繰り返し載荷実験による関東ローム で埋戻した道路の沈下量予測

南形 英孝1・吉崎 浩司2・萩原 直人3・赤木 寛一4

¹正会員 東京ガス株式会社 パイプライン技術センター(〒230-0045 横浜市鶴見区末広町一丁目 7-7) E-mail:minagata@tokyo-gas.co.jp

²正会員 工博 東京ガス株式会社 パイプライン技術センター(〒230-0045 横浜市鶴見区末広町一丁目 7-7)
³工博 東京ガス株式会社 パイプライン技術センター(〒230-0045 横浜市鶴見区末広町一丁目 7-7)
⁴正会員 工博 早稲田大学理工学術院教授(〒169-8555 新宿区大久保三丁目 4-1)

ガス導管等の埋設に伴う道路上の掘削工事において,路床の埋戻しに建設発生土を利用することは,環境 負荷の低減に大きく貢献する.しかし,関東地方に広く分布する関東ロームを埋戻しに用いるためには,輪 荷重の繰り返し作用によって路面に生じる沈下特性を調べる必要がある.そこで,実験室にて関東ロームに 対して種々の応力を繰り返し載荷する実験を実施し,その結果をもとに路面の沈下量を予測する手法を考案 した.さらに,実規模にて関東ロームで埋戻した道路に,実車両を繰り返し通過させる実験を実施し,車両 の通過台数と路面の沈下量の関係を調べた.沈下量の予測値と実規模実験の計測値を比較した結果,輪荷重 の繰り返し作用に起因する関東ロームで埋戻した路面沈下量を合理的な範囲で予測できることが示された.

Key Words : Kanto loam, reuse, cyclic loading, subgrade, subsidence

1. はじめに

わが国においては、毎年多量の建設発生土が排出され ているものの、その多くが再利用されずに廃棄されてい る.そのため、埋め立て地や処分場の容量は年々減少し ており、将来不足することが懸念されている¹⁾.特に、都 市部においては、新たな廃棄用地の確保が困難であるこ とから、現場内あるいは現場間での利用等による再利用 率の向上が強く求められている.さらに、土砂を運搬す る車両から排出される CO₂や NO_x等による大気汚染や、 新材の採取による環境への影響も問題視されている²⁾.

このような状況から,2002年5月には国土交通省において「建設リサイクル推進計画2002」³⁾が策定されている. その中で,建設発生土に関しては,2010年度の公共工事における有効利用率を90%とする目標が定められており,これを達成すべく建設発生土の利用促進のための環境整備等が進められている.

ところで、ガス導管の埋設のような道路上での比較的 小規模な工事においては、掘削によって排出された建設 発生土を処分場や再処理プラントまで運搬して廃棄し、 路床の埋戻しには新たに購入した砂や改良土を用いてい る. このような施工を行う理由は、低品質な材料によっ て埋戻しを行うことにより、その後の輪荷重の繰り返し に伴って路面が徐々に沈下し、大きな沈下に至るのを防止するためである。特に、関東地方に広く分布している 関東ロームは、掘削により乱されたときの強度の低下が 著しいという特徴を持っているため⁴、一般的にそのまま 埋戻しに用いるのに適していないとされている。国土交 通省が定める建設発生土の土質区分基準⁵によれば、掘削 により乱された関東ロームは、コーン指数により第3種 または第4種建設発生土に分類され、いずれも道路(路床) 盛土に利用する場合には、施工上の工夫または安定処理 が必要とされている。

しかし、輪荷重の繰り返しによって生じる路面の沈下 量は、埋戻し材料の品質だけでなく、施工後に繰り返さ れる輪荷重の大きさによっても異なる^{の7)}.したがって、 建設発生土が関東ロームであっても、その土質条件およ び輪荷重の条件によっては、それをそのまま埋戻しに利 用することができると考えられる⁸⁾.関東ロームを含めた 建設発生土を、そのまま埋戻しに利用することにより、 建設発生土量やCO₂やNO_x等の削減による環境負荷の低 減および工事コストの削減が可能となり、非常に多くの メリットが得られる.ただし、大きな沈下に至らないた めの埋戻し材料の条件および輪荷重の条件の組み合わせ は明らかとなっていない.

