i) at time t+At is as follow:

MAU(I) +CAU(I)+I+AI KAu(i)=I+AI R

_MH—AI U(i—l) _CH-AI U(i—l)_r+A/ F(i—l) (|2)

8 R (i-h

ont

+
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where

M, C, K.— mass, damping and stiffness matrices
respectively,

AUV, AU AU~ incremental vectors of
accelerations, velocities and displace-
ments at iteration (i) respectively,

A gUN A GUED _ vectors of accelerations and

velocities after iteration (i-1) respectively,

&' R —external load vector at time t+At,

+& 0D _ restoring force vector after iteration
@i-1),

HURW™ —  vector of contact forces after

iteration (i-1).

The vector of contact forces R, is obtained with eqn.

(13) and (14) by summating contact forces of all
contact pairs, where a contact pairs consists of a
contactor node and corresponding nodes on target
surface.

ch( =2k:chllk (]3)
R R,
Rady=ip ©  t=1Rs (14)
R(arget_surface R
[
Rd

Parameters of the model
Parameters of the model are chosen as follow:

The axial stiffness of the contactor body can be used as
the stiffness of the universal spring Kcn. As presented
in eqn. (15):

EA
Kcnl =_L— (]5)

where E, A and L are modulus of elasticity, cross
section area and length of the contactor element
respectively.

The damping ratio C and C; can be determined
according to the restitution coefficient at normal and
tangent directions by eqn. (16) and (17).

M M
C=2E1k 12
w MM, (16)
_ ~Ine
an

7 4 (iney

where,
M,, M; — masses of the two bodies in contact

Ken — stiffness of the universal spring

e — restitution coefficient

&€ — damping ratio according to restitution
coefficient e :

The range of restitution coefficient is between | and 0,
which represents the pounding from elastic to plastic.
The corresponding range of £ is between 0 and 1.

Verifications of the model

To ensure the applicability of the model, theoretical
and experimental verifications have been conducted.

Theoretical verification

A test of adjacent rods with point masses on free
vibration was selected. In the test (referred as testl) an
initial displacement, which is given to point mass m1,
starts free vibration of these two masses where energy
is transferred in between as pure elastic impacts (see
Fig. 6). Theoretical solution of the problem is shown in
Fig. 7. To conduct an analysis, parameters of the
model were chosen as Fig. 6. Two time intervals were
used for time-history analysis. Results in Fig. 8. show
that the accuracy of solution can be obtained by
choosing small time interval.

m1=m2=2 (kg)
a~10.25 (rad/s)
k=maf=210.125 (N/m)
Uo \ up=0.1 (m)
\ Parameters:
K.=1.5474x10° (N/m)
C=C=0
k At=0.002,
0.0001 (s)
*
Fig. 6 testl - two point masses on free vibration
012 Theoretical results [:ml
0.09 A e £, /
0.06 4-eoeees ! \.‘ 1,

:”‘ ]
N
o

-0.06 /
-0.09 A i/

Time (s)

Fig. 7 test] — theoretical solution (displ. of masses)
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dt = 0.002 (s) [—mt  m

Time (s)

(a) At=0.002s

dt = 0.0001 (s) —m1 —m2

Time (8)

(b) At=0.0001s

Fig. 8 test] — analytical results

Experimental verifications

Fig. 9 the experiments

Experiments have also been conducted to verify the
model in more complicated 2D cases *. Fig. 9 shows
the method to conduct the experiments. A video
camera is used to measure displacements of the model
girder (three components in 2D) using image
processing techniques. Fig. 10 shows a case of the
experiments with one model girder, which is supported
by rubber supports, and an abutment on a shaking table.
The experiments (referred as test2) were taken in 1D
and 2D cases according to the angle of excitation.

Fig. 10 test2 - pounding between model girder and abutment

contact pairs
model girder Y '
\

0 X
- -
4 t
excitation

bumper plane A \bumper
Fig. 11 test2 — analytical model

Data for computation are as follow:

m=2 (kg), 1=6.8x10~ (kgm?), K¢,=1.5474x10° (N/m),
C=220.287 (Ns/m) (as ¢=0.4), C,=26.3558 (Ns/m) (as
¢=0.9), u=0.2, w=0.15, a=22.5° (in 2D case);
At=0.001 (s), excitations: sine waves.

Fig. 11 illustrates an analytical model of the
experiments. The mass and rotational inertia of the
model girder are concentrated at its center.
Dimensions of the girder are simulated with rigid bars
in “T" shape. To compute the effects of pounding, two
contact pairs are placed in the analytical model.

Comparisons of experimental data and analytical
results are given in Fig. 12 and Fig. 13 for ID and 2D
cases, respectively. Results of pounding can be seen
from these figures. Agreements are good in translating
displacements and relatively good in rotating
displacement.
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Fig. 12 test2 (1D casc) — result comparison
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Fig. 13 test2 (2D case) - result comparison

Conclusions

A 3D contact-friction model has been presented in this
paper. On considering the pounding problem between
bridge girders, an algorithm for solution has been
developed. Theoretical verifications (in 1D case) and
experimental verifications (a model girder and an
abutment in 2D case) have also been conducted. The
applicability of the model can be seen from the results
of computations. This model is casy to be combined
with the commonly used mecthods of time integration
and is capable of dealing with the pounding problems
between bridge girders.
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