そこで、本研究では、関東ロームを対象として輪荷重

に相当する応力を繰り返し載荷する実験を実験室にて実施し、その結果を用いて輪荷重の繰り返しによって生じる路面の沈下量を予測する手法について検討した. さらに、実規模にて関東ロームで埋戻した道路に、実車両を用いて輪荷重を繰り返し作用させる実験を実施し、沈下量の予測値と実験における計測値の比較を行い、沈下量の予測手法の妥当性を検証した.

2. 関東ロームの締固め特性

道路を掘削し,再び埋戻したときの路床土の状態は,路面の沈下量に影響を及ぼす要因のひとつである.関東 ロームで埋戻した場合の路床土の状態を明らかにするため,実験室にて締固め実験を実施した.

(1) 土質試験結果

表-1 および図-1 に、本締固め実験に用いた関東ロームの土質試験結果(JGS 0051, JIS A 1202, JIS A 1203, JIS A 1205, JIS A 1211, JIS A 1228 に基づく)および粒径加積曲線(JIS A 1204 に基づく)をそれぞれ示す.一般的な武蔵野ロームは、土粒子密度が 2.80~2.88(g/cm³)、含水比が 100

名称	砂まじり火山灰質粘性土
土質分類	VH ₂ -S
土粒子の密度 ps(g/cm ³)	2. 832
自然含水比(%)	102.5
塑性限界 $\omega_{L}(\%)$	85. 3
液性限界 $\omega_p(\%)$	126. 7
塑性指数 lp	41.4
設計 CBR (%)	0. 7
コーン指数(kN/m ²)	334

表-1 土質試験結果

図-1 粒径加積曲線

~120(%)⁴程度とされており,本実験に用いた関東ローム は、これに近い値を示していた.また、この関東ローム 採取時のコーン指数は 334(kN/m²)であったことから、国 土交通省が定める建設発生土の土質区分基準⁵において は、第4種建設発生土に分類される.

(2) 関東ロームの締固め実験

a)実験方法

表-2 に供試体の作成条件を示す. 関東ロームを締固め る際の含水比の影響を調べるため,供試体の含水比を 90%(実験ケース:A1~A4),100%(B1~B4),110%(C1 ~C4)となるように調整し,内径100mm,高さ127mmの 鋼製の円筒モールドに3層(各層約40mm)で詰めて供試体 を作成した. 締固めエネルギーの影響を調べるため,供 試体ごとに突固め回数を変えた.なお,関東ロームの含 水比を低減させる場合には,急激な乾燥による特性の変 化を抑制するため,自然乾燥させた後に加水した.

次式(1)を用いて供試体の締固めエネルギーを算定した.

$$E_c = \frac{W_R \cdot H \cdot N_B \cdot N_L}{V} \tag{1}$$

ここで, E_c : 締固めエネルギー(kJ/m³), W_R : ランマ重量 (kN), H: ランマ落下高さ(m), N_B : 層当たりの突き固め 回数, N_L : 層数(層), V: 突固めた供試体の体積(m³)

供試体を作成した後、それぞれの乾燥密度(JIS A 1225 に基づく)と飽和度を調べ、これらの値と含水比および締 固めエネルギーの関係を調べた. さらに、同じ条件で作 成した供試体に対して一軸圧縮試験(JIS A 1216 に基づく) を実施し、一軸圧縮強度と含水比および締固めエネルギ ーの関係も調べた.

b)実験結果

図-2 に締固めエネルギーと乾燥密度の関係を示す.ケース A~ケース C について比較すると,低含水比の供試

図-2 締固めエネルギーと乾燥密度との関係

表-2 供試体の作成条件

ケース	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4
試料	砂まじり火山灰質粘性土(VH ₂ -S)											
含水比 w(%)	90.6	88.9	89.2	90.1	100.8	101.5	99.3	98.2	110.8	108.9	109.1	109.4
ランマ重量 W(kN)	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
ランマ落下高さ H(m)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
層当たりの突固め回数 N _L (回)	5	13	25	40	5	13	25	40	5	13	25	40
層数 N _B (層)	3	3	3	3	3	3	3	3	3	3	3	3
締固めエネルギー E _c (kJ/m ³)	110.4	286.9	551.8	882.9	110.4	286.9	551.8	882.9	110.4	286.9	551.8	882.9

図-3 締固めエネルギーと飽和度との関係

図-4 締固めエネルギーと一軸圧縮強度との関係

体ほど締固め後の乾燥密度は高くなる.また,締固めエ ネルギーが110.4 (kJ/m³)のときと882.9 (kJ/m³)のとき とを比較すると,低含水比のものほど乾燥密度の増加量 が大きいことがわかった.このことから,低含水比の関 東ロームは,高含水比のものよりも締固めの効果が高い と言える.

図-3 に締固めエネルギーと飽和度の関係を示す.ケースA~ケースCのいずれにおいても、締固めエネルギー286.9(kJ/m³)以上のときの飽和度は94%~97%の範囲であった.

図-4 に締固めエネルギーと一軸圧縮強度の関係を示す. ケース A~ケース C で比較すると,一軸圧縮強度は低含 水比のものほど高いことが確認された.また,ケース A, ケース B については,締固めエネルギー286.9(kJ/m³)にお いて一軸圧縮強度は最大となり,締固めエネルギーがそ れよりも大きくなると一軸圧縮強度は徐々に低下した.

本実験から得られた、含水比、締固めエネルギーと乾燥密度、飽和度および一軸圧縮強度の関係は、既往の調査⁹においても報告されているように相互に整合した結果であると言える.

c)関東ロームの転圧方法の検討

本研究に用いた関東ロームを、機械式のランマを用い て締固める際の最適な転圧方法について検討した.

前項に述べた締固めによる一軸圧縮強度の低下は、過 剰な締固めエネルギーの付与により、関東ローム中の吸 着水が自由水化し、土に水を加えたような状態となり、 軟弱化したために発生したと考えられる⁴. この性質が、

表-3 検討に用いた機械式ランマの仕様

エンジン	2 サイクルエンジン
出力(W)	3000
打撃回数(回/sec)	10
重さ(kg)	62
打撃板	スチール製

表4	機械式 ランマの 締固めエネルギー
11 4	版 (1) / / / / / / / / / / / / / / / / / / /

掘削幅	敷きならし厚	転圧回数	締固めエネルギー
(mm)	(mm)	(回/層)	(kJ/m³)
400 400 600 (1 層)	1	332.0~377.5	
	300 (2 國)	2	664.0 ~ 755
	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	3	996.0~1132.5
	600 (1 層)	1	166.0~188.8
		2	332.0~377.5
		3	498.0~566.3

図-5 転圧回数1回(1往復)

関東ロームの埋戻しを困難にしている要因のひとつとなっている.したがって、関東ロームを用いて路床を埋戻す場合には、締固めエネルギーの調節が必要である.

本研究で用いた関東ロームについては、締固めエネル ギーが約 300(kJ/m³)のときに一軸圧縮強度が最大となり、 それ以上の締固めエネルギーを加えると軟弱化すると推 定される.したがって、約 300(kJ/m³)の締固めエネルギー により関東ロームを締固めることにより、路床土を軟弱 化させることなく支持力を高め、最も適した埋戻し状態 とすることができる.

表-3 に本検討に用いた機械式ランマの仕様を示す.こ のランマを用いて砂質土を転圧したときの,打撃回数1 回あたりの締固めエネルギーは66.4~75.5(J)¹⁰である.ま た,図-5 に示すように,掘削穴を1往復転圧した状態を 転圧回数1回と定義した.実際に長さ1.0m,幅0.4mの 掘削穴を関東ロームで埋戻し,地表面を転圧したときの 転圧回数1回の所要時間は約60秒であった.そこで,転 圧回数1回のときの機械式ランマの打撃回数を600回と した.

以上の条件で,敷きならし厚および転圧回数をパラメ ータとして,路床土が受ける単位体積あたりの締固めエ ネルギーを算定した. 表-4 に締固めエネルギーの算定結 果を示す.その結果,敷きならし厚 300mm の場合には転 圧回数1回のとき,敷きならし厚 600mm の場合には転圧

表-5 供試体の作成条件

ケース	Α	В	С		
土粒子の密度(g/cm ³)	2. 832				
飽和度 Sr (%)	95. 0				
乾燥密度pd(g/cm ³)	0.767 0.707 0.660				
含水比ω(%)	90. 3	100. 8	110. 4		

回数2回のときに締固めエネルギーが332.0~377.5(kJ/m³) となり,路床土は最も適した埋戻し状態に比較的近くな る.ただし,敷きならし厚が大きい場合,転圧力が路床 の下層部まで十分伝達されず,表層部のみが過転圧され た状態となる可能性がある.したがって,本実験に用い た関東ロームを,機械式ランマを用いて埋戻す場合は, 敷きならし厚を300mmとし,転圧回数1回で転圧するの が適切である.

3. 繰り返し載荷実験

輪荷重の繰り返し載荷によって生じる路面の沈下量を 予測するため,繰り返し載荷実験を実施した.本実験で は,前章の締固め実験に使用したのと同じ関東ロームを 用いて作成した供試体に対して鉛直応力を繰り返し載荷 し,供試体の土質条件,載荷する応力の大きさおよび回 数と供試体に蓄積される鉛直ひずみ量の関係を調べた.

(1) 実験条件

a) 供試体の作成

表-5 に供試体の作成条件を示す.前章に述べた締固め 実験の結果,関東ロームを締固めた後の一軸王縮強度は, 締固めエネルギーおよび含水比によって異なることが明 らかとなった.また,一軸王縮強度が最大となるときの 飽和度は約 95%であった.そこで,締固め実験において 使用したのと同じ関東ロームを,含水比がそれぞれ 90% (ケース A), 100%(ケース B), 110%(ケース C)となるよう に調整し,十分締固めた状態を想定して飽和度 95%とな るように鋼製の円筒モールド(内径 100mm,高さ 127mm, 内面にシリコングリスを塗布して摩擦低減を図ってい る)に詰めて供試体を作成した.なお,含水比を低減させ る場合には,締固め実験と同様に自然乾燥させたのち加 水した.

b)載荷方法

図-6 に繰り返し載荷実験に使用した装置の概要を示す. 作成した供試体の上面と下面にポーラスストーンを設置 することにより,供試体が排水・排気条件となる状態と した.この供試体に対して,容量980kPaの電空変換器(圧 縮側:日本ムーグ製 J813-004,伸張側:FAIRCHILD 製 T6000-06U)を介して,鉛直応力を繰り返し載荷した.

図-7 に本実験における応力の載荷方法を示す.まず, 応力を $\sigma_{\min}+\Delta \sigma/2$ まで加え,その後,最小応力 σ_{\min} お よび最大応力 σ_{\max} が一定となるように,周波数 1Hz の正

図-6 繰り返し載荷実験における装置概要

弦波形 11)にて、応力を10万回まで繰り返し載荷した.

最小応力 σ_{\min} については、生活道路の一般的な舗装構 造であるアスコン 35 型を想定し、鉛直土圧の平均値に相 当する深さ0.462mにおける静止土圧である9.2kPaとした. なお、静止土圧の算定においては、アスファルトコンク リートの厚さを 0.1m、砕石(M-40)の厚さを 0.1m、砕石 (C-40)の厚さを 0.15m、関東ロームの厚さを 0.112m とし た.各材料の密度は、アスファルトコンクリートでは 2.367(g/cm³)、砕石(M-40)では 2.248(g/cm³)、砕石(C-40)で は 2.188(g/cm³)、関東ロームでは 1.368(g/cm³)とした.

また,最大応力 σ_{max}は,10tトラック(車両総重量98.1kN, 積載無し)の後輪荷重 39.3kN によって,路床に生じる最大 鉛直応力を考慮して 23.6kPa, 62.5kPa, 101.3kPa とした.

c)計測方法

供試体に作用する荷重の大きさを、ロードセル(容量: 1000N,東京測器製 TCLZ-1000N)を用いて計測した.また、繰り返し載荷した応力が、 $\sigma_{mn}+\Delta\sigma/2$ となるときの 供試体上面の初期位置からの変位量 $\Delta l \epsilon$,軸変位計(容量: 30mm,東京測器製 DDP-30A)を用いて計測した.な お、次式(2)に示すように、計測した変位量 $\Delta l \epsilon$ 供試体 の初期高さ L で除した値を、供試体に蓄積されたひずみ ϵ と定義した.

$$\varepsilon = \frac{\Delta l}{L} \tag{2}$$

図-11 載荷した鉛直応力の最大値とひずみとの関係

(2) 実験結果

図-8~図-10 に各ケースにおける繰り返し載荷回数と 供試体に蓄積されたひずみの関係を示す.実験の結果, ひずみは載荷の初期段階に大きく増加するものの,載荷 回数が1万回に達すると増加量は極めて微小となり,ほ ぼ一定のレベルとなった.このことから,1万回以上載 荷した後のひずみは,載荷した応力の最大値に依存する ことが明らかとなった.

図-8~図-10の実験結果のうち、繰り返し載荷回数 10 万回時におけるひずみと繰り返し載荷した鉛直応力の最

図-12 沈トのメカニズムおよび道路のモデル(アスコン 35 型)

図-13 タイヤの接地圧および路床における鉛直応力

大値 σ_{max} の関係を図-11 に示す. その結果, ひずみは鉛 直応力の最大値 σ_{max} と正比例の関係にあり, 含水比が高 いほどその傾きは大きくなることがわかった.

4. 沈下量の予測

第3章に述べた繰り返し載荷実験の結果を用いて,輪荷重の繰り返しによって生じる路面の沈下量を予測する 方法について検討した.さらに,実規模にて関東ローム で埋戻した道路に,実車両を繰り返し通過させる実験を 実施し,その結果と予測値とを比較することにより予測 手法の妥当性を検証した.

(1) 沈下量の予測

a) 沈下のメカニズム

図-12 に沈下量の予測において仮定した沈下のメカニ ズムおよび道路のモデル(アスコン 35 型)を示す.本予測 においては,埋戻した路床部分(路床厚 600mm)に輪荷重 の繰り返しによるひずみが蓄積され,路面が沈下すると 仮定した.なお,舗装部分(舗装厚 350mm)に蓄積される ひずみは,路床部分に蓄積されるひずみと比較して極め て小さいと考えられることから,完全な剛体であるとみ なし,この部分には輪荷重の繰り返しによるひずみは蓄 積されないものとした.

b)輪荷重による鉛直応力

車両が路面を通過するときに舗装および路床に発生する鉛直応力 σ_z を算定した. Foster と Ahlvin¹²は,輪荷重がタイヤの空気圧 p とタイヤの接地面積の積と釣り合うという関係から,図-13 に示すようにタイヤの接地圧 pがタイヤの接地面積と同じ面積をもつ半径 a の円の面積

図-15 後輪荷重による鉛直方応力 σ_z と深さ z との関係

に等しく分布すると考え,輪荷重による鉛直応力 $\sigma_z e^{2}$ 析的に求めた. 図-14 に接地半径 a,深さ z,タイヤの空 気圧 p の百分率で表した鉛直応力 σ_z およびタイヤ中心か らの距離 r の関係図¹⁰⁾を示す.また,この関係図および タイヤの接地圧を用いて,乗用車(車両総重量 9.8kN,タ イヤの接地圧 343.4kPa)の後輪荷重 3.9kN および4t トラッ ク(車両総重量 39.2kN,タイヤの接地圧 637.7kPa)の後輪 荷重 15.7kN による鉛直応力 σ_z (車輪の中心からの距離 r =0)を算定した.図-15 に算定結果を示す.なお,タイヤ の接地圧 p はタイヤの種類によって異なるものの,本検 討では JIS D4202 および JIS D6401 を参考に設定した.

c) 路面の沈下量予測

第2章および第3章の実験において使用した関東ロームを用いて路床を埋戻し、舗装を構築した後に輪荷重の繰り返しを十分受けたときの路面の沈下量を予測した. 第3章に述べた繰り返し載荷実験において、繰り返し載荷回数が1万回以上になると、ひずみの増加量は極めて 微小となった.このことから、繰り返し載荷回数が10万 回のとき、路床は十分な繰り返し載荷を受けた状態とみ なせる.そこで、図-11に示した載荷した鉛直応力の最大 値とひずみの関係および図-15に示した後輪荷重による 鉛直応力と深さの関係を用いて、埋戻しに用いる関東ロ ームの含水比および繰り返し作用する輪荷重が異なる条 件での路面の沈下量を予測した.なお、関東ロームの自 然圧密および舗装を構築する際の転圧による沈下は考慮 しないこととした.

図-12 に示したメカニズムによって沈下が発生すると 仮定した場合,路面の沈下量 δ (mm)は,輪荷重の繰り返 しによって生じるひずみを路床の深さ方向に 350mm か ら 950mm まで積分することによって算定できる.この算

表-6 路面の沈下量の予測結果

	含水比(%)				
	90. 3	100.8	110. 4		
荷重条件	繰返し載荷回数 10 万回 における沈下量 (mm)				
乗用車(9.8kN)	0.6	1.9	3.8		
4t トラック (39. 2kN)	2.3	7.1	14.1		

定式は下式(3)で表される.

δ

$$=\int_{350}^{950}\varepsilon(z) dz \qquad (3)$$

ここで, ε(z): 輪荷重の繰り返しによって深さ z の位置 に蓄積されるひずみ, z: 深さ(mm)

第3章に述べた繰り返し載荷実験から得られた最大鉛 直応力とひずみの関係を用いて、輪荷重の繰り返しによって深さzの位置に蓄積されるひずみ $\epsilon(z)$ を求めた. 図 -11において、最小自乗法を用いて含水比ごとに切片 0 の直線で近似して得られた式を $\epsilon(z)$ とした.以上の手順 により得られた含水比ごとの $\epsilon(z)$ を式(4)~式(6)に示す.

- $\varepsilon_{w=90.3\%}(z) = 0.0189 \times \sigma_{\max}(z) \qquad (4)$
- $\varepsilon_{w=100.8\%}(z) = 0.0582 \times \sigma_{\max}(z) \tag{5}$

$$\mathcal{E}_{w=110.4\%}(z) = 0.1161 \times \sigma_{\max}(z)$$
 (6)

ここで, *σ_{max}(z)*:輪荷重によって深さ *z*の位置において 生じる最大鉛直応力(kPa)

以上の式を用いて、関東ロームおよび輪荷重の条件ご とに、繰り返し載荷回数10万回における路面の沈下量を 予測した. 表-6 に路面の沈下量を予測した結果を示す. 予測の結果、乗用車および4tトラックが走行する道路に おいては、埋戻しに用いた関東ロームの含水比が比較的 高い110%の条件であっても、路面の沈下量は14mm 程 度であった.

なお、実際の道路工事においては、路床を埋戻した直 後に比較的簡易な舗装を構築(仮復旧)し、一定の期間車両 を交通させた後、最終的な舗装を再構築(本復旧)している. 繰り返し載荷実験の結果によると、沈下は繰り返し載荷 の初期段階に発生し、その後は一定レベルとなることか ら、1)仮復旧の段階においては、輪荷重の繰り返しによ り路床にひずみが蓄積され、路面にある程度の沈下が生 じるのに対して、2)本復旧した後においては、輪荷重の 繰り返しにより路床に蓄積されるひずみ量は微小である と考えられる.このことは、本復旧後の路面の沈下量は、 今回予測した沈下量よりもさらに小さいことを示す.さ らに、舗装厚が大きい道路においては、路床に作用する 鉛直応力がより一層小さくなるため、沈下量は今回予測 した沈下量よりも小さくなる.

これらのことから、本検討で算定した沈下量は安全側の評価となっており、交通荷重が4tトラックと同程度の 道路において、本研究に用いた関東ロームによる埋戻し は十分可能と判断される.

図-16 埋戻しの状況

表7	埋戻し条件および施工後の土質条件
----	------------------

		No.1	No.2	
长了冬(小	敷きならし厚(m)	0.3	0.3	
旭上余件	転圧回数(回)	1	1	
	名称	火山灰質	質粘性土	
	土質分類	V	H ₂	
土質試験	土粒子の密度(g/cm ³)	2.802		
結果	塑性限界(%)	88.2		
	液性限界(%)	11	1.2	
	設計CBR(%)	0	.8	
	湿潤密度(g/cm ³)	1.368	1.378	
施工後の	乾燥密度(g/cm ³)	0.679	0.695	
土質条件	含水比(%)	101.6	98.4	
測定結果	間隙比 e	3.13	3.03	
	コーン指数(kN/m ²)	521	747	

(2) 沈下量の予測手法の検証

a)実験方法

図-16 に示すように 2 つの掘削溝を関東ロームで埋戻 した. 埋戻した箇所の舗装構造は,生活道路において最 も一般的なアスコン 35 型の仮復旧の状態とした. 表-7 に施工条件,埋戻しに用いた関東ロームの土質試験結果 (JGS 0051, JIS A 1202, JIS A 1203, JIS A 1205, JIS A 1211, JIS A 1228 に基づく)を示す.また,図-17 に埋戻し土の粒 径加積曲線(JIS A 1204 に基づく)を示す.また,埋敷きな らし厚を 300mm とし,各層を転圧回数 1 回で転圧した.

図-16 における仮復旧箇所の中央を車輪が通過するように車両を通過させた.最初に乗用車を沈下量の増加が 観察されなくなった 600 台まで繰り返し通過させた後, 4t トラックを同じ台数まで繰り返し通過させ,車両の通 過台数と路面の沈下量の関係を調べた.

b)実験結果

図-18 に車両の通過台数と路面の沈下量の関係を示す. 実験の結果,実験室における繰り返し載荷実験と同様に, 車両を数十台通過させた初期段階で大きく沈下し,その 後は沈下速度が漸減する傾向を示すことが確認された. 特に,埋戻し後の路面近傍の初期不整などによって,2mm 程度の沈下が観測されているが,その後は通過台数の増 加とともにほぼ単調に沈下が発生している。

なお、同じ関東ロームで埋戻しを行ったものの、No.1 および No.2 の沈下量には 1mm 程度のばらつきが生じて いた.これは、転圧時間や舗装の施工精度の差異および

測量誤差により生じたものであると考えられる.また, 車両の通過台数800台~900台にかけて,沈下量の計測値 が1mm増加した後,再び1mm減少したものの,この値 は計測上のミスと判断し,実験データから除去した.

c) 沈下量の予測値と計測値の比較

図-9 の繰り返し載荷回数とひずみの関係(含水比 100%)から、車両の各通過台数と鉛直応力の最大値とひ ずみの関係をそれぞれ調べた.これらの関係と図-15から 得られる乗用車と4tトラックが通過する際に路床土の各 深さに生じる鉛直応力の最大値を用いて、式(3)により実 規模実験の路面の沈下量を予測した.なお、乗用車に引 き続き4tトラックが通過した場合の予測沈下量について は、乗用車が600台通過した時点での沈下量に、4tトラ ックが600台通過したときの予測沈下量を重ね合わせた.

図-18に沈下量の予測値を計測値とあわせて示す.沈下 量の予測値と実規での模実験から得られた計測値を比較 した結果,実規模実験において,路面近傍の初期不整な どによって 2mm 程度の沈下が生じたため,予測値と計測 値には 1mm~2mm の乖離があるものの,いずれも載荷の 初期段階で沈下が増大し,その後は車両の通過台数の増 加とともに徐々に増加する傾向が確認された.これらの ことから,今回提案した手法により,輪荷重の繰り返し 作用に起因する関東ロームで埋戻した路面沈下量を合理 的な範囲で予測できることが示された.

5. まとめ

本研究では,関東ロームを対象として応力を繰り返し 載荷する実験を実験室にて実施し,その結果を用いて輪 荷重の繰り返し作用によって生じる路面の沈下量を予測 する手法について検討した. さらに,実規模にて関東ロ ームで埋戻した道路に,実車両を用いて輪荷重を繰り返 し載荷する実験を実施し,沈下量の予測値と実験におけ る計測値の比較を行い,沈下量の予測手法の妥当性を検 証した.その結果,明らかとなった事項は以下のとおり.

(1)締固め実験の結果,低含水比の関東ロームは,高含 水比のものよりも締固めの効果が高い.

(2)締固め実験における一軸圧縮試験の結果,含水比が 90%および100%のケースについては,締固めエネルギー 286.9(kJ/m³)において一軸圧縮強度は最大となり,締固め エネルギーがそれよりも大きくなると一軸圧縮強度は 徐々に低下した.

(3)締固め実験に基づいて転圧方法を検討した結果,本 実験に用いた関東ロームを,機械式ランマを用いて埋戻 す場合は,敷きならし厚を300mmとし,転圧回数1回で 転圧するのが適切である.

(4)繰り返し載荷実験の結果,ひずみは載荷の初期段階 に大きく増加するものの,載荷回数が1万回に達すると 増加量は極めて微小となり,ほぼ一定のレベルとなった. このことから,1万回以上載荷した後のひずみは,載荷 する応力の最大値に依存することが明らかとなった.また,繰り返し載荷回数10万回時に供試体に蓄積されたひ ずみは,繰り返し載荷した鉛直応力の最大値と正比例の 関係にあり,含水比が高いほどその傾きは大きくなる.

(5)沈下量の予測値と実規模での実験から得られた計測 値を比較した結果,実規模実験において,路面近傍の初 期不整などによって 2mm 程度の沈下が生じたため,予測 値と計測値には 1mm~2mm の乖離があるものの,いずれ も載荷の初期段階で沈下が増大し,その後は車両の通過 台数の増加とともに徐々に増加する傾向が確認された. これらのことから,今回提案した手法により,輪荷重の 繰り返し作用に起因する関東ロームで埋戻した路面沈下 量を合理的な範囲で予測できることが示された.

謝辞:本研究の実施にあたり、東京ガス株式会社の横山 知章氏から貴重な助言をいただいた.また、本研究にお ける実験の遂行にあたっては、株式会社関配の高橋泰之 氏、基礎地盤コンサルタンツ株式会社の林三男氏に多大 なる御協力をいただいた.ここに記して謝意を表す.

参考文献

- 国土交通省:建設副産物の現状、国土交通省のリサ イクルのHP (http://www.mlit.go.jp/sogoseisaku/region/re cycle/fukusanbutsu/genjo/index.htm), pp.13, 2005
- 国土交通省:建設発生土等の有効利用に関する行動 計画,建設発生土等の有効利用に関する検討会,別 添-2,pp.1-2,2003.
- 3) 国土交通省: 建設リサイクル推進計画 2002, pp. 6, 2002.
- 高速道路調査会: 関東ロームの土工ーその土質と設 計施工,共立出版, pp. 38-39, pp. 82-91, 1973.
- 5) 財団法人 土木研究センター: 建設発生土利用技術 マニュアル, pp. 24, 1997.
- Monismith, C. U., Ogawa. S. and Freeme, C. R. : Permanent Deformation Characteristics of Sub-grade Soils due to Repeated Loading, Transportation Research Board, 1975.
- Dingqing, Li. and Ernest, T. Selig. : Cumulative Plastic Deformation For Fine-Grained Subgrade Soils, Journal of Geotechnical Engineering, ASCE, 1996.
- 8) 南形英孝, 吉崎浩司, 萩原直人, 石川元道, 坂本克 己: 導管工事における発生土抑制, 2006 年都市ガス シンポジウム要旨集, 日本ガス協会, 2006.
- 2) 社団法人 地盤工学会:土質試験の方法と解説 第 一回改訂版, pp.757, 2000.
- George, M. Fliz. and Thomas, L. Brandon. : Compactor Force and Energy Measurements, Geotechnical Testing Journal, ASTM, 1993.
- 11) 久楽勝行,三木博史:改良土の道路下埋戻しへの利 用に関する一考察,土木技術資料 33-10, 1991.
- 12) Foster, C. R. and Ahlvin, R. G. : Stress and Deflections Induced by a Uniform Circular Load, HRB Proc, 1954.

SUBSIDENCE PREDICTION OF KANTO LOAM SOIL BASED SUBGRADE USING CYCLIC LOADING EXPERIMENT

Hidetaka MINAGATA, Koji YOSHIZAKI, Naoto HAGIWARA and Hirokazu AKAGI

In a road excavation to lay a gas distribution pipeline, the re-use of the excavated soil for the subgrade backfill greatly reduces the environmental impact. However, when Kanto loam soil, which is widely distributed in the Kanto region, is employed for the backfill material, the relationship between the amount of the subsidence of the subgrade soil and the cyclic traffic loading is needed. In this study, cyclic loading tests on Kanto loam soil were conducted to investigate the subsidence characteristics. The subsidence prediction method of Kanto loam soil based subgrade under cyclic traffic loading was proposed using the cyclic loading test results. A full scale traffic loading experiments against road beds backfilled with Kanto loam soil were carried out. Consequently, a good correlation was shown to exist between the amount of the predicted subsidence and the measurement results